— Warsaw University
of Technology

LPCC Fastsim

18/11/2021

Jan Dubinski, Kamil Deja, Sandro Wenzel, Roberto Preghenella, Bartosz Swirta,
Przemystaw Rokita, Tomasz Trzcinski

Results for 18.11.2021 Dubinski Jan



Fast simulation application / accuracy

ALICE Run3:

° in general, no ML fast sim used in production. In process of R&D
° no real outstanding sensitive detector apart from ZDC (zero degree calorimeter)
o currently ZDC not used in all MC productions
° ZDC also appears to be ideal for ML, since it has 2D readout structure (n*m optical fibers
collecting photons)
o a response is a 2D image with pixels encoding photon count

the final output are 5 digits calculated from the image (5 channels)
Almost no material / other detectors in front of ZDC
Approach:
[ generate response directly from primary (no transport at all involved; main one
I

o O O

followed up until now)
] generate response from impinging track (transport involved)
° We target to replace detailed sim with fast sim for ZDC and use in all analysis (if possible)
° Training on actual data not done (possibly not easy; could be interesting idea)

EME

) 4

8,22,6,197,791




ALICE3: Fast simulation in Delphes spaces ALic

ALICE 3 Upgrade studies

° new fast-simulation framework developed on purpose (DelphesO2)
© based on Delphes
o and on ALICE-O2 (simulation and reconstruction for Run3/4)
o plus custom routines for simulation of signal of specific detectors
m  time-of-flight layers
[ RICH detectors
[ EMCal
[ muon identification layer
o GRID enabled, extremely large data samples (billions of HI collisions)
° produce analysis objects in the ALICE data format
o convert output of fast simulation into AOD data
o can run same identical analysis code as normal simulation / reconstruction
o GRID analysis of very large data samples
° input to DelphesO2
o event generator output (pythia8, HepMC, ...)
o LUTs with tracking parameterisation (see later)
o parameters for fast-simulation of signal of other (i.e. PID) detectors
m time-of-flight layer(s): time resolution, location, ...
[ RICH detector(s): refractive index, | pe angular resolution, PDE, ...




Practical implementation: DelphesO2

Tracker design

This presentation

| EAT Expected
I_.Fyl.lé.iwy!a.tiqn.(fv;yrg)_f\‘ covariance matrix
| AliRoot —>| LUTentry —> LUTFile
I 4(p,m,r,dN/dn .)
| o2 — |
.............................................................................. Done onlyonce
Several of the analyses (not all!)
shown in this workshop carried
| : ¥ g " Yout from AODs via the 02
Generator —> Delphes —> Smearing ‘ » PIDinfo > AODs —> 02
. . f : - Awriteinfoto02 |
Pythia: Tracklng in - Detector effects > Prim. Vert. R compatible AOD y
pp, Kr-Kr, Xe-Xe  magnetic filed : (efficiency, resolution)
; Results
Attach PID signals to | =
FAT: fast analytical tool DelphesO2 track (TOF, RICH, MuoniD, Later analysis: QA,
LUT: lookup table FTOF, FRICH ..) secondary vertex

reconstruction, ML ..
Nicolo Jacazio 4



Practical implementation: DelphesO2

Tracker design Fast simulation already took the hyperloop

This presentation

| EAT Expected : on grid:
i : : 150MEvents ~150h of CPU
memwss  Ncovariance matrix 1| Kr-Kr: 1MEvents ~ 6000h of CPU
L . ‘ Name Description Type
. AliRoot *4 LUT entry —> LUTFile | — =% = -
4 (p' ]»I' r dN/d-n ) : LHC2109_Krks test ALICE3 Ke ks Production Mc
{0 Y. e f Cata !
e A O ... 1. L.t L SpeCIal thanks to Catalin and Jan Fiete! J

=eespesss
\

Several of the analyses (not all!)
: Pd Tracks M~ shown in this wo_rkshop carried

Y ,, yout from AODs via the 02
Generator —> Delphes ——> Smearing féﬂ PIDinfo > AODs —> 02 |

