
LPCC Fastsim
18/11/2021

Jan Dubiński, Kamil Deja, Sandro Wenzel, Roberto Preghenella, Bartosz Świrta,
 Przemysław Rokita, Tomasz Trzciński

1Results for 18.11.2021 Dubiński Jan

Fast simulation application / accuracy
ALICE Run3:

● in general, no ML fast sim used in production. In process of R&D
● no real outstanding sensitive detector apart from ZDC (zero degree calorimeter)

○ currently ZDC not used in all MC productions
● ZDC also appears to be ideal for ML, since it has 2D readout structure (n*m optical fibers

collecting photons)
○ a response is a 2D image with pixels encoding photon count
○ the final output are 5 digits calculated from the image (5 channels)
○ Almost no material / other detectors in front of ZDC
○ Approach:

■ generate response directly from primary (no transport at all involved; main one
followed up until now)

■ generate response from impinging track (transport involved)
● We target to replace detailed sim with fast sim for ZDC and use in all analysis (if possible)
● Training on actual data not done (possibly not easy; could be interesting idea)

2

 8, 22, 6, 197, 791

ALICE3: Fast simulation in Delphes spaces
ALICE 3 Upgrade studies

● new fast-simulation framework developed on purpose (DelphesO2)
○ based on Delphes
○ and on ALICE-O2 (simulation and reconstruction for Run3/4)
○ plus custom routines for simulation of signal of specific detectors

■ time-of-flight layers
■ RICH detectors
■ EMCal
■ muon identification layer

○ GRID enabled, extremely large data samples (billions of HI collisions)
● produce analysis objects in the ALICE data format

○ convert output of fast simulation into AOD data
○ can run same identical analysis code as normal simulation / reconstruction
○ GRID analysis of very large data samples

● input to DelphesO2
○ event generator output (pythia8, HepMC, …)
○ LUTs with tracking parameterisation (see later)
○ parameters for fast-simulation of signal of other (i.e. PID) detectors

■ time-of-flight layer(s): time resolution, location, …
■ RICH detector(s): refractive index, 1pe angular resolution, PDE, ...

3

ALICE3: Fast simulation in Delphes spaces

4Results for 18.11.2021

can run analysis directly on
Delphes output
or transform into
ALICE-AOD
data for standardised ALICE
analysis

ALICE3: Fast simulation in Delphes spaces

5Results for 18.11.2021

can run analysis directly on
Delphes output
or transform into
ALICE-AOD
data for standardised ALICE
analysis

ALICE3: Fast simulation in Delphes spaces

6Results for 18.11.2021

ALICE3: Fast simulation in Delphes spaces

7Results for 18.11.2021

should remove the analysis time to see speedup 100 minutes 3.3 minutes 30x faster

speedup factors (numbers for 100 min.bias Pb-Pb events)

Data preprocessing
• Dataset consists of 10 million particle examples with conditional parameters

(Energy, primary vertex position (x, y, z), momenta (x, y, z), mass, charge)
• Instead of inputting particle id (pdg code) we convert them to mass and charge
• We exclude particles producing “empty” or “nearly empty” outputs using trained Random

Forest models
• We store preprocessed data as .npz files (zipped archive with numpy arrays)

8

Generating non-random ZDC responses

9

Particle data
Mass, Energy, Vxyz,

Pxyz, Charge
Generative

Models

Random noise

Postprocessing
Reversing log
transformation

Scaling
z = (x - μ) / σ

• The input of the simulation is random noise and conditional parameters
(Energy, primary vertex position (x, y, z), momenta (x, y, z), mass, charge)

• The final dataset consists of 295867 examples
• We scale the conditional input with standard scaler
• We transform the ZDC response images with logarithm before using them as real training data

Tuning
• We reviewed different generative architectures: VAE, GAN and our own

idea e2e SAE (see IML presentation and article)
• The final decision was based on the wasserstein distance between

channels of original and fast simulation
• Current state of the art architectures:

• end-to-end Sinkhorn autoencoder (paper and code)
• deep convolutional GAN with auxiliary regressor and postprocessing (code)

• Manual hyperparameters tuning

10

https://indico.cern.ch/event/852553/contributions/4061239/
https://ieeexplore.ieee.org/document/9311504
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9311504
https://github.com/KamilDeja/e2e_sinkhorn_autoencoder
https://gitlab.cern.ch/swenzel/zdcfastsim/-/blob/jan_dubinski_dev/notebooks_ZDC_fast_sim/7.GAN+aux_reg.ipynb

end-to-end Sinkhorn autoencoder
• No implicit regularisation of

autoencoder’s latent space
• Approximation of original data

embeddings with deterministic neural
network

• Joint optimisation of both neural
networks

• Conditional information added to noise
generator

• Wasserstein distance between
embeddings concatenated with
conditional values

• Original data distribution on latent space

• Trained with Adam(lr=0.001)

cDC-GAN + auxiliary regressor + postproc

12

• An auxiliary regressor has been
added to the pair Discriminator and
Generator

• The auxiliary regressor was trained
on the task of returning the position
coordinates of the maximum number
of photons in the input image. After
training, the weights of the model
were frozen.

• The regressor provides an additional
source of loss to the generator by
comparing the coordinates of the
maximum of the generated examples
with the maximum coordinates of
corresponding sample in the training
set.

• Trained with Adam(lr=0.001)

Discriminato
r

M
E

Vxy
z

Pxy
z c

Generator

M
E

Vxy
z

Pxy
z c

Training data

Real
or

Fake

Real
example

Generated
example

Randoim noise
N(0,1)

Auxiliary
Regressor

M
E

Vxy
z

Pxy
z c

max y
max x

Validation
We started with validation on the basis of standard metrics (MSE, differences between
placement of central hit for generated and original simulations), but simulations are too
random

Statistical comparison of output values:
• 5 Channel values are calculated by summing pixels (photons) that are located at the

specific fields of a checkerboard grid

13

14

GAN + auxREG + postproc –
channel comparision

Rys. 36 Porównanie rozkładu wartości kanałów dla przykładów z oryginalnej symulacji

model
WS

MEAN

WS

CH1

WS

CH2

WS

CH3

WS

CH4

WS

CH5

GAN + auxREG +

postproc
5.16 2.71 4.63 4.89 6.71 8.59

Rys. 38 Porównanie rozkładu wartości kanałów dla przykładów z oryginalnej symulacji

Integration (work in progress)

• We are currently integrating the models into O2
• Models will be stored in ONNX format
• During development and training they are stored in

raw TF or PyTorch format
• Generating one particle takes on average 1674 µs on

CPU.
• Simulation was not tested on GPU.
• ~ 100MB memory requirements for the whole process

marginal compared to rest of data processing

15

Integration overview
• Offline training where

we can use most
common ML libraries
with addons, and
available resources
(e.g. GPUs)

• Online inference
through ONNX
integrated to O2

17

Valuable lessons and plans
• We can recommend ONNX as an integration tool
• Software we develop is very ZDC specific

• We might want to think about how we want to retrain model with
additional data - we don’t want to do it from scratch every time we have
some changes

• Preliminary results with our continual learning method are promising

18

Continual learning - preliminary results

Wasserstein distance on all channels with
continuously increased amount of data

Training with
continuously increasing
amount of data

Without the assumption
of i.i.d. data

