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Fast simulation application /  accuracy
ALICE Run3:

● in general, no ML fast sim used in production. In process of R&D
● no real outstanding sensitive detector apart from ZDC (zero degree calorimeter)

○ currently ZDC not used in all MC productions
● ZDC also appears to be ideal for ML, since it has 2D readout structure (n*m optical fibers 

collecting photons)
○ a response is a 2D image with pixels encoding photon count
○ the final output are 5 digits calculated from the image (5 channels) 
○ Almost no material / other detectors in front of ZDC 
○ Approach:

■ generate response directly from primary (no transport at all involved; main one 
followed up until now)

■ generate response from impinging track (transport involved)
● We target to replace detailed sim with fast sim for ZDC and use in all analysis (if possible)
● Training on actual data not done (possibly not easy; could be interesting idea)
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ALICE3: Fast simulation in Delphes spaces
ALICE 3 Upgrade studies

● new fast-simulation framework developed on purpose (DelphesO2)
○ based on Delphes
○ and on ALICE-O2 (simulation and reconstruction for Run3/4)
○ plus custom routines for simulation of signal of specific detectors

■ time-of-flight layers
■ RICH detectors
■ EMCal
■ muon identification layer

○ GRID enabled, extremely large data samples (billions of HI collisions)
● produce analysis objects in the ALICE data format

○ convert output of fast simulation into AOD data
○ can run same identical analysis code as normal simulation / reconstruction
○ GRID analysis of very large data samples

● input to DelphesO2
○ event generator output (pythia8, HepMC, …)
○ LUTs with tracking parameterisation (see later)
○ parameters for fast-simulation of signal of other (i.e. PID) detectors

■ time-of-flight layer(s): time resolution, location, …
■ RICH detector(s): refractive index, 1pe angular resolution, PDE, ...
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Delphes output 
or transform into 
ALICE-AOD
data for standardised ALICE 
analysis
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should remove the analysis time to see speedup                100 minutes                          3.3 minutes       30x faster

speedup factors (numbers for 100 min.bias Pb-Pb events)



Data preprocessing
• Dataset consists of 10 million particle examples with conditional parameters 

(Energy, primary vertex position (x, y, z), momenta (x, y, z), mass, charge)
• Instead of inputting particle id (pdg code) we convert them to mass and charge
• We exclude particles producing “empty”  or “nearly empty” outputs using trained Random 

Forest models
• We store preprocessed data as .npz files (zipped archive with numpy arrays)
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Generating non-random ZDC responses
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Particle data
Mass, Energy, Vxyz, 

Pxyz, Charge
Generative 

Models

Random noise 

Postprocessing
Reversing log 
transformation

Scaling
z = (x - μ) / σ

• The input of the simulation is random noise and conditional parameters 
(Energy, primary vertex position (x, y, z), momenta (x, y, z), mass, charge) 

• The final dataset consists of 295867 examples
• We scale the conditional input with standard scaler 
• We transform the ZDC response images with logarithm before using them as real training data



Tuning
• We reviewed different generative architectures: VAE, GAN and our own 

idea e2e SAE (see IML presentation and article)
• The final decision was based on the wasserstein distance between 

channels of original and fast simulation
• Current state of the art architectures:

• end-to-end Sinkhorn autoencoder (paper and code)
• deep convolutional GAN with auxiliary regressor and postprocessing (code)

• Manual hyperparameters tuning
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https://indico.cern.ch/event/852553/contributions/4061239/
https://ieeexplore.ieee.org/document/9311504
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9311504
https://github.com/KamilDeja/e2e_sinkhorn_autoencoder
https://gitlab.cern.ch/swenzel/zdcfastsim/-/blob/jan_dubinski_dev/notebooks_ZDC_fast_sim/7.GAN+aux_reg.ipynb


end-to-end Sinkhorn autoencoder
• No implicit regularisation of 

autoencoder’s latent space 
• Approximation of original data 

embeddings with deterministic neural 
network

• Joint optimisation of both neural 
networks

• Conditional information added to noise 
generator

• Wasserstein distance between 
embeddings concatenated with 
conditional values

• Original data distribution on latent space

• Trained with Adam(lr=0.001)



cDC-GAN + auxiliary regressor + postproc
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• An auxiliary regressor has been 
added to the pair Discriminator and 
Generator

• The auxiliary regressor was trained 
on the task of returning the position 
coordinates of the maximum number 
of photons in the input image. After 
training, the weights of the model 
were frozen.

• The regressor provides an additional 
source of loss to the generator by 
comparing the coordinates of the 
maximum of the generated examples 
with the maximum coordinates of 
corresponding sample in the training 
set. 

• Trained with Adam(lr=0.001)
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Validation
We started with validation on the basis of standard metrics (MSE, differences between 
placement of central hit for generated and original simulations), but simulations are too 
random

Statistical comparison of output values:
• 5 Channel values are calculated by summing pixels (photons) that are located at the 

specific fields of a checkerboard grid
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GAN + auxREG + postproc –
channel comparision

Rys. 36 Porównanie rozkładu wartości kanałów dla przykładów z oryginalnej symulacji  
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Rys. 38 Porównanie rozkładu wartości kanałów dla przykładów z oryginalnej symulacji  



Integration (work in progress)

• We are currently integrating the models into O2
• Models will be stored in ONNX format
• During development and training they are stored in 

raw TF or PyTorch format
• Generating one particle takes on average 1674 µs on 

CPU.
• Simulation was not tested on GPU.
• ~ 100MB memory requirements for the whole process  

marginal compared to rest of data processing
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Integration overview
• Offline training where 

we can use most 
common ML libraries 
with addons, and 
available resources 
(e.g. GPUs)

• Online inference 
through ONNX 
integrated to O2
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Valuable lessons and plans
• We can recommend ONNX as an integration tool
• Software we develop is very ZDC specific

• We might want to think about how we want to retrain model with 
additional data - we don’t want to do it from scratch every time we have 
some changes

• Preliminary results with our continual learning method are promising

18



Continual learning - preliminary results

Wasserstein distance on all channels with 
continuously increased amount of data

Training with 
continuously increasing 
amount of data 

Without the assumption 
of i.i.d. data