AWrite info to 02
Pythia: Tracking in - Detector effects Prim. Vert. 3
pp, Kr-Kr, Xe-Xe  magnetic filed : (efficiency, resolutlon)hl ompstible A0DDY
Results
: Attach PID signals to -
FAT: fast analytical tool DelphesO2 track (TOF, RICH, MuoniD, Later analysis: QA,
LUT: lookup table , FTOF, FRICH ..) secondary vertex

reconstruction, ML ..
Nicolo Jacazio 4



HYEIRIDLY) technology

LUTs Full sim
nnn K=z
g‘_ 100 P - Primary generator
S f PYTHIA angantyr %
Y —— ......... O reeenonnssi W v .
> : 1 : t
o : t Primary particles } : } [ KA. 520 ] :
[ 5 < - —

- A daughters 5 3 ? — B i
% ; [ Lookeup iabies ] ; ; [Cellular automaton tracker |
3 ko S W 1 S W—— E
§ %6 Final track list for
=T S analysis
S |
= o ,~‘ :
Lo | - A flight path
2 = ree ' R « LUTs: adequate for primary particles
a B | = flioht vath « Full simulation: adequate for secondaries
™ B=05 - g pat . . . . : . 3

L ipe | (cr=49cm) « Combination yields high speed: reasonable objective is that
ooilmodis time in tracking + smearing is less than analysis and event
generation
» Full preservation of weak decay selections vs LUT approach!
N
¥ Nik|hef

e AR bd Charmed and multi-charmed baryons via strangeness tracking



HYEIRIOY) technology

LUTs Full sim
A xaxKxao [ ]
speedup factors (numbers for 100 min.bias Pb-Pb events)
Event generation + transport (measured) 15 minutes 14% 3 minutes 26.5%
Event generation (estimated) ~2.5 minutes 2.3% ~2.5minutes 22.1%
Transport (estimated) ~12.5 minutes 5.8% ~30 seconds  4.4%
Track determination (full tracking + smearing) 85 minutes 78.7% 20 seconds 2.9%
Analysis time (&) ~8 minutes 7.4% ~8 minutes  70.8%
Total time 108 minutes 100% 11.3 minutes 100%
should remove the analysis time to see speedup 100 minutes 3.3 minutes 30x faster
[ generation
» Full preservation of weak decay selections vs LUT approach!
g,

¥ Nik|hef -

i harmed and multi-charmed baryons via strangeness tracking
e i Charmed and mu d baryor a g



Data preprocessing AL
* Dataset consists of 10 million particle examples with conditional parameters
(Energy, primary vertex position (X, ¥, z), momenta (X, Y, z), mass, charge)
* Instead of inputting particle id (pdg code) we convert them to mass and charge
*  We exclude particles producing “empty” or “nearly empty” outputs using trained Random
Forest models
*  We store preprocessed data as .npz files (zipped archive with numpy arrays)

Qgcjg; L] Particles cousing A

empty ZDC /1\

responses

responses /LN
Particle data Detecting non-zero ZDC » »
Mass, Energy, Vxyz, Pxyz, [y responses using Jo Particles causing
" Charge Random Forest random ZDC Random Generator

Particles cousing
Particles cousing, B dom ZDC
non-zero ZDC ~ S

responses "I Random Forest

Non-random ZDC
responses

v




Generating non-random ZDC responses  ALICE

* The input of the simulation is random noise and conditional parameters
(Energy, primary vertex position (X, ¥, z), momenta (X, ¥, z), mass, charge)
* The final dataset consists of 295867 examples
*  We scale the conditional input with standard scaler
*  We transform the ZDC response images with logarithm before using them as real training data

Particle data Scaling L. — -
Mass, Energy, Vxyz, — [y .
E— — Postprocessing
Generative _
Models ‘ > Reversing log
transformation

Random noise




®

Tuning IR

*  We reviewed different generative architectures:VAE, GAN and our own
idea e2e SAE (see IML presentation and article)

e The final decision was based on the wasserstein distance between
channels of original and fast simulation

» Current state of the art architectures:
* end-to-end Sinkhorn autoencoder (paper and code)
* deep convolutional GAN with auxiliary regressor and postprocessing (code)

* Manual hyperparameters tuning



https://indico.cern.ch/event/852553/contributions/4061239/
https://ieeexplore.ieee.org/document/9311504
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9311504
https://github.com/KamilDeja/e2e_sinkhorn_autoencoder
https://gitlab.cern.ch/swenzel/zdcfastsim/-/blob/jan_dubinski_dev/notebooks_ZDC_fast_sim/7.GAN+aux_reg.ipynb

end-to-end Sinkhorn autoencoder

* No implicit regularisation of
autoencoder’s latent space

* Approximation of original data
embeddings with deterministic neural
network

* Joint optimisation of both neural
networks

* Conditional information added to noise
generator

*  Wasserstein distance between
embeddings concatenated with
conditional values

* Original data distribution on latent space

* Trained with Adam(Ir=0.001)

