

The CMS combine tool

A. Gilbert

Publication of statistical models workshop 9 November 2021

Introduction

- The combine tool is the primary software framework used for statistical model building & inference in CMS physics analysis
 - Developed for Higgs analysis in Run 1, now used in all physics areas
- Built on top of ROOT and RooFit
 - Likelihood is persisted in a RooFit workspace
 - Input based on plain text "datacards"
- While combine is developed for CMS analysis, and with CMS users in mind, the code is public and can be compiled in "standalone" mode
 - An extensive manual is provided, along with links to tutorials and examples:

Combine Home S	etting up the analysis $ extsf{-}$	Running combine 🚽	Links & FAQ	Tutorials 🗕				
				Q Search	← Previous	Next 🗲	G Edit on GitHub	
Introduction	Intro	oduction	1					
Setting up the environment and installation	1.0	These pages document the RooStats / RooFit - based software tools used for statistical analysis within the Higgs PAG - combine .						
For end users that don't need to commit or do any development		Combine provides a command line interface to many different statistical techniques available inside RooFit/RooStats used widely inside CMS.						
CC7 release CMSSW_10_2_X - recommended version		The package exists in GIT under https://github.com/cms-analysis/HiggsAnalysis- CombinedLimit For more information about GIT and its usage in CMS, see http://cms- sw.github.io/cmssw/faq.html The code can be checked out from GIT and compiled on top of a CMSSW release that includes a recent RooFit/RooStats						
SLC6/CC7 release CMSSW_8_1_X								
Standalone version What has changed								

https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/

datacard.txt

• Text datacard for a single "channel"

9/11/21

- In this case a one bin counting experiment
- Each channel and process has a unique label:

	Number of bins/	channe	els Numbe	er of processes	Number of	nuisance parar	neters (*:d	letermined automatically)
		f proce	sses minus 1 nce parameters					
	bin signal_region observation 10.0			Unique channel label Number of observed events in channel				
	 bin		signal_region	signal_region	signal_region	signal_region	signal_reg	jion
	process		ttbar	diboson	Ztautau	jetFakes	bbHtautau	Process label
	process		1	2	3	4	0	Process ID (<=0 for signal
	rate		4.43803	3.18309	3.7804	1.63396	0.711064	Expected number of even
	CMS_eff_b	lnN	1.02	1.02	1.02	_	1.02	(0)
	CMS_eff_t	lnN	1.12	1.12	1.12	-	1.12	Systematic
malisation	CMS_eff_t_highpt	lnN	1.1	1.1	1.1	-	1.1	te
	acceptance_Ztautau	lnN	-	-	1.08	-	-	ma
nties, with a	acceptance_bbH	lnN	-	-	-	-	1.05	tio
normal	acceptance_ttbar	lnN	1.005	-	-	-	-	S
raint pdf	lumi_13TeV	lnN	1.025	1.025	1.025	-	1.025	Ce Ce
	norm_jetFakes	lnN	-	-	-	1.2	-	rta
	xsec_Ztautau	lnN	-	-	1.04	-	-	uncertainties
	xsec_diboson	lnN	-	1.05	-	-	-	e S
	xsec_ttbar	lnN	1.06	-	-	-	-	
	Name	Туре		Effec	t on process			
21				A Gilb	ert (NWU)			

- Datacards can describe multiple channels
- Separate cards can be merged using the combineCards.py script

shapes * * simple-shapes-TH1_input.root \$PROCESS \$PROCESS_\$SYSTEMATIC

bin1

1

100

1.0

1.3

1

background

shapes signal * simple-shapes-TH1_input.root \$PROCESS\$MASS \$PROCESS\$MASS_\$SYSTEMATIC

between nominal, "up" and "down" templates:

- Each channel can also represent a distribution
 - "shapes" directives link to input ROOT histograms for binned analyses:

Histogram of background

Shape uncertainties: per-bin interpolation of yield fractions

- Background (nominal) Background (+1σ alpha)

