

ECOgas@GIF++ setup

Luca Quaglia¹ on behalf of ECOgas@GIF++ collaboration

¹University and INFN TORINO

Overview

- The ECOgas@GIF++ collaboration and its aims
- Experimental setup
- Beam tests preliminary results
- ❖ Other activities @ GIF++
- Conclusions and future plans

Why ecogas for RPCs?

- ❖ RPCs employ gas mixtures containing a high fraction (> 90%) of fluorinated gases (C₂H₂F₄ and SF₆) with high Global Warming Potential¹ (GWP)
 - $ightharpoonup C_2H_2F_4 \sim 1430, SF_6 \sim 22800$
- EU regulations imposed a progressive phase out of F-gases production and usage
- Search for more eco-friendly gas mixtures for RPCs
- R&D campaign started by replacing C₂H₂F₄ with a combination of C₃H₂F₄ (HFO, GWP ~ 6) and CO₂

The ECOgas@GIF++ collaboration

- Collaboration among several groups (ALICE, ATLAS, CMS, EP-DT and SHiP/LHCb)
- Each group provided RPC detector(s) to be tested
- Common effort for manpower and resources
- Different bakelite production, electrode thickness and gas gap thickness
- Long term aging campaign is ongoing @ GIF++ following promising lab results with cosmics
- Two eco-friendly gas mixtures have been tested during the 2021 beam periods

Beam test setup - General

- RPCs are hosted on two CMS-RPC trolleys (Trolley 1 and Trolley 3 in the following)
- Located upstream of the source (~ 3 m trolley 3 and 6 m trolley 1)
- **Beam trigger** provided by the coincidence of two 10x40 cm² scintillators (perpendicular to the beam and to each other) with the external ones (10x10 cm² effective area)
- Tracking provided by two CMS RPCs with orthogonal strips behind trolley 1

The setup - Trolley 1

ALICE RPC:

- -50x50 cm²
- -2 mm thick bakelite electrodes
- -2 mm single gas gap
- -2D readout, 16 strips per plane
- -Strip pitch ~ 3 cm
- -TDC readout

SHiP/LHCb RPC:

- -70x100 cm²
- -1.6 mm thick bakelite electrodes
- -1.6 mm single gas gap
- -2D readout, 32 strips per plane
- -Strip pitch ~ 1 cm
- -TDC readout

Picture of trolley 1

The setup - Trolley 3

CMS RE1_1 RPC:

- -2 mm thick bakelite electrodes
- -2 mm double gas gap
- -1D readout, 128 strips
- -Strip pitch ~ 1.2 cm

EP-DT RPC:

- -70x100 cm²
- -2 mm thick bakelite electrodes
- -2 mm single gas gap
- -1D readout, 7 strips
- -Strip pitch ~ 2.1 cm

ATLAS (small) RPC*:

- -10x50 cm²
- -1.8 mm thick bakelite electrodes
- -2 mm single gas gap
- -1D readout, 1 strip (3 cm thick) + confirmation scintillator on RPC

Picture of trolley 3

TDC Dual-Readout (ALICE, CMS, SHiP/LHCb)

- ♦ 6 TDCs (CAEN V1190) in VME crate (rack area)
- 1 VME-USB bridge
- 10 RPCs (DAQ system shared with CMS-RPC setup)
- 768 total channels
- 1 common DAQ with web interface (webdcs)

TDCs in VMF crate

During spill (SPS spill signal active): PMT trigger, muon data

Outside spill (SPS spill signal inactive): random trigger, rate data

Dual-Readout

Digitizer readout (EP-DT, ATLAS)

- EP-DT: Digitizer in the rack inside the bunker
- ATLAS: Digitizer in the rack area
- Signal taken directly from the strips (50-Ohm terminated)
- Full waveform digitized

- EP-DT DAQ steps:
 - Long autotrigger acquisition (1.2 ms window) for rate measurements
 - Shorter PMT-triggered window for efficiency measurements

Internal scintillator coincidence

Gas mixtures tested during beam time

ATLAS/CMS standard gas mixture (July + September + October):

95.2%
$$C_2H_2F_4$$
, 4.5% i- C_4H_{10} , 0.3% SF_6 -> GWP ~ 1430

ECOmix 2 (July + September + October):

ECOmix 3 (October):

Preliminary TB results (1)

Efficiency curves for source OFF (left) and source ON (right-350 Hz/cm²) for 2 mm gap

Drop of efficiency at the working point for STD and ECO2 for 2 mm gap Left is readout by TDC, right by digitizer

2D efficiency for 1.6 mm gap with STD (top) and ECO2 (bottom) at different ABS

Preliminary TB results (2)

Efficiency curves for the three tested mixtures (source OFF 2 mm gap)

2D efficiency for 1.6 mm gap with STD (top) and ECO3 (bottom) at different ABS

Other activities

- Irradiation campaign with ECO2 with EP-DT and CMS RPCs
 - > Issues with other chambers and lack of manpower (COVID) to replace them
 - Current stability monitored over time
- Remote weekly shifts to monitor the system
 - Humidity check, data logging and weekly current trend
- First F- ions production campaign to compare ECO2 and STD

Conclusions

- ❖ Ongoing R&D campaign for C₂H₂F₄ replacement with C₃H₂F₄ + CO₂ in RPC gas mixture
- Irradiation campaign with ECO2 before the TB
 - Detector stability, chosen for beam test
- Two mixtures tested during beam time:
 - ➤ ECO2
 - Satisfactory values of efficiency reached
 - Working point shifted by ~ 1 kV to higher voltage wrt STD gas mixture (observed with cosmics and confirmed by TB)
 - Efficiency drop 2% larger for same rate wrt STD
 - ➤ ECO3
 - WP shifted by ~ 0.5 kV wrt STD (Very preliminary)
 - Slightly larger efficiency drop wrt ECO2
 - In-depth analysis ongoing

Future plans & requests

- New ISE measurements campaign for fluoride production (with all three mixtures) starting from next week
- New irradiation campaign will start after complete analysis of TB data and after the GIF++ Christmas break
- * Request from ECOgas: we would like to have a dedicated HFO line
 - Up to now we use small bottles placed in the gas room
 - Frequent replacement (every 3 weeks or so) with risk of leaks and always require a person on site for the change

Thank you for your attention!

BONUS - Beam profile with tracking RPCs

GT tracking

GT tracking