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Introduction

• The combine tool is the primary software framework used for statistical model building & 
inference in CMS physics analysis

- Developed for Higgs analysis in Run 1, now used in all physics areas


• Built on top of ROOT and RooFit

- Likelihood is persisted in a RooFit workspace

- Input based on plain text "datacards"


• While combine is developed for CMS analysis, and with CMS users in mind, the code is public and 
can be compiled in "standalone" mode

- An extensive manual is provided, along with links to tutorials and examples:
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https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/

https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/


A. Gilbert (NWU)9/11/21

Typical combine workflow
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Datacard format - counting
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Number of bins/channels Number of processes Number of nuisance parameters (*:determined automatically)

Unique channel label

Number of observed events in channel

Process label
Process ID (<=0 for signal)
Expected number of events

System
atic uncertainties

Name Type Effect on process

Typical combine workflow

• Text datacard for a single "channel"

- In this case a one bin counting experiment


• Each channel and process has a unique label:

4

datacard.txt

Normalisation 
uncertainties, with a 

log-normal 
constraint pdf
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Typical combine workflow

• Datacards can describe multiple channels


• Separate cards can be merged using the 
combineCards.py script


• Each channel can also represent a distribution

- "shapes" directives link to input ROOT histograms 

for binned analyses:
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datacard.txt

chn1.txt chn2.txt chn3.txt

combineCards.py

Datacard format - shape
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Links to the histograms saved in a root file

Shape uncertainty: 2 additional histograms per process supplied, with ±1σ shift

Some additional information in the datacard for a shape-based analysis

• Link to the shapes in a ROOT file

• Addition of shape uncertainties

In the hands-on part you’ll convert a counting datacard to a shape-based datacard

HINT: in the example given on this slide the signal process is called ‘signal’. In the 

datacard you’ll work with it’s called something else. 

Intro
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• Switching to Combine - you won’t have 
to build the likelihood yourself!


• Using a simplified version of the MSSM 
H➔ττ analysis for these exercises


• Events split into categories targeting the 
main di-tau final states, and two main 
production modes of BSM Higgs 
bosons: gluon fusion and b-associated 
production


• Example: backgrounds and expected 
signal in the fully hadronic final state for 
the category targeting b-associated 
production


• In this session we’ll consider both a 
counting experiment in the high mass 
region & a shape analysis

Shape uncertainties: per-bin interpolation of yield fractions 
between nominal, "up" and "down" templates:
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Typical combine workflow

• Also possible to import any arbitrary binned/
unbinned RooFit pdfs


• Shape and normalisation systematics can be 
added in the same way
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datacard.txt

chn1.txt chn2.txt chn3.txt

combineCards.py

imax 1

jmax 1

kmax *

---------------

shapes * * simple-shapes-parametric_input.root w:$PROCESS

---------------

bin bin1

observation -1

------------------------------

bin          bin1       bin1

process      sig 	 bkg

process      0          1

rate         1          1

--------------------------------

lumi    lnN  1.1       1.0

vogian_sigma   param 1.0      0.1

Parametric signal and background functions

Histograms with parametric bin contents (e.g. signal 
region bins modelled as functions of control region bins)
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Typical combine workflow

• The text2workspace.py script converts the datacard 
into a self-contained RooFit workspace


• Also introduces a "physics model"

- By default, adds a floating parameter "r" that multiples the 

normalisation of all processes marked as signal in the 
datacard


- Customised models can be applied by providing a simple 
extension of the PhysicsModel class


- E.g. coupling modifier parameterisation of Higgs processes:
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datacard.txt

chn1.txt chn2.txt chn3.txt

combineCards.py

workspace.root

text2workspace.py

f
Vκ

0 0.5 1 1.5 2

f F
κ

2−

1−

0
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2

Combined γγ→H

ZZ→H WW→H

ττ→H bb→H

68% CL

95% CL

Best fit

SM expected

Run 1 LHC
CMS and ATLAS

2.4. Coupling modifiers

Based on a LO-motivated framework [32] (-framework), coupling modifiers have been proposed to
interpret the LHC data by introducing specific modifications of the Higgs boson couplings related to
BSM physics. Within the assumptions already mentioned in Section 1, the production and decay of
the Higgs boson can be factorised, such that the cross section times branching fraction of an individual
channel �(i! H ! f ) contributing to a measured signal yield can be parameterised as:

