Overview

A3D3 Hardware Algorithm Co-development Seminar

Deming Chen, Song Han, Philip Harris, Scott Hauck, Pan Li, Dylan Rankin

November 1st, 2021
What is an FPGA?

- Building blocks:
 - Multiplier units (DSPs) [arithmetic]
 - Look Up Tables (LUTs) [logic]
 - Flip-flops (FFs) [registers]
 - Block RAMs (BRAMs) [memory]
- Algorithms are wired onto the chip
- Run at high frequency - *hundreds of MHz, O(ns) runtime*
- Programming traditionally done in Verilog/VHDL
 - Low-level hardware languages
- Possible to translate C to Verilog/VHDL using High Level Synthesis (HLS) tools

Virtex Ultrascale+ VU9P

- 6800 Multipliers
- 1M LUTs
- 2M FFs
- 75 Mb BRAM
hls4ml is a software package for creating implementations of neural networks for FPGAs and ASICs

- https://fastmachinelearning.org/hls4ml/
- arXiv:1804.06913

- Supports common layer architectures and model software, options for quantization/pruning
 - Output is a fully ready HLS project
- pip installable
- Customizable output
- Tunable precision, latency, resources
hls4ml Workflow

HLS conversion

HLS project

Co-processing kernel

Custom firmware design

tune configuration
precision
reuse/pipeline

Usual ML software workflow

Keras
TensorFlow

...
hls4ml Customization

- Multiple different knobs to adjust design for desired performance/latency/resource usage
 - Pruning
 - Quantization
 - Reuse

3-layer dense network for jet tagging *(details in backup)*
Pruning

• Are all the pieces a given network necessary?

• Many techniques for determining “best” way to prune

• hls4ml naturally supports a method of successive retraining and weight minimization
 • Use L1 regularization (penalty term in loss function for large weights)
 • Remove smallest weights
 • Repeat

• HLS automatically removes multiplications by 0

\[L_\lambda(w) = L(w) + \lambda \|w\| \]
Pruning

• Are all the pieces a given network necessary?

• Many techniques for determining “best” way to prune

• hls4ml naturally supports a method of successive retraining and weight minimization
 • Use L1 regularization (penalty term in loss function for large weights)
 • Remove smallest weights
 • Repeat
 • HLS automatically removes multiplications by 0

\[L_\lambda(w) = L(w) + \lambda \| w \| \]
Pruning

- Are all the pieces a given network necessary?

- Many techniques for determining “best” way to prune

- hls4ml naturally supports a method of successive retraining and weight minimization
 - Use L1 regularization (penalty term in loss function for large weights)
 - Remove smallest weights
 - Repeat

- HLS automatically removes multiplications by 0

\[L_\lambda(w) = L(w) + \lambda \|w\| \]
Pruning

- Are all the pieces a given network necessary?

- Many techniques for determining “best” way to prune

- hls4ml naturally supports a method of successive retraining and weight minimization
 - Use L1 regularization (penalty term in loss function for large weights)
 - Remove smallest weights
 - Repeat
 - HLS automatically removes multiplications by 0

\[L_\lambda(w) = L(w) + \lambda \|w\| \]
Pruning

• Are all the pieces a given network necessary?

• Many techniques for determining “best” way to prune

• hls4ml naturally supports a method of successive retraining and weight minimization
 • Use L1 regularization (penalty term in loss function for large weights)
 • Remove smallest weights
 • Repeat
 • HLS automatically removes multiplications by 0

\[L_\lambda(w) = L(w) + \lambda \|w\| \]

>70% initial weights removed
Quantization

- hls4ml uses fixed-point classes for all computations
 - Precision can be adjusted as needed (impacts accuracy, performance, resources)
 - Can be combined with other customizations
- Binary & Ternary neural networks take this to very low precision: [2020 Mach. Learn.: Sci. Technol]
- Quantization-aware training - QKeras + support in hls4ml: [arXiv:2006.10159]
• For lowest latency, compute all multiplications at once
 • **Reuse = 1** (fully parallel) → latency = # layers

• Larger reuse implies more serialization

• Allows trading higher latency for lower resource usage
Other hls4ml Highlights

- Large CNN support
 [arXiv:2101.05108]

