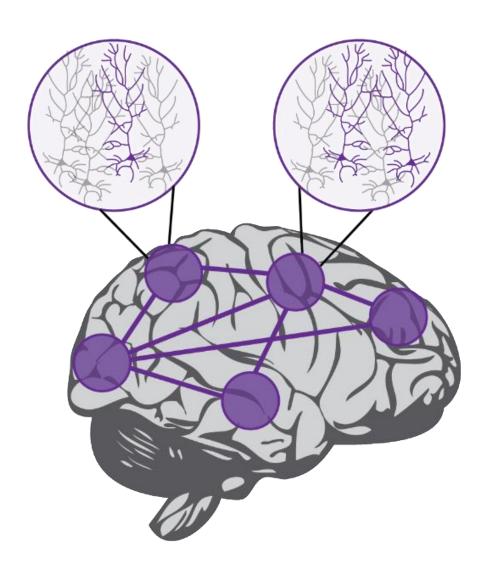
Understanding & interfacing with the brain: challenges and opportunities

Amy L. Orsborn, Eli Shlizerman, and Maria Dadarlat

A3D3 seminar October 25, 2021

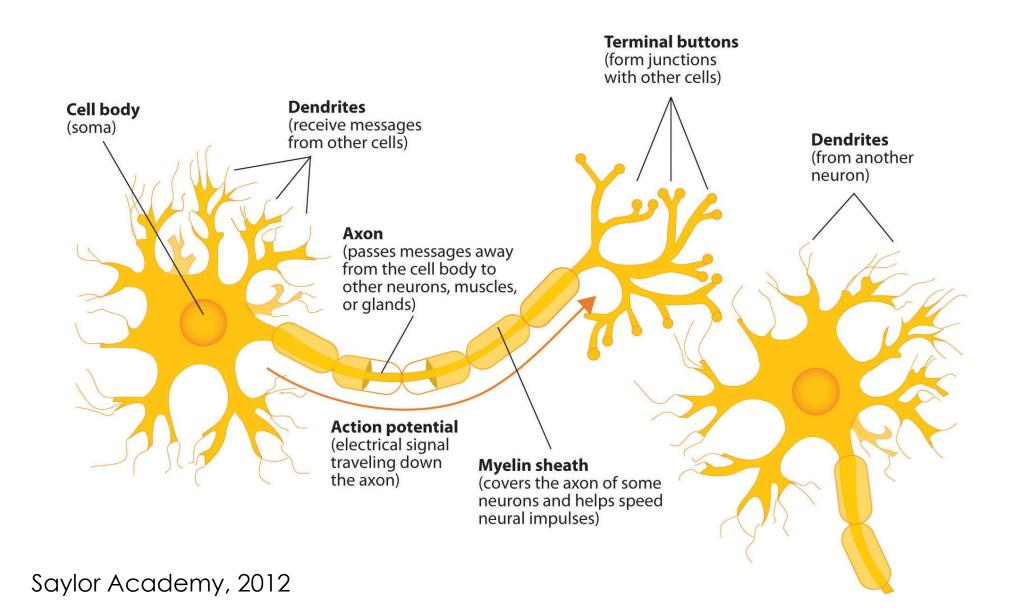
Need to understand and treat brain **networks**



