Warsaw University of Technology

LPCC Fastsim

18/11/2021

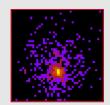
Jan Dubiński, Kamil Deja, Sandro Wenzel, Roberto Preghenella, Bartosz Świrta, Przemysław Rokita, Tomasz Trzciński

Fast simulation application / accuracy

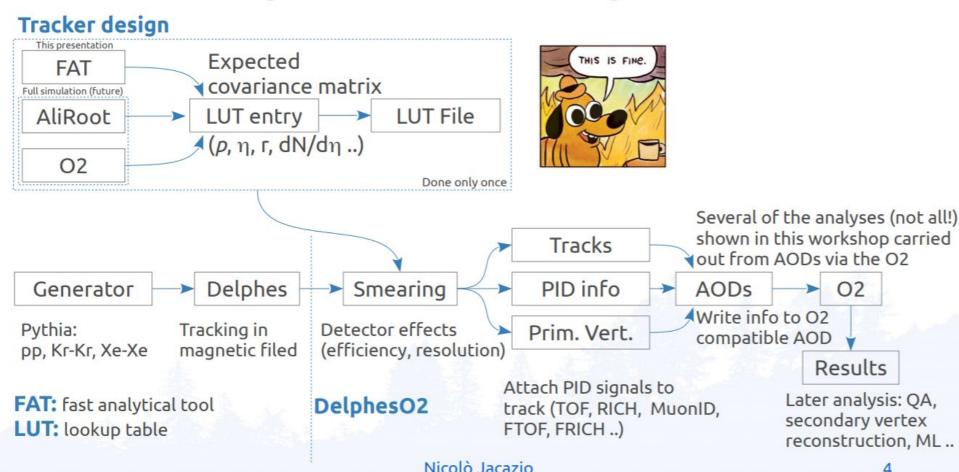
ALICE Run3:

- in general, no ML fast sim used in production. In process of R&D
- no real outstanding sensitive detector apart from ZDC (zero degree calorimeter)
 - o currently ZDC not used in all MC productions
- ZDC also appears to be ideal for ML, since it has 2D readout structure (n*m optical fibers collecting photons)
 - o a response is a 2D image with pixels encoding photon count
 - the final output are 5 digits calculated from the image (5 channels)
 - Almost no material / other detectors in front of ZDC
 - Approach:
 - generate response directly from primary (no transport at all involved; main one followed up until now)
 - generate response from impinging track (transport involved)
- We target to replace detailed sim with fast sim for ZDC and use in all analysis (if possible)
- Training on actual data not done (possibly not easy; could be interesting idea)

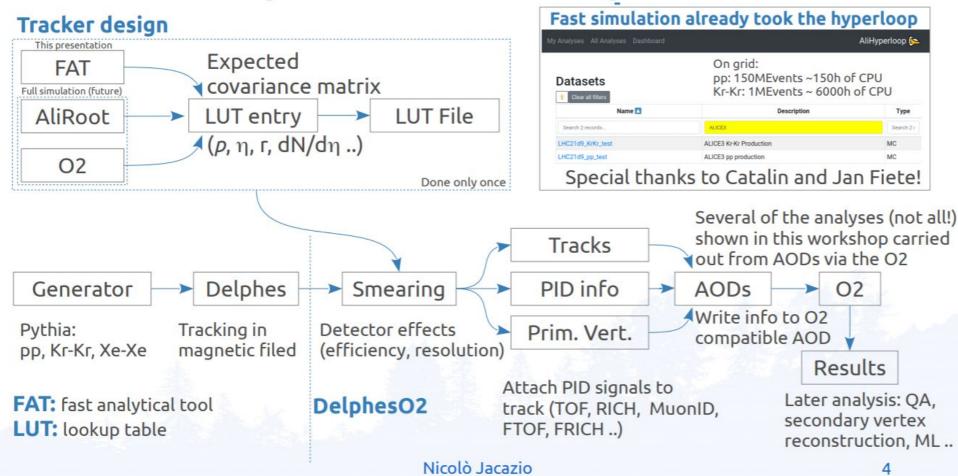
120m

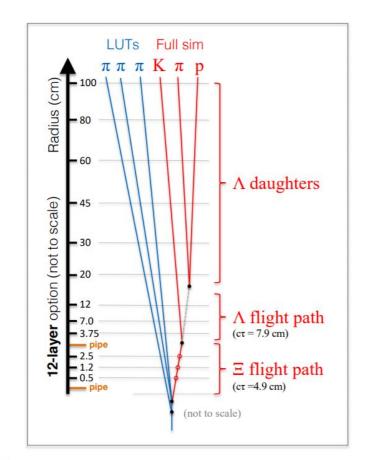

120m

8, 22, 6, 197, 791

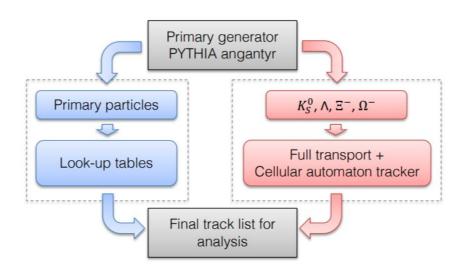


ALICE3: Fast simulation in Delphes spaces


ALICE 3 Upgrade studies


- new fast-simulation framework developed on purpose (DelphesO2)
 - o based on Delphes
 - o and on ALICE-O2 (simulation and reconstruction for Run3/4)
 - o plus custom routines for simulation of signal of specific detectors
 - time-of-flight layers
 - RICH detectors
 - EMCal
 - muon identification layer
 - GRID enabled, extremely large data samples (billions of HI collisions)
- produce analysis objects in the ALICE data format
 - convert output of fast simulation into AOD data
 - o can run same identical analysis code as normal simulation / reconstruction
 - GRID analysis of very large data samples
- input to DelphesO2
 - o event generator output (pythia8, HepMC, ...)
 - LUTs with tracking parameterisation (see later)
 - o parameters for fast-simulation of signal of other (i.e. PID) detectors
 - time-of-flight layer(s): time resolution, location, ...
 - RICH detector(s): refractive index, I pe angular resolution, PDE, ...

Practical implementation: DelphesO2



Practical implementation: DelphesO2

- LUTs: adequate for primary particles
- Full simulation: adequate for secondaries
- Combination yields high speed: reasonable objective is that time in tracking + smearing is less than analysis and event generation
- Full preservation of weak decay selections vs LUT approach!

LUTs Full sim πππΚπρ

speedup factors (numbers for 100 min.bias Pb-Pb events)

	Full sim	Fraction	Hybrid sim	Fraction
Event generation + transport (measured)	15 minutes	14%	3 minutes	26.5%
Event generation (estimated)	~2.5 minutes	2.3%	~2.5 minutes	22.1%
Transport (estimated)	~12.5 minutes	5.8%	~30 seconds	4.4%
Track determination (full tracking + smearing)	85 minutes	78.7%	20 seconds	2.9%
Analysis time (Ξ_{cc}^{++})	~8 minutes	7.4%	~8 minutes	70.8%
Total time	108 minutes	100%	11.3 minutes	100%
should remove the analysis time to see speedup	100 minutes		3.3 minutes	30x faster

(not to scale)

generation

Full preservation of weak decay selections vs LUT approach!

