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TinyML and Efficient Deep Learning
make AI greener and deployable on IoT devices



“Evolved Transformer with Neural Architecture Search” ICML’19, ACL’19

We need TinyML and Green AI 
Today’s AI is too Big

AlphaGo: 1920 CPUs and 280 GPUs, $3000 per game for electric bill 
GPT-3: 175 billion parameters, 355 GPU years to train and cost $4.6M 



TinyML for Point Cloud & LiDAR Processing
- 3D point cloud models: 10x more computationally expensive than 2D CNNs  
- Challenge: highly sparse & irregular, large memory footprint 
- Random memory access is unfriendly for CPU/GPU/TPU => customized system & HW
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(a) Voxel-based convolution [206].
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(b) Point-based convolution [173, 232, 283].
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(c) Sparse convolution [56, 98, 99].
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(d) Point-voxel convolution [197, 258, 279].

Fig. 11. Overview of di�erent 3D point cloud convolutions, where (a) and (b) are conventional approaches
while (c) and (d) are emerging e�icient approaches.

DNNs composed of point cloud convolution operations. The major challenges for point cloud
convolution are two-folded: large memory footprint introduced by the additional spatial dimension,
and irregular memory access pattern introduced by sparse data format.

Point Cloud Convolution. The general form of point cloud convolution can be written as:

~: =
’

x8 2N(x: )
K(x: , x8 ) ⇥ F (x8 ), (7)

During the convolution, we iterate the center x: over the entire input. For each center, we �rst
index its neighbor x8 in neighborhood N(x: ), then convolve the neighboring features F (x8 ) with
the kernel K(x: , x8 ), and �nally produces the corresponding output ~: .

• Voxel-Based Convolution. Early research on 3D deep learning relies on volumetric representa-
tion to process point cloud data [58, 206, 231, 322, 355] (Figure 11a). The point cloud coordinates
p: are �rst quantized into integers, and the point cloud is converted to the dense tensor represen-
tation via voxelization. Maturana et al. [206] propose to generalize 2D CNNs to vanilla 3D CNNs
to further extract features from the voxel grids. Qi et al. [231] propose subvolume supervision and
anisotropic kernels for 3D CNNs, and systematically analyzed the relationship between 3D CNNs
and multi-view CNNs. Chang et al. [36] further extend 3D CNNs to object segmentation, which
is later improved by VoxSegNet [310] with dilated convolutions and squeeze-and-excitation
operations. Tchapmi et al. [282] propose SEGCloud that uses trilinear interpolation to alleviate
the information loss caused by voxelization. Voxel-based methods enjoy the regular memory
access pattern thanks to the dense volumetric representation. However, the memory footprint of
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[Point-Voxel CNN, NeurIPS’19 spotlight] 
New design space, new primitive for point cloud
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Evolutionary Arch. SearchSuper Network Training

Fine-Grained Channel + Elastic Depth Weight Sharing
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Fig. 3. Overview of 3D Neural Architecture Search (3D-NAS): we first train a super
network composed of multiple SPVConv’s, supporting fine-grained channel numbers
and elastic network depths. Then, we perform the evolutionary architecture search to
obtain the best candidate model under a given computation constraint.

To this end, we propose to use the GPU hash table to accelerate the sparse
voxelization and devoxelization. Specifically, we first construct a hash table for
all activated points in the sparse voxelized tensor S, which can be completed in
O(n) time. After that, we iterate over all points in T , and for each point, we use
its voxelized coordinate as the key to query the corresponding index in the sparse
voxelized tensor. As the lookup over the hash table requires O(1) time [37], this
query step will in total take O(m) time. Therefore, the total time of coordinate
indexing will be reduced from O(mn) to O(m+ n).

Feature Aggregation. We then perform the neighborhood feature aggregation
on the sparse voxelized tensor using a sequence of residual Sparse Convolution
blocks [9]. We parallelize the kernel map operation in Sparse Convolution on GPU
with the same hash table implementation as in sparse voxelization, which o↵ers
1.3⇥ speedup over the implementation from Choy et al . [9]. Note that both our
method and the baseline have been upgraded to this accelerated implementation.

Sparse Devoxelization. With the aggregated features (which are in the form
of sparse tensors), we transform them back to the point-based representation so
that the information from both branches can be fused together. Similar to Liu et
al . [32], we choose to interpolate each point’s feature with its 8 neighbor voxel
grids using trilinear interpolation instead of the näıve nearest interpolation.

Point Transformation and Feature Fusion. In the lower point-based branch,
we directly apply an MLP on each point to extract individual point features. We
then fuse the outputs of two branches with an addition to combine the comple-
mentary information provided. Compared with the vanilla Sparse Convolution,
MLP layers only cost little computation overhead (4% in terms of #MACs) but
introduce important fine details into the information flow (see Figure 5).

[SPVNAS, ECCV’20] 
3D neural architecture search

[PointAcc, MICRO’21] 
Hardware accelerator for point cloud

[TorchSparse, open source] 
GPU library for 3D sparse convolution

Algorithm

Hardware System

[PVCNN, NeurIPS’19] 
[SPVNAS, ECCV’20] 
[PointAcc, MICRO’21]



Object Part
Segmentation

2.7x measured speedup

Indoor Scene
Semantic Segmentation

6.9x measured speedup

Outdoor Scene
Semantic Segmentation

2.7x measured speedup

Real-Time Inference, 2x speedup on Edge Devices

“Project of the Month” by NVIDIA
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[PVCNN, NeurIPS’19] 
[SPVNAS, ECCV’20] 
[PointAcc, MICRO’21]

PVCNN provides fine details for small objects at low computation
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Significant accuracy improvement on safety-critical objects
Bicycle

51.6

40.4

Person

65.7

60.9

Motorcyclist

43.7

18.7

+5% +11% +25%

OursMinkowskiNet

TinyML for Point Cloud & LiDAR Processing
Ranks 1st in the nuScenes LiDAR Segmentation Challenge
Best submission@6th AI Driving Olympics, ICRA 2021



MIT Driverless
Accuracy: 95.0%
Range: 8 meters
Latency: 2 ms/object

PVCNN (Ours)
Accuracy: 99%
Range: 12 meters
Latency: 1.25 ms/object



3D LiDAR Sensor 3D Point Cloud: 2M points/s

30fps

[Liu et al. ICRA’21]
In collaboration  

with Daniela Rus

Too slow to drive

Real time!
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TinyML for Point Cloud & LiDAR Processing


