
Massimo Masera

Torino

Structure and status of the ITS

offline software

General AliRoot structure

4/10/2010ITS offline2

AliSimulation

4/10/2010ITS offline3

AliSimulation is the class which controls the simulation flow
 it provides an interface to to MC generators

 it provides an interface to Transport Code (Geant)

 calls, for each simulation step, high level methods defined in AliModule and AliDetector

classses, which are actually implemented in the detector daughter classes (AliITS)

 it has NO dependence on detector-specific code

Initialization:

(ITS specific code, e.g.

geometry + access to the

conditions data base)

Particle

generation

Particle transport

(step manager:

specific ITS code)

(Summable)Digit

s (=same info as

raw data)

Raw data

format

Hits (=MC

truth+det.

response)

AliReconstruction

4/10/2010ITS offline4

AliReconstruction is the class which controls the reconstruction flow
 calls for each reconstruction step high level methods defined in STEER classes

(AliRenctructor, AliVertexer, …), which are actually at least partly implemented in the

detector daughter classes (AliITSReconstructor, AliITSVertexer, …)

there is NO dependence on detector-specific code.

Access to the Offline Conditions DB is done at STEER and Detector levels

Local reconstruction (=

clusters rec. points

Vertex finder 1 + pile-

up (based on SPD local

rec)

Tracking

PID

Event

Summary Data

(ESD)

vertex finder

with tracks

ITS code

4/10/2010ITS offline5

 The recommended way to access ITS code is through high level interfaces
implemented in STEER

 There are NO dependencies on classes that are specific of other detectors
 e.g. tracks prolonged from the TPC do not include TPC objects 

information moving from a detector to another is coded in STEER in a
detector independent way

 this is an asset for any ITS upgrade simulation: new simulation software can
be plugged in the present structure, provided it complies with interfaces
defined in STEER

 Within ITS: 3 libraries: ITSbase, ITSsim, ITSrec.
 rec and sim do not have inter-dependency
 Software for the upgrade could be implemented in separate libraries with

possible dependence on the existing code to maximize code re-use.

 Analysis code is outside the ITS module (Analysis framework + PWG
specific classes)

Subdetectors

4/10/2010ITS offline6

 ITS is seen by AliRoot as a single detector

 But, as we well know, ITS is made by three quite different subdetectors
 The offline software tries to provide a common schema, through high level

classes, for both the simulation and the local reconstruction.
 The basic class organization for simulation and reconstruction is almost 10

years old (R. Barbera and B. Nilsen)
 Subdetector specific code is implemented in daughter classes (e.g

AliITSv11GeometrySXD, AliITSsimulationSXD, AliITSClusterFinderV2SXD)

 The same structure holds for QA classes

 The access to the Conditions DB is done separately for the 3 subdetectors, but the
information is stored in classes which inherit from AliITSCalibration and
AliITSResponse

 The software used to calibrate the detector at the run time is also a part
of the offline framework, even though it is run indipendently via the
Shuttle mechanism

Code management

4/10/2010ITS offline7

 The ITS software is stored in the standard AliRoot subversion (svn) repository:
 New code goes to the so called “svn trunk”
 Trusted code migrates to the current release branch through a standard validation

procedure (“savannah bug”, core offline team discussion)

 The code in the trunk must compile without warnings (!), must obey the
AliRoot Coding Convention and must pass the standard sim/rec test suites
 These are very basic and loose conditions (no joke)
 The “svn trunk” is intended for development and exchange among developers

 We strongly deprecate the development of private ITS/AliRoot versions: their
integration at a later stage is usually a painful and error prone operation

 Several developers:
 no formal rules: before committing it, the new code is typically seen and approved

by the interested developers
 to avoid clashes, commits to the trunk are done by (or agreed with) one person

(m.m.)

Code development

4/10/2010ITS offline8

 ITS code is used in production and its evolution is mainly driven by our
understanding of the data (i.e. what is needed is basically there, but there is
space for improvements)

 Monthly ITS offline and alignment meetings + occasional phone/EVO meetings
on specific issues

 220 classes in the ITS, 50 of them were modified in the last 6 months. We still
have obsolete code in the repository that should be removed .

 In the last 6 months there were contributions from 16 people, even though the
main developers are 4-5

 There are formal responsibilities only for the alignment (A. Dainese), the
geometry (M. Sitta) and for subdetector-specific software (calibration, cluster
finders, simulation): D. Elia, SPD; F. Prino, SDD; E. Fragiacomo, SSD.

 For the rest, development is done according to clear areas of interest (e.g.
vertexing, pile-up, tracking, trackleting, plane efficiency studies, trigger
implementation) without particular formalisations.