Background (-1σ alpha)

imax 1 imax 1

kmax *

bin bin1

bin

process

process

rate

lumi

bgnorm

alpha shape

observation 85

bin1

10

1.10

1.00

lnN

lnN

signal

- Also possible to import any arbitrary binned/ unbinned RooFit pdfs
- Shape and normalisation systematics can be added in the same way

bin1

1 1

1.0

0.1

control region 1

+ Data

• uul+iet

H_T (GoV)

bkg

param 1.0

A. Gilbert (NWU)

imax 1 jmax 1

kmax *

bin bin1

process

process

bin

rate

lumi

observation -1

bin1

sig

0

1

1.1

Signal region

H- (GeV)

lnN

vogian sigma

- The text2workspace.py script converts the datacard into a self-contained RooFit workspace
- Also introduces a "physics model"
 - By default, adds a floating parameter "r" that multiples the normalisation of all processes marked as signal in the datacard
 - Customised models can be applied by providing a simple extension of the **PhysicsModel** class
 - E.g. coupling modifier parameterisation of Higgs processes:

(Non exhaustive) summary of other features

MC statistical uncertainties

- **autoMCStats:** A feature in combine for incorporating uncertainties due to finite event counts in templates
- Full documentation here, more background in [Barlow, Beeston '93] [Conway '11]
- Automatically models total uncertainty in each bin with a single Gaussian ("lite" approach)
 - Analysts only have to add a single line in the datacard to enable
 - Falls back to per-process Poisson if MC stats too low in any particular bin

MC statistical uncertainties

- There is no pruning of uncertainties in this implementation (too error prone) there will be one nuisance parameter for every populated bin
 - Fitting time can still be long if many bins
- But with the lite approach the maximum likelihood for each parameter is independent of the others and has a simple form that we can solve
- The custom minimizer in combine handles the analytic minimisation of these parameters

Nuisance parameter impacts

- Combine automates the calculation of **impacts** for the nuisance parameters
 - Define the **impact** of a nuisance parameter on the POI as the shift in the POI that is induced as the NP is fixed and brought to its $+1\sigma$ or -1σ post-fit values

Goodness-of-fit

- Support for calculating saturated model, Kolmogorov-Smirnov and Anderson-Darling test statistics
 - Combine's toy generation routines used for building up expected distributions

Discrete profiling

- Method first proposed in <u>https://</u> <u>arxiv.org/abs/1408.6865</u>
- Introduces discrete nuisance parameters (implemented via RooCategory) that correspond to the choice of pdf for a given process (RooMultiPdf)
- Allow the discrete parameter to vary in the maximum likelihood fit
 - Gives an uncertainty due to uncertainty on the choice of PDF functional form
 - Can be considered an alternative to traditional "spurious signal" approach
- NB: Minuit does not support fitting for discrete parameters
 - Handled directly by combine

Unfolding

singular values still remains. The exact solution of (36) will again most certainly lead a rapidly oscillating distribution, which may have a smaller amplitude but is still useles This spurious oscillatory component should be suppressed, using some a wind showled about the solution. Technically this can be achieved by adding the regularization stabilization term to the expression to be minimized (see [6, 1, 4] and ref

$$(\tilde{A}w - \tilde{b})^T (\tilde{A}w - \tilde{b}) + \tau \cdot (Cw)^T Cw = \min(1851)$$

for each value of τ . Fortunately, a more efficient method (called sometimes *damped least*

Discussion points

Preserving the full likelihood

- Natural division between:
 - Input values specific to the analysis (observed data, list of pdfs, pdf input data...) ⇒ **Workspace**
 - General specifications of pdfs that define s_i , b_i , and $p(\theta) \Rightarrow C++ class definitions$
- Both must be made public to claim we have "published the full likelihood"

Preserving the full likelihood

• Some thoughts on use cases. I want to...