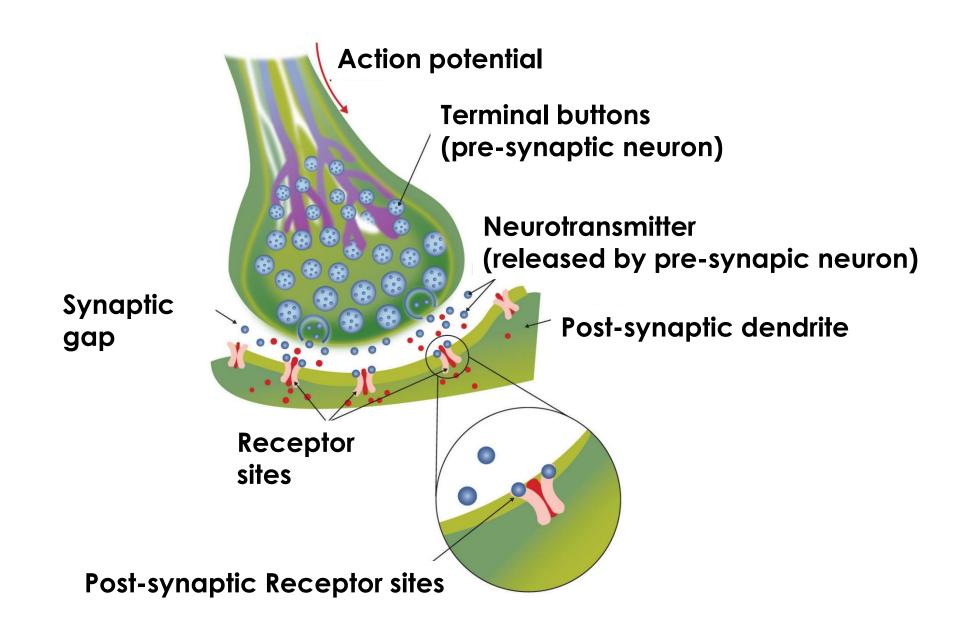
- Brains are big networks
 - Billions of neurons, trillions of connections
 - Distributed computation
 - Multi-scale computation
- All behaviors involve distributed brain activity
- Neurological disorders = disrupted network function
 - Parkinson's
 - Alzheimer's
 - Stroke

— ...

Neurons communicate via electro-chemical signaling



Neurons communicate via electro-chemical signaling

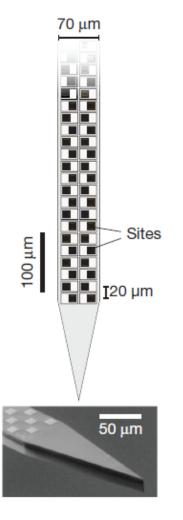


Saylor Academy, 2012

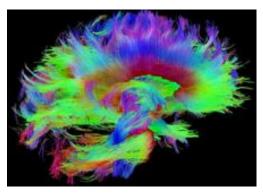
Many ways to measure neural activity

- Electrical
 - Detect currents/voltages inside or outside of neurons
- Chemical
 - Detect changes in ion flow inside of neurons
 - Detect neurotransmitter release
- Metabolic indicators (e.g. bloodflow)
 - Detect changes in energy consumption by neurons
- Many different scales of measurement across modalities

Technology to define, monitor & manipulate networks



Neuropixels
Jun et al., Nature 2017



Diffusion image, Human connectome project

Optogenetics

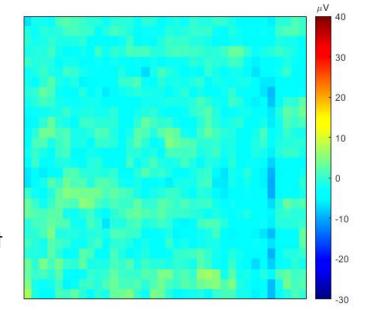
- BRAIN Initiative—Brain
 Research Advancing
 Innovative
 Neurotechnology
 - Electrodes
 - MRI
 - Light
 - Ultrasound
 - Combinations
 - Optoelectrical
 - Optoacoustics
- Translation from animals to humans

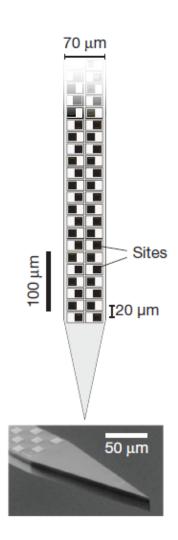
Modern neurotechnologies: rapid data scaling

- Electrical
 - Active, integrated electronics
 - → Denser sampling
 - Thin-film devices
 - → Increased biocompatibility (record longer)