ALICE

U~N(u,02)  condX
Noise
Generator
Latent
space
X Encoder E’ Decoder
E

<
<

Ly = S; ¢([E, condX], [E'(condX), condX])

Encoded data Encoded noise

[E1 |E2 condx] [£1 |E2  Condx ]
o1 02 |o 016 012 |o
09 08 |1 dist. 088 08 |1
015 01 |0 011 018 |o




cDC-GAN + auxiliary regressor + postproc

Real
example

* An auxiliary reglgessor has been
added to the pair Discriminator and
Generator

* The auxiliary regressor was trained
on the task of returning the position
coordinates of the maximum number
of photons in the input image. After
training, the weights of the model
were frozen.

* The regressor provides an additional
source of loss to the generator by
comparing the coordinates of the
maximum of the generated examples
with the maximum coordinates of
corresponding sample in the training
set.

* Trained with Adam(Ir=0.001)

Randoim noise
N(0,1)

Training data

Generator

M
E
Vxy
z
Pxy
zc

Discriminato
r

Generated
example

Auxiliary

Regressor

Real
or
Fake

max y
max X




Validation

WVe started with validation on the basis of standard metrics (MSE, differences between

placement of central hit for generated and original simulations), but simulations are too
random

Statistical comparison of output values:

* 5 Channel values are calculated by summing pixels (photons) that are located at the
specific fields of a checkerboard grid

oS
R




GAN + auxREG + postproc —

channel comparision

GAN+auxREG+postproc
w Channel 1
%_ " —true
1 = generated
g
X 10°
(0]
. 10?
o
‘E 10"
3
O 10° |
O 600 80
Channel value
GAN+auxREG+postproc
v Channel 2
[
—— . true
Q 10 mm generated
5
< 10°
(]
. 10?
o
“‘:' 100
=
O 10°
(O] 600

800
Channel value

GAN+auxREG+postproc
Channel 3

—true
= generated

Count of examples

1200 1400

800
Channel value

ALICE

GAN-+auxREG+postproc
Channel 4

- true
e generated

Count of examples

600 - 1200 1400
Channel value

GAN+auxREG+postproc
Channel 5

= true
e generated

Count of examples
3

600 800
Channel value

'S wWs Ws

model
CH3 CH4 CH5

GAN + auxREG +
5.16 2.71 4.63 4.89 6.71 8.59
postproc




Integration (work in progress) ALICE

We are currently integrating the models into O2

Models will be stored in ONNX format

During development and training they are stored in

raw TF or PyTorch format

Generating one particle takes on average 1674 us on

CPU.

Simulation was not tested on GPU. O N N X
~ |00MB memory requirements for the whole process

marginal compared to rest of data processing




Integration overview

Offline training where
we can use most
common ML libraries
with addons, and
available resources
(e.g. GPUs)

Online inference
through ONNX
integrated to O2

0 ;
TensorBoard

! }

Offline Training
1T TensorFlow O PyTOI’Ch

3

Save as ONNX

ALICE

- T
gs W&B

NVIDIA.

Online inference

@) ONNX




4000

3500

3000

2500

Frequency

2000

1500

1000

500

Tensorflow vs ONNX

I Tensorflow
I ONNX

2000

Time in us

2200

2400

2600

ALICE




Valuable lessons and plans ALICE

* We can recommend ONNX as an integration tool
« Software we develop is very ZDC specific

« We might want to think about how we want to retrain model with
additional data - we don’t want to do it from scratch every time we have
some changes

« Preliminary results with our continual learning method are promising




Continual learning - preliminary results

Training with
continuously increasing
amount of data

Without the assumption
of i.i.d. data

ALICE

s 104 108 96 96 103 107

1 99 93 91 98 97
2 1 97 106
L3 104 108
v
10}
= 4 10.9
“6 >
| .
L
L
=
=}
z

0 0 N O v

0O 1 2 3 4 5 6 7 8 9
Tasks finished

Wasserstein distance on all channels with
continuously increased amount of data