[A] **Inspect** the full form of the **likelihood**

PUBLIC

- Requires reading code and/or comments, but possible to extract full definition and reimplement
- **[B] Evaluate** the **likelihood** as a function of all **POIs** and **NPs**
 - Can treat the above as a black box, with external handles for setting the parameter values
- [C] Evaluate the profiled likelihood as a function of the POIs
 - Can treat the above as a black box, with handles for the POIs, and some minimizer algo provided
- [D] Evaluate the profiled likelihood as a function of reparametrised POIs
 - As above, but take diff. or Higgs STXS measurement cross sections σ_i, reparametrize in coupling modifiers or EFT coefficients
- [E] **Combine likelihoods** from multiple analyses
 - Possible (done by experiments in some cases), but requires care may be incompatibilities
- [F] Modify the (s+b) PDF(s)
 - E.g. to add a different signal prediction. Possible, but RooFit manipulation can be non-trivial (esp. without expts. providing more useful wrapper tools)

Serialising combine models

• Could pyhf be used?

- The combine and HistFactory/pyhf feature sets are roughly similar
 - Close enough that a basic converter from datacards to pyhf JSON format should not to too difficult
 - Harder to make the pyhf likelihood exactly equivalent to the combine one (and if not identical, the likelihood is not preserved)
- Some things (MC stat uncertainties) are definitely handled differently... other things (e.g. shape morphing) may appear to be the same, but subtle details may differ
- Unclear if other commonly used features available (e.g. writing bin contents for some processes as generic formulae (RooFormulaVars))

Differences to HistFactory

• Disclaimer: I am not a HistFactory expert - observations are based on public documentation, not detailed comparison of the codes

Description	Modification	Constraint Term c_χ	Input
Uncorrelated Shape	$\kappa_{scb}(\gamma_b)=\gamma_b$	$\prod_b \operatorname{Pois} \left(r_b = \sigma_b^{-2} \big ho_b = \sigma_b^{-2} \gamma_b ight)$	σ_b
Correlated Shape	$\Delta_{scb}(lpha)=f_p\left(lpha \Delta_{scb,lpha=-1},\Delta_{scb,lpha=1} ight)$	$\mathrm{Gaus}(a=0 \alpha,\sigma=1)$	$\Delta_{scb,lpha=\pm 1}$
Normalisation Unc.	$\kappa_{scb}(lpha)=g_{p}\left(lpha \kappa_{scb,lpha=-1},\kappa_{scb,lpha=1} ight)$	$\mathrm{Gaus}(a=0 \alpha,\sigma=1)$	$\kappa_{scb,lpha=\pm 1}$
MC Stat. Uncertainty	$\kappa_{scb}(\gamma_b)=\gamma_b$	$\prod_b \mathrm{Gaus}\left(a_{\gamma_b}=1 \gamma_b,\delta_b ight)$	$\delta_b^2 = \sum_s \delta_{sb}^2$
Luminosity	$\kappa_{scb}(\lambda)=\lambda$	$\mathrm{Gaus}(l=\lambda_0 \lambda,\sigma_\lambda)$	λ_0,σ_λ
Normalisation	$\kappa_{scb}(\mu_b)=\mu_b$		
Data-driven Shape	$\kappa_{scb}(\gamma_b)=\gamma_b$		

- Uncorrelated shape: for single-bin counting channels (gmN), for shapes, RooParametricHist with CR
- Correlated shape: unclear if default CMS interpolation available (6th order poly interp. + linear extrap)
- Normalisation: CMS InN with single value [u]: κ = u^α, with asymmetric [d]/[u], f(α,d,u)^α, where f interpolates between log(u) and log(d)
- **MC Stat. uncertainty:** HF approach similar for combine Barlow-Beeston lite (δ_b^2 updated dynamically)
- Luminosity: not commonly used (treated with InN)
- Normalisation: OK
- Data-driven shape: RooParametric hist