Device with 1k electrodes/ 1cm²

Chiang, Won, Orsborn, Yu et al., Sci Trans Med 2020

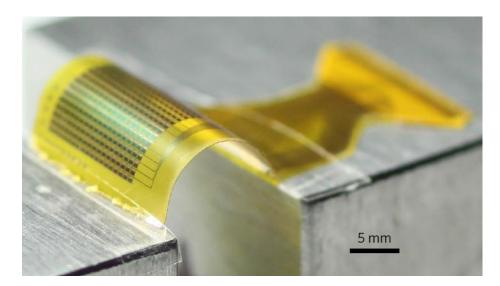




Neuropixels

- ~400 ch
- 1k sites
- 20um pitch

Jun et al., Nature 2017



Active Arrays

 Flexible, stretchable Fang et al., Nature BioEng 2017

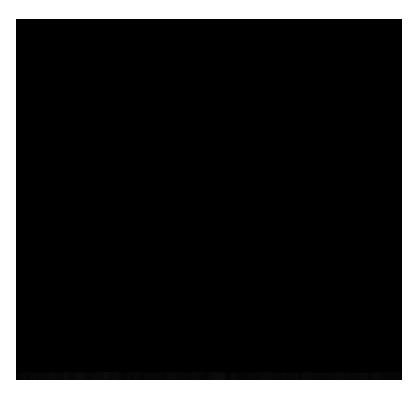
Modern neurotechnologies: rapid scaling

Electrical

- Active, integrated electronics
 - → Denser sampling
- Thin-film devices
 - → Increased biocompatibility (record longer)

Optical

- Sensing (Ca+, voltage indicators)
- Actuation (light-sensitive ion channels)
- Higher resolution & specificity
- Larger volumes

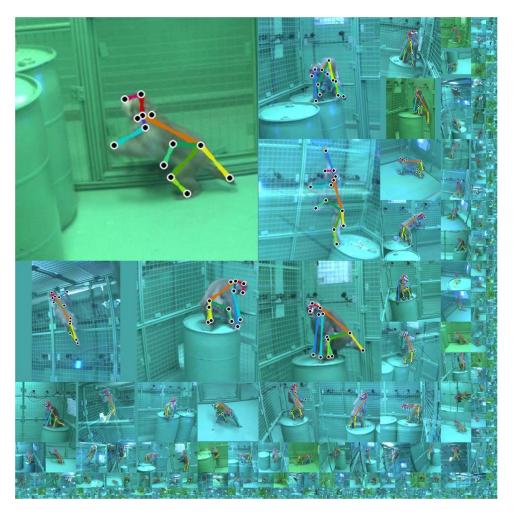


Mesocope imaging

- Hemispheric coverage (mouse brain, surface)
- ROI high-res imaging

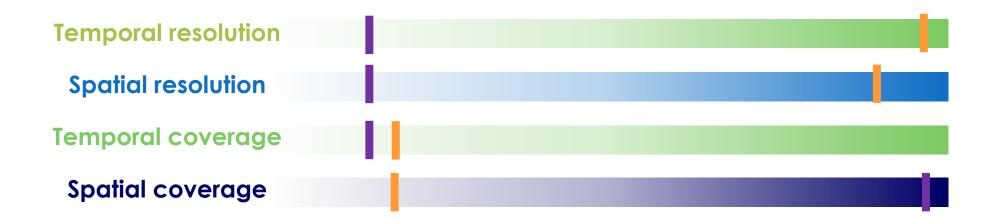
Modern neurotechnologies: rapid scaling

- Electrical
 - Active, integrated electronics
 - Thin-film devices
 - Denser recordings
 - Increased biocompatibility
- Optical
 - Sensing (Ca+, voltage indicators)
 - Actuation (light-sensitive ion channels)
 - Higher resolution & specificity
 - Larger volumes
- Comprehensive behavioral monitoring
 - Video tracking
 - Text
 - Voice

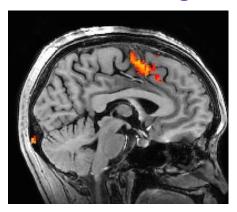


Real-time motion tracking in 3D (Bala et al., Nature Communications 2020)