�i · B f =
�i(~) · �f (~)
�H

, (4)

where �H is the total width of the Higgs boson and �f is the partial width for Higgs boson decay to the
final state f . A set of coupling modifiers, ~, is introduced to parameterise possible deviations from the
SM predictions of the Higgs boson couplings to SM bosons and fermions. For a given production process
or decay mode, denoted “ j”, a coupling modifier  j is defined such that:

2j = � j/�
SM
j or 2j = �

j/� j
SM, (5)

where all  j values equal unity in the SM; here, by construction, the SM cross sections and branching
fractions include the best available higher-order QCD and EW corrections. This higher-order accuracy is
not necessarily preserved for  j values di↵erent from unity, but the dominant higher-order QCD correc-
tions factorise to a large extent from any rescaling of the coupling strengths and are therefore assumed to
remain valid over the entire range of  j values considered in this paper. Di↵erent production processes and
decay modes probe di↵erent coupling modifiers, as can be visualised from the Feynman diagrams shown
in Figs. 1–6. Individual coupling modifiers, corresponding to tree-level Higgs boson couplings to the
di↵erent particles, are introduced, as well as two e↵ective coupling modifiers, g and �, which describe
the loop processes for ggF production and H ! �� decay. This is possible because BSM particles that
might be present in these loops are not expected to appreciably change the kinematics of the correspond-
ing process. The gg ! H and H ! �� loop processes can thus be studied, either through these e↵ective
coupling modifiers, thereby providing sensitivity to potential BSM particles in the loops, or through the
coupling modifiers corresponding to the SM particles. In contrast, the gg ! ZH process, which occurs
at LO through box and triangular loop diagrams (Figs. 2b and 2c), is always taken into account, within the
limitations of the framework, by resolving the loop in terms of the corresponding coupling modifiers, Z
and t.

Contributions from interference e↵ects between the di↵erent diagrams provide some sensitivity to the
relative signs of the Higgs boson couplings to di↵erent particles. As discussed in Section 6.4, such
e↵ects are potentially largest for the H ! �� decays, but may also be significant in the case of ggZH
and tH production. The ggF production process, when resolved in terms of its SM structure, provides
sensitivity, although limited, to the relative signs of t and b through the t–b interference. The relative
signs of the coupling modifiers ⌧ and µ with respect to other coupling modifiers are not considered in
this paper, since the current sensitivity to possible interference terms is negligible.

As an example of the possible size of such interference e↵ects, the tH cross section is small in the SM, ap-
proximately 14% of the ttH cross section, because of destructive interference between diagrams involving
the couplings to the W boson and the top quark, as shown in Table 4. However, the interference becomes
constructive for negative values of the product W · t. In the specific case where W · t = �1, the tHW
and tHq cross sections increase by factors of 6 and 13, respectively, so that the tH process displays some

9

PhysicsModel

(python class)
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Typical combine workflow

• The combine program implements the commonly used 
statistical methods

- Limit setting (asymptotic and toy based)

- Significance / p-value calculation

- Confidence intervals


• All methods can run on real data or internally generated 
toys/Asimov datasets


• Also diagnostics and model information

- Pre-/post-fit yields, shapes and uncertainties

- Covariance matrices


• Output in ROOT file format
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datacard.txt

chn1.txt chn2.txt chn3.txt

combineCards.py

workspace.root

text2workspace.py PhysicsModel

(python class)

combine -M [AsymptoticLimits/Significance/...]

Intro to statistical analysis

How do we get here?

Upper limit Post-fit distribution Significance / confidence interval

Confidence interval
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Intro to statistical analysis

How do we get here?

Upper limit Post-fit distribution Significance / confidence interval

Confidence interval
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Intro to statistical analysis

How do we get here?

Upper limit Post-fit distribution Significance / confidence interval

Confidence interval

8

Intro to statistical analysis

How do we get here?

