An Integrated Software Framework for Magnetic Measurements

From Raw Data to Assets

Matthias Bonora

Outline

- → Magnetic measurement requirements
- → FFMM A Flexible Framework for Magnetic Measurements
 - Concept and idea
 - Components of a measurement script
 - Connection to webservices
 - Integration examples
- → Development goals and future plans

Magnetic Measurements

Rotating coil systems

Stretched wire systems

Helmholtz coils

3D mapper

Magnetic Measurements

Ring-Sample Permeameter

Translating Fluxmeter

A Magnetic Measurement Bench (1)

Devices

DAQ

Levemeters

Motors

Multimeters

Teslameters

Power Converters

Digital Integrators

Waveform Generators

A Magnetic Measurement Bench (2)

Setup

Acquisition

Analysis

Results

- Measurement script
- Parameters

- → Raw data
- → Pre-processed data
- Voltages, currents, fluxes

→ Harmonics, multipoles, field, center offset, roll angles

- Measurement report
- → Summaries

Magnetic Measurement Results

The TE-MSC-MM Value Shop

Magnetic Measurements

- → Operation of many different measurement benches and types
- → Similar, yet different acquisition systems
- Use of different sensors and actuators
- **→** Resource optimization
 - Symbiotic benefit from measurement bench developments
 - Keep and reuse development expertise
 - Benefit from short term contracts and student contributions

→ Need for an efficient software platform as base of operations

A Flexible Framework for Magnetic Measurements (FFMM)

- Idea for a software framework for magnetic measurements
- → Reusable
 - Easy to implement small, independent blocks
 - Blocks are reusable when needed
- → Flexible
 - Easy to write measurement applications
 - Still full control and extendability
- → Framework
 - A software framework, in computer programming, is an abstraction in which common code, providing generic functionality, can be selectively overridden or specialized by user code for providing specific functionalities.

marco.buzio@cern.ch, "FFMM: a Flexible software Framework for Magnetic Measurements"

IMMW 15, International Magnetic Measurement Workshop, FERMILAB, Batavia, IL, 21–24 Aug 2007

A Flexible Framework for Magnetic Measurements (FFMM)

- → Works well with available resources
 - R&D with short term contracts
 - Implemented components stay integrated in framework
- → Platform Independent, vendor independent
 - Build on open source software
 - Linux an option
 - Driver implementation for commercial devices optional
- → Separation of Users, Test Engineers and Framework Developers

FFMM – Development History

- → First idea in 2007
- → First implementation for SM18 rotating coil benches
- Extension to all rotating coil benches
- → Extension to wire benches (2011)
- → Coverage all of MM sections platforms
 - Around 40 systems for measurements plus R&D
 - Increased requirements on functionality and features
 - Coverage of functions beyond simple data acquisiton
- → Many contributions from initial idea to current state by staff, students, short-term contracts, collaborations
 - Present developers: Matthias Bonora, Lucio Fiscarelli, Carlo Petrone

FFMM – Requirements

Magnetic Measurements – Devices

- → Implementation of many devices
- Data acquisition
- Multimeters / tesla-meters
- → Motor controls
- Power converter controls

FFMM: Graphical User Interface Generation

- Implementation of a GUI generator
- → Description of a user interface in a few lines of text
- → Generation of a user interface with parameter settings, plots, and user controls

FFMM: Gui Generation Output

- → Inputs for parametrizing a measurement
 - Input fields
 - Grouping of settings
 - Tables
 - Cycles
 - Device settings (ports, locations, types)
 - Measurement parameters
- Simple plots
 - Time series plots for fluxes/currents/DAQ signals
 - Bar plots for histograms and multipoles
 - Status signals
- Inputs for measurement control
 - Dialogues, status messages, dynamic controls

FFMM: Gui Generation Output

FFMM Framework

FFMM: Complex Plotting

- No limit in plotting functionality
- → Simple plots in GUI description
- Complex plots as code within script

FFMM Framework

FFMM: Analysis

Parametrisation

Script Creation

Analysis

Data Visualisation

Data Management

Graphical User Interface

Device Classes

Synchronisation

Logging

Webservice
Connection

Event Handling

Fault Detection

- → Provide features to run analysis online during data taking
 - Immediate feedback
 - Early results
- Multiple approaches
 - a) Use Matlab generated code for analysis (compiled C++)
 - Code sharing between offline post-processing scripts and online analysis
 - Quick implementation
 - b) Use native C++ implementation
 - Use library for common needs (linear algebra, solvers, FFT calculation)
 - No dependencies on Matlab

FFMM: InforEAM → Workorders and Assets

- Workorders derive from a client measurement request
 - Track status of a measurement
 - Central point for accessing information and data about a measurement
 - Results, data, execution information, used devices
- → Assets represent MM devices and sensors
 - 2000 devices registered
 - Rotating coil shafts, integrators, coils, probes, measurement benches,...
 - Calibration data (including history)
- → Both integrated into FFMM
 - Link a measurement to a workorder
 - Track used assets for a measurement
 - Add devices and equipment by barcode scan
 - Access all measurement data through a workorder

FFMM: Data Storage

- → Combination of InforEAM, EDMS, and custom Oracle database
- → Trade-off between ease of access and ease of implementation
 - Simple results into InforEAM
 - Complex outputs into Oracle database
 - Raw data files and measurement parameters into EDMS
- → Storage of all measurement parameters
 - Devices in use
 - Settings
 - Calibration data
- → No raw data are discarded → reconstruction possible
 - In case of incorrect analysis parameters or errors
 - Future investigation of measurement results