- Good resource scaling

- Boosted Decision Trees:
 [JINST 15 P05026 (2020)]

- GarNet / GravNet:
Tutorials

• Tutorial series developed to introduce users to hls4ml, ML on FPGAs

• https://github.com/fastmachinelearning/hls4ml-tutorial

• Jupyter notebook-based

• Great way to learn about the tools capabilities

• Also a hands-on series (in-person / virtual)

Convert the model to FPGA firmware with hls4ml

Now we will go through the steps to convert the model we trained to a low-latency optimized FPGA firmware with Vivado. First, we will evaluate its classification performance to make sure we haven’t lost accuracy using fixed-point data types. Then we will synthesize the model with Vivado HLS and check the metrics of latency and FPGA resource usage.

Make an hls4ml config & model

The hls4ml Neural Network inference library is controlled through a configuration dictionary. In this example we’ll use the most simple variation, later exercises will look at more advanced configurations.

```
import hls4ml
config = hls4ml.converters.convert_from_hls4mlmodel(model, granularity='model')
print(config)
```

Let’s visualize what we created. The model architecture is shown, annotated with the shape and data type.

```
hls4ml.utils.plot_model(model, show_shapes=True, show_precision=True, to_file='model.png')
```

Compile, predict

Now we need to check that this model performance is still good. We compile the hls_model, and then use hls_model.predict to execute the FPGA firmware with an accurate simulation on the CPU.

```
hls_model.compile()
```

Compare

That was successful! Now let’s see how the performance compares to Keras.

```
fig, ax = plt.subplots(figsize=(9, 9))
ax = plotting.plot_accuracy_test(x_train, y_train, x_test, y_test, model, test_name='cifar', fig_name='accuracy_plot.png')
```

Synthesize

Now we’ll actually use Vivado HLS to synthesize the model. We can run the build using a method of our hls4ml object. After running this step, we can integrate the generated IP into a workflow to compile and execute the specific FPGA board. In this case, we’ll just review the reports that Vivado HLS generates, checking the latency and resource usage.

This can take several minutes.

While the CSynthesis is running, we can monitor the progress looking at the log file by opening a terminal from the notebook home, and executing:

```
tail -f models/0/hls4ml_vlog/vivado_hls.log
```

```
hls_model.build(False)
```
BACKUP
Inference on FPGAs

\[\vec{x}_m = g_m \left(W_{m,m-1} \vec{x}_{m-1} + \vec{b}_m \right) \]
Inference on FPGAs

\[\vec{x}_m = g_m \left(W_{m,m-1} \vec{x}_{m-1} + \vec{b}_m \right) \]

- **Multiplication**
- **Addition**
- **Activation function**

Up to ~6k parallel operations! (#Multiplication Units)
Inference on FPGAs

Up to \(~6k\) parallel operations!
(#Multiplication Units)
Inference on FPGAs

Every clock cycle (all layer operations can be performed simultaneously)

\[
\vec{x}_1 \rightarrow \vec{x}_m \rightarrow \vec{x}_M
\]

\[\vec{x}_m = g_m \left(W_{m,m-1} \vec{x}_{m-1} + \vec{b}_m \right)\]

- Multiplication
- Addition
- Activation function
- Multiplier Unit
- LUTs, FFs, BRAMS

Up to \(~6k\) parallel operations!
(#Multiplication units)
Example Network - Jet Tagging

16 expert inputs
64 nodes (ReLU)
32 nodes (ReLU)
32 nodes (ReLU)
5 outputs (softmax)
CNNs

• Special adjustments necessary to implement convolutional networks on FPGAs
 • HLS struggles with very long (nested) loops

• hls4ml is now able to synthesize large CNNs with good resource scaling

• Further optimizations possible for lower latencies

• arXiv:2101.05108
GarNet

- Graph networks have become very popular for complex geometric problems
 - Iterative nature difficult for FPGAs
- Modified GarNet architecture implemented in hls4ml
- Model developed for HGCal cluster ID and energy regression
 - Able to run in under 1 μs, fit within a single VU9P SLR