Neuro data is getting bigger

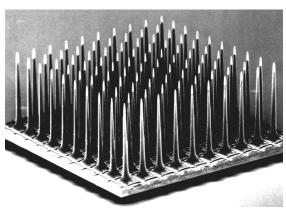


Functional Magnetic Resonance Imaging



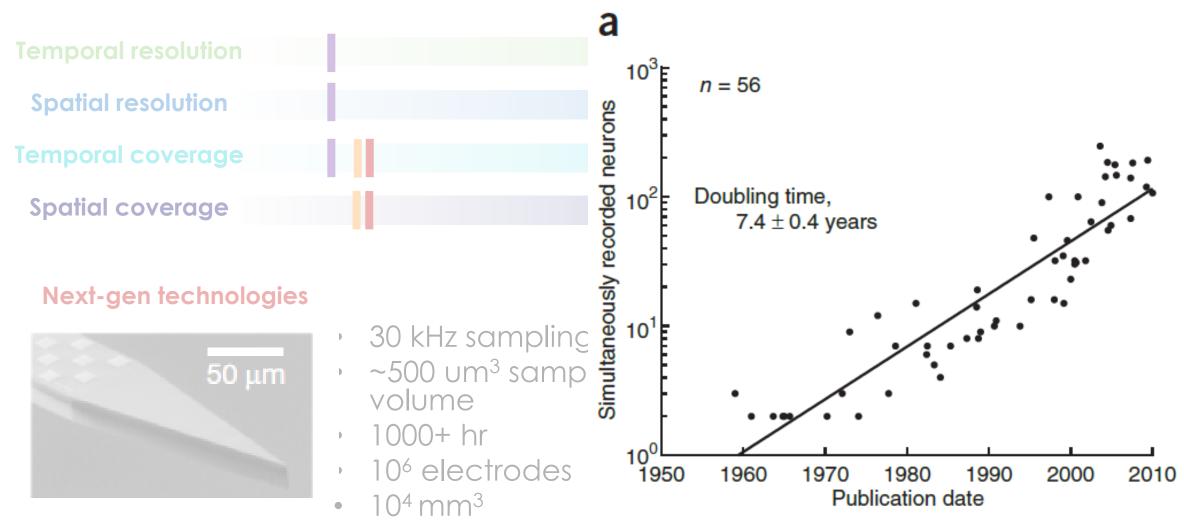
- 1 Hz sampling
- ~8mm³ voxels
- 1 hr
- 5 x 10³ voxels
- Whole human brain

Electrodes



- 30 kHz sampling
- ~500 um³ sampling volume
- 1 hr
- 100 electrodes
- 1,000 mm³

Neuro data is getting bigger

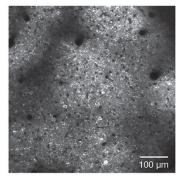


Stevenson & Kording, Nature Neuroscience 2011

Data is becoming multi-modal

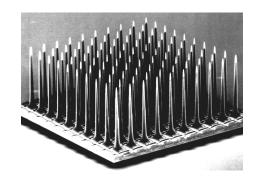
No recording method is a panacea

Imaging



- Dense spatial sampling
- Low temporal resolution

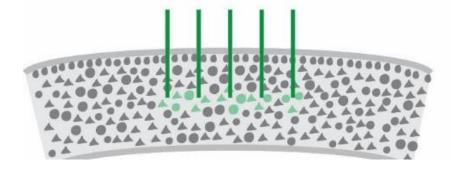
Electrodes

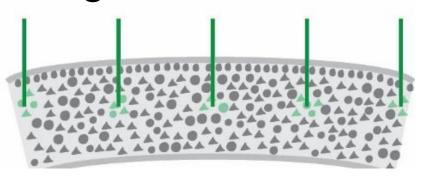


- Low spatial sampling
- High temporal resolution

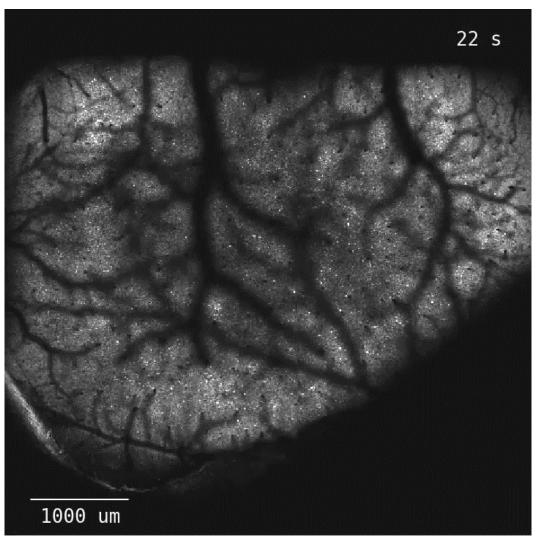
Sofroniew et al., eLife 2016

Trade offs in resolution and coverage





Towards multi-modal, multi-scale sampling



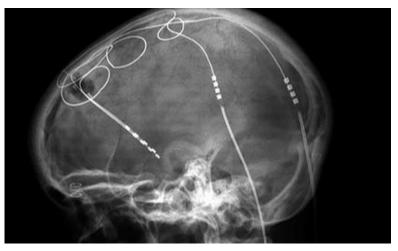
Low-resolution, large field of view imaging

Use to guide ROI selection for high-res imaging

More data, more problems: processing, manipulation, interpretation

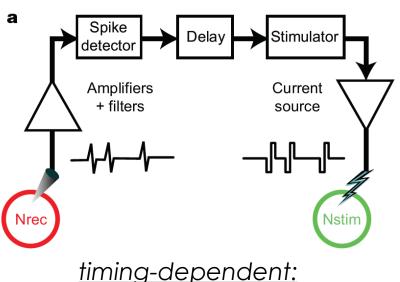
- Efficient data processing
 - Computationally efficiency
 - Person-hour efficiency (i.e. automation)
- Real-time processing,
 manipulation > treatments
 - Motor brain-machine interfaces
 - Closed-loop stimulation





Real-time ("Closed-loop") manipulations for studying brain-behavior relationships

Stimulate based on activity >> induce plasticity, study impact on behavior



<u>timing-dependent:</u> <50ms +; >50ms -

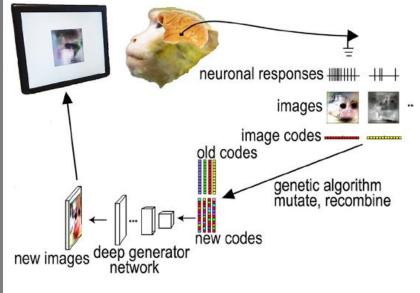
Jackson et al., Nature 2006

Stimulate to alter detected brain states > study impact on behavior



Fernández-Ruiz et al., Science 2019

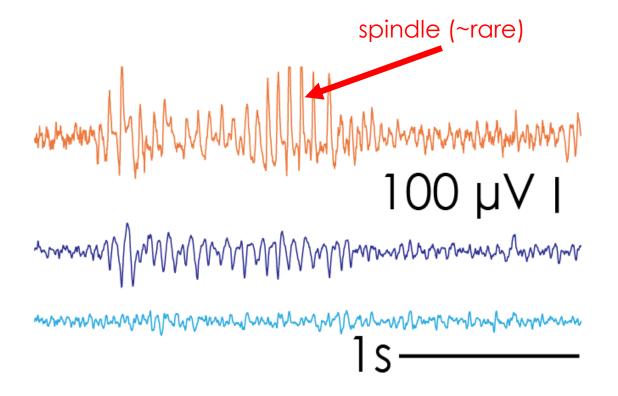
Change stimuli based on brain activity >> map responses quickly



Ponce et al., Cell 2019

Example application: closed-loop stimulation to alter sleep-spindle events

Local field potential measurements (electrical activity of groups of neurons)

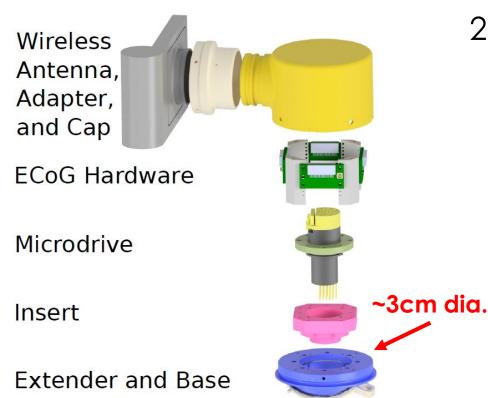


- "Spindles" are oscillation events that occur during sleep/rest
- Thought to contribute to learning
- Currently: detect a spindle starting and stimulate to disrupt

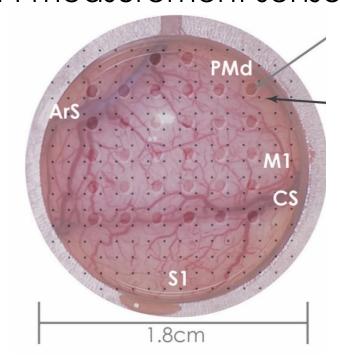
 Goal: predict spindle will occur, stimulate to prevent