FFMM: Measurement Dataflow

FFMM: Measurement Postprocessing

FFMM: Showcase – Rotating Coils in SM18

- → Upcoming measurement campaign for HL-LHC
 - High volume in measurements
 - Reduction of feedback loop
- Quality assurance and traceability of measurements

FFMM: Showcase – Rotating Coils in SM18

- → Webservice implementation
 - Tracking of used devices and rotating coil shaft
 - Direct loading of calibration data
 - Storage of raw fluxes and processed multipole data
- → All data linked to a measurement request
 - Traceability of measurement
- Online analysis for full system
 - Multiple segments, multiple apertures
- → Faster access to results for postprocessing
- Immediate feedback of measurement
 - Connection errors show in analysis
 - Early possibility to restart measurement

FFMM: Showcase – Postprocessing

- → Postprocessing with Python/Jupyter scripts
 - Retrieve data by measurement request
 - Perform data cleanup and checks on measurements
 - Generate plots, tables, release data into database

→ Reusable

- Generic template with parameters
- Customized template for specific magnets
- Common core classes for processing, plotting and database access

→ Traceable

- Common code in version control
- Applied transformations stored in script on EDMS
- released data linked to EDMS document

sprocessing step to effect, elean and redease redaining our measuremen

Parameters

ocicetion of Itali

here are multiple ways of selecting a Measurement

- parentWO: Measurement Request Workorder
- woNumbers: Run Workorder numbers (Rotating Coil measurement runs)
- magnetNames: Magnet asset names
- edmsldsSel: Directly via a list of Run Analysis edms ids

n [4]:	reme	oveinput X
	1	display (Markdown ("""### Version information
	2	tm analysis_tools package version: {0}
	3	""".format(tm_analysis_toolsversion)))

Version information

tm_analysis_tools package version: 2021.8.14.dev19+g6ccdc09

— Inner Co

— Outer Co

— Seg 1

Seg 2
Seg 3
Seg 4

— Seg 5 — Seg Inte

n	bn	an
1	10000.000	-0.039
2	-0.344	-1.483
3	-11.075	0.841
4	-0.074	1.032
5	-6.702	0.656
6	0.021	0.459
7	-3.475	0.456
8	-0.207	0.043
9	-0.147	-0.087
10	-0.142	0.123
11	1.757	-0.340
12	0.162	-0.097
13	-1.523	0.423
14	-0.026	-0.001
15	0.147	-0.030

TE Technology Departmen

A 1754.9999

FFMM: Summary of current state

- → FFMM now established baseline for magnetic measurement scripts
- → Continuous development of new features and integrations
- Integration of features beyond simple data acquisition
- An effective way of retaining implementations and R&D
 - Growing library of devices, components and features
 - R&D effort on a single script automatically integrated in framework
 - Mostly from students and short-term personnel

What's next?

FFMM: Beyond Measurements

- → Extend focus of FFMM beyond magnetic measurements
- → For any workflow using basic data acquisition or object manipulation
- → Framework provides
 - GUI
 - Visualisation
 - Device implementations
 - Access to InforEAM
 - Workorder access
 - Asset tracking
 - Access to EDMS
 - Store data
 - Load documents
 - Access to Oracle database

FFMM: Beyond Measurements - Calibration

- → In-house calibration of coils and arrays
- → Coils, arrays and PCBs added as assets to system
- → Operator loads request for calibration in FFMM
- Operator performs calibration in FFMM
- FFMM uploads calibration values to InforEAM
- → FFMM uses uploaded calibration values
- Example of script using simple daq + webservice features
- Mutual benefits from FFMM framework implementation
- Same concept easily adaptable to other domains wherever needed
 - FGC control (Current Cycles, pulsing, degaussing)

FFMM: Beyond CERN

- → Increasing Requests for building measurement systems for external entities (INFN, CEA)
 - Building and selling measurement systems not within CERN mandate
- → Concept: Measurement platforms based on commercial systems
 - Rotating coil platform (PCB coils, commercial motors, commercial DAQ)
 - Stretched wire systems (commercial stages, commercial DAQ)
 - Measurement bench based on commercial products
 - Provide a material list, technical drawings and instructions for setting up measurement benches
- → FFMM as measurement software
 - Open source libraries
 - Base for collaboration and extensions
 - No dependencies on platform beyond device choice
- → Provide our expertise as service (collaborations)

FFMM: Beyond Acquisition

- Combine Models and Measurements
 - Avatar: Measurement, Simulation, Inference
 Based on Kirchhoff's theorem
 - Twin: Fusion of measurements, models,
 empirical rules, machine learning
- Track Avatars, Twins and applied algorithms in database
- Improve models with measurement data
- → Better understanding of the magnet
- → Feedback for new transducers or measurements

TE Technology Departmen

FFMM: Conclusion

- → Universal Magnetic Measurement Platform
 - Covers majority of MM needs
 - Separation of roles keeps development ongoing and operation simple
 - Fully integrates with CERN webservices
 - Results stored and ready for further development
- Potential Extension of Scope
 - Use outside CERN
 - Use beyond magnetic measurements