Upper limit Post-fit distribution Significance / confidence interval

Confidence interval

8
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(Non exhaustive) summary of other features

9
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MC statistical uncertainties

• autoMCStats: A feature in combine for incorporating uncertainties due to finite event counts in templates


• Full documentation here, more background in [Barlow, Beeston '93] [Conway '11]


• Automatically models total uncertainty in each bin with a single Gaussian ("lite" approach)

- Analysts only have to add a single line in the datacard to enable


- Falls back to per-process Poisson if MC stats too low in any particular bin

10

O(100) in a 
typical analysis

~10k in Higgs 
combination 
⇒ slower and 

less stable 
minimisation

Ev
en

ts

...

Barlow-Beeston approach: Have M 
processes per bin (signal+background), 

and N bins ⇒ N x M nuisance parameters

...

Barlow-Beeston "lite" approach: N 
nuisance parameters: one per bin

https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/bin-wise-stats/
http://inspirehep.net/record/35053
https://arxiv.org/pdf/1103.0354.pdf
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MC statistical uncertainties

• There is no pruning of uncertainties  in this implementation (too error prone) - there will be one 
nuisance parameter for every populated bin

- Fitting time can still be long if many bins


• But with the lite approach the maximum likelihood for each parameter is independent of the others 
and has a simple form that we can solve


• The custom minimizer in combine handles the analytic minimisation of these parameters
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• Large speed-up possible compared to using normal 
numeric minimisation:
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Nuisance parameter impacts

• Combine automates the calculation of impacts for the nuisance parameters
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• Define the impact of a nuisance parameter on the POI as the 
shift in the POI that is induced as the NP is fixed and brought to 
its +1σ or -1σ post-fit values

Impacts

8

Also see the 
parameter

constraint relative

to the input 
uncertainty

Size of the bar  
Impact on “r”

∝
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Goodness-of-fit

• Support for calculating saturated model, Kolmogorov-Smirnov and Anderson-
Darling test statistics

- Combine's toy generation routines used for building up expected distributions

13

60 80 100 120 140 1600

10

20

30

40

50

60
CMS
Internal

 (13 TeV)-12.3 fb

saturated, 1000 Toys
p-value = 0.242

Ev
en

ts
 / 

10
 G

eV

0

1000

2000

3000

4000

5000
Observed

ττ→Z
ll→Z

Electroweak
tt

QCD multijet
Uncertainty

CMS
Preliminary

 (13 TeV)-12.3 fbµe

 (GeV)ττm
50 100 150 200 250O

bs
/E

xp

0.8
1

1.2

Ev
en

ts
 / 

10
 G

eV

0

1000

2000

3000

Observed
ττ→Z

ll→Z
Electroweak
tt

QCD multijet
Uncertainty

CMS
Preliminary

 (13 TeV)-12.3 fbhτe

 (GeV)ττm
50 100 150 200O

bs
/E

xp

0.8
1

1.2

Ev
en

ts
 / 

10
 G

eV

0

2000

4000

6000

8000 Observed
ττ→Z

ll→Z
Electroweak
tt

QCD multijet
Uncertainty

CMS
Preliminary

 (13 TeV)-12.3 fbhτµ

 (GeV)ττm
50 100 150 200O

bs
/E

xp

0.8
1

1.2

Ev
en

ts
 / 

10
 G

eV

0

50

100

150

200
Observed

ττ→Z
ll→Z

Electroweak
tt

QCD multijet
Uncertainty

CMS
Preliminary

 (13 TeV)-12.3 fbhτhτ

 (GeV)ττm
50 100 150 200 250O

bs
/E

xp

0.8
1

1.2

Saturated model:



A. Gilbert (NWU)9/11/21

Discrete profiling

• Method first proposed in https://
arxiv.org/abs/1408.6865 


• Introduces discrete nuisance parameters 
(implemented via RooCategory) that 
correspond to the  choice of pdf for a 
given process (RooMultiPdf )


• Allow the discrete parameter to vary in 
the maximum likelihood fit

- Gives an uncertainty due to uncertainty on 

the choice of PDF functional form

- Can be considered an alternative to 

traditional "spurious signal" approach


• NB: Minuit does not support fitting for 
discrete parameters

- Handled directly by combine

14

https://arxiv.org/abs/1408.6865
https://arxiv.org/abs/1408.6865
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• The physics model flexibility makes it straightforward to perform unfolding of 
distributions

- Datacard processes should be defined in terms of fiducial bins

- Max. likelihood fit for normalisations in unfolded space


‣ Takes the place of traditional matrix inