
Overview of relevant network
protocols and standards

Maciej Lipinski
BE-CEM-EDL

1

Discussion on protocols
• Goal: transmit user application-specific data

2

Discussion on protocols
• Goal: transmit user application-specific data

• Protocol of choice
– Application-specific (more or less)

– Provides structure to the user data

– Complements underlying transport protocol with required
functionalities

Underlying protocol:

Protocol of choice:

3

Discussion on protocols
• Goal: transmit user application-specific data

• Protocol of choice
– Application-specific (more or less)

– Provides structure to the user data

– Complements underlying transport protocol with required
functionalities

• Underlying protocol(s) → focus of this presentation
– Addressing and abstract physical network

– Services/facilities (checksum, reliability)

– Application agnostic

– Suited to particular applications

4

Underlying protocol:

Protocol of choice:

Agenda

• Raw Ethernet

• UPD/IP

• TCP/IP

• Comparison

• Standard vs. custom protocol

5

Raw Ethernet
• Raw Ethernet

– Bridged Local Area Network (IEEE 802.1Q)

– Ethernet medium (IEEE 802.3)

• Communication
– Within LAN (L2 Switches only)

– Ethernet Frames at OSI Layer 2: Data Link

• Addressing
– Globally unique MAC/physical address

– Pre-assigned (*)

• Example networks:
– A simple WR network

(*) Off the shelf devices have unique pre-assigned MAC addresses, it is less so for FPGA-based custom devices 6

Transmission over Raw Ethernet
• Yes:

– Checksum to verify data integrity

– Broadcast/multicast

• No:
– Application multiplexing (#)

– Connection/handshake before sending data

– Detection/retransmission of lost frames

– Reordering of out-of-order frames

– Congestion control (*)

– Segmentation/fragmentation

• Simple stack implementation
(on Linux, sudo required for transmission)

• Smallest header overhead

• Lowest latency
– Tx: no buffering to calculate CRC

– Forwarding: L2 Switches typically lower latency

– Rx: no buffering

7

(#) WR streamers use (“illegally”) EthType to do initial application multiplexing, another multiplexing is done inside Ethernet payload
(*) Congestion control via the Ethernet PAUSE mechanism. However, it is not embedded in the Ethernet Frame.

UDP and TCP over IP
• Internet Protocol

– Version 4 (IPv4): IETF RFC 791

– Version 6 (IPv6): IETF RFC 2460

• Communication:
– IP at OSI Layer 3: Network

– UDP/TCP at OSI Layer 4: Transport

– Within and outside LAN (L2 Switches or L3 Routers)

• Addressing
– Locally unique IP addresses

– Manual or automatic assignment, e.g. DHCP server

• Max size of IP datagram: 65,535 bytes

• IPv4 supports fragmentation
– Fragment to meet maximum transmission unit (MTU)

– Reassemble and re-order

– Discouraged, can be disabled

• Example network:
– CERN Technical Network

– CERN operational WR network

 8

Transmission over UDP/IP
• User Datagram: RFC 768

• Yes:
– Checksum to verify data integrity

– Application multiplexing (port number)

– Broadcast/multicast

• No:
– Connection/handshake before sending data

– Detection/retransmission of lost frames

– Reordering of out-of-order UDP datagrams (#)

– Congestion control (*)

• Simple stack implementation
(on Linux, transmission form user space)

• Still small header overhead

• Low latency but latency added
– At tx due to CRC/length in the header

– At routers due to additional headers

– At routers/rx due to IP fragmentation, if enabled

– L3 Routers typically slower than L2 Switches

9
(#) Support for fragmentation in the underlying IP
(*) Congestion control via the Ethernet PAUSE mechanism within VLAN. However, it is not embedded in the UDP packet.

Transmission over TCP/IP
• Transmission Control Protocol: RFC 793

• Yes:
– Checksum to verify data integrity

– Application multiplexing (port number)

– Connection/handshake before sending data

– Detection/retransmission of lost frames

– Reordering of out-of-order frames

– Congestion control

• No:
– Broadcast/multicast

• Complex/heavy stack implementation
(on Linux, transmission form user space)

• Unpredictable/high latency due to
– Connection

– Retransmission

– Reordering

– Congestion control

10

Comparison
Raw Ethernet UDP/IP TCP/IP

Addressing MAC address pre-assigned IP address assigned by user or
server (e.g. DHCP)

IP address assigned by user or
server (e.g. DHCP)

Application multiplexing NO (#) YES YES

Integrity check (checksum) YES YES YES

Broadcast/multicast YES YES NO

Communication model Connectionless Connectionless Connection-oriented

Initial handshake NO NO YES

Reliable NO NO YES

Lost frames detection/retransmissions NO NO YES

Data order ensured NO NO (^) YES

Congestion control NO (*) NO (*) YES

Implementation complexity LOW LOW HIGH

Latency LOWEST STILL LOW UNPREDICTABLE/HIGH

11

(#) WR streamers use (“illegally”) EthType to do initial application multiplexing, another multiplexing is done inside Ethernet payload
(^) Fragmentation and re-ordering is supported by the underlying IP
(*) Congestion control via the Ethernet PAUSE mechanism within VLAN. However, it is not embedded in the UDP packet.

Standards vs. custom protocol of choice
(applies equally well for the underlying protocols)

12

Standard protocols Custom protocols

(+)

• Likely implementation exists and is tested
• Likely debugging/testing tools exist already

(e.g. Wireshark)
• Likely will evolve with underlying standards
• Off-the-shelf solutions available/compatible
• Easy to export/share
• Enforce generic solutions, avoid design mistakes
• Hard/long to incorporate improvements in the

standards (stable !)

• Optimized precisely for the application/needs
• Typically a seemingly easier solution
• Easy to make improvements/changes

(-)

• Hard/long to incorporate improvements in the
standards

• Generic, thus possibly more complex
• Usually not a perfect fit for the needs
• Legacy burden

• Easy to make improvements/changes &mistakes
• Harder to use outside a particular setup
• Easy to make a non-extensible/non-scalable solution
• Less likely to be adopted by others
• Hard to get external help in case of problems
• Harder/costly to outsource work
• Maintenance costs

Thank you

13