Example application: closed-loop stimulation to alter sleep-spindle events

Example implant system for a monkey



244 measurement sensors



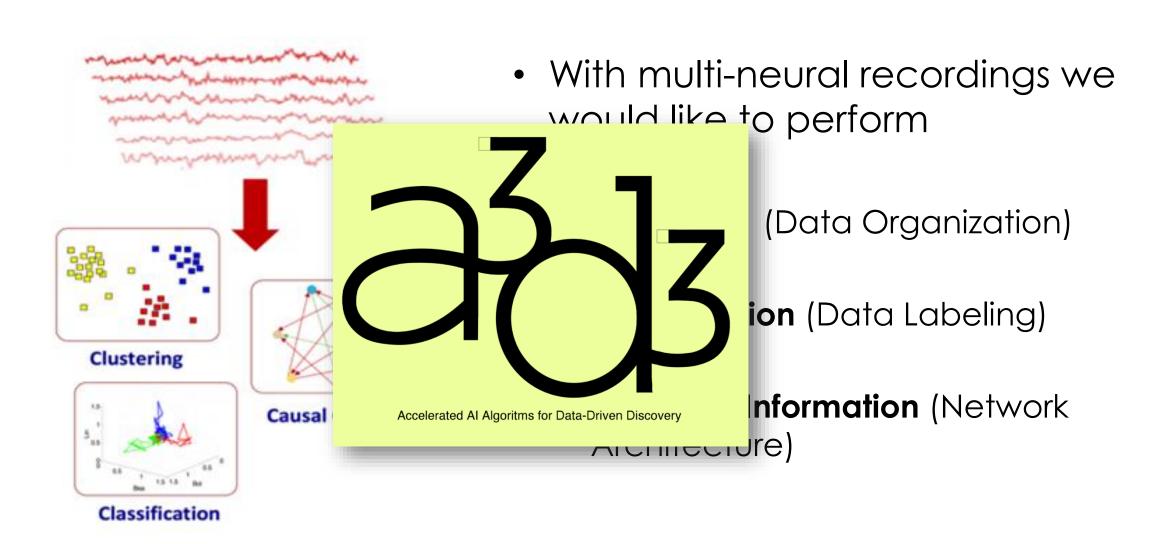
- Goal: packaged in hardware to be wearable on an animal
 - Local processing (preferred)

OR

Wireless
 transmission to
 processing unit

AD with μECoG

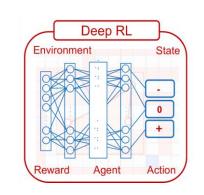
Data-Interpretation for Neural Systems

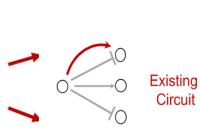


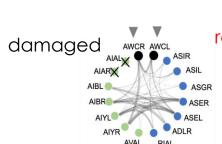
System-Understanding and Applications from Data

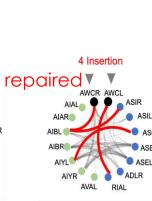
From Data to

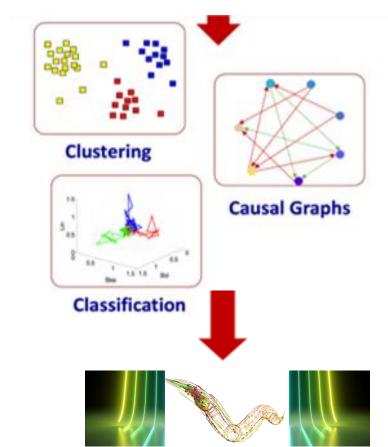
- Modeling Neural Dynamics
- Control
 - Neuromodulation Control
 - Structure Control





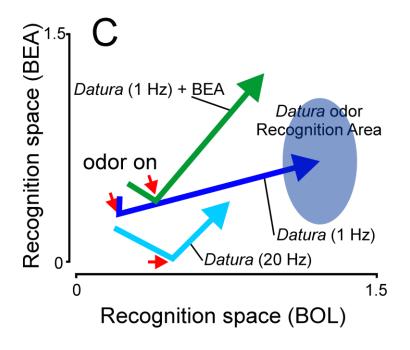






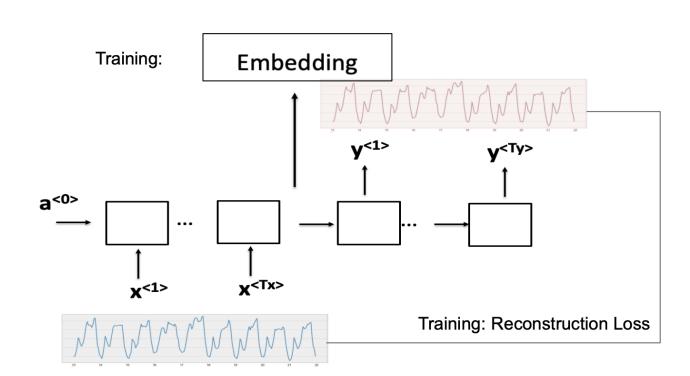
Clustering Multi-dimensional Timeseries

- Classical Machine Learning Methods
 - Low Dimensional Embeddings
 - Exclusive Threshold Reduction
 - Optimal Exclusive Threshold Reduction
 - More neurons -> better



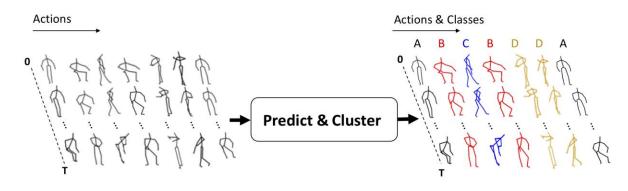
Clustering Multi-dimensional Timeseries

- Deep Learning Methods
 - Encoder-Decoder
 - Task:Prediction/Reconstruction
 - Latent Representation



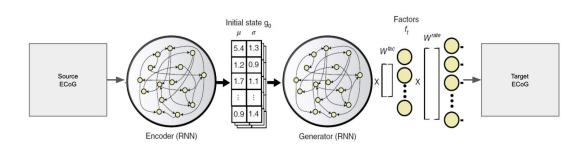
Clustering Multi-dimensional Timeseries

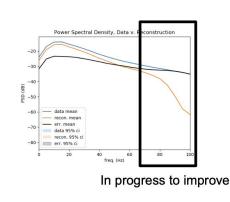
Behavioral Data: Unsupervised Human Action Recognition (Predict and Cluster)

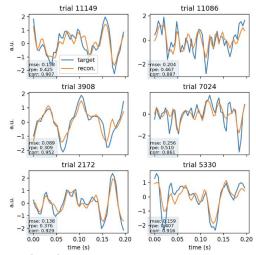


Su et al. CVPR, 2020, Su & Shlizerman, Front. Al 2020

Neural Data: Spike train data or Electrocorticogram (ECoG)



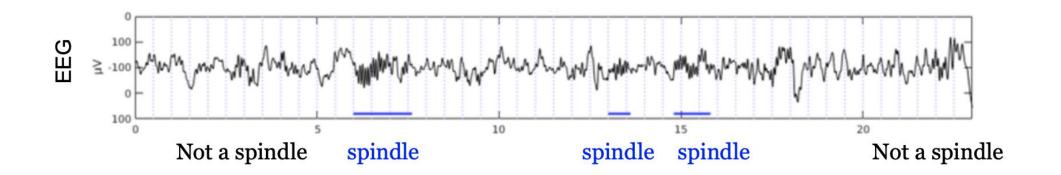




Work in progress w. Amy Orsborn

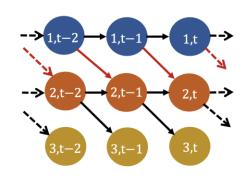
Applications of Prediction & Reconstruction

- Denoising
- Channel Reconstruction
- Tracking
- Anomaly Detection

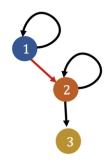


From Recordings to Structure

- Causal Graph Models
- Directed Markov Property
- Neuro-PC



Unrolled causal graph between time instances of neurons



Causal Functional Connectome (CFC-DPGM)

Classification of Multi-dimensional Timeseries

From Unsupervised to Semi-Supervised

Behavioral Data: Active Learning (Semi-Supervised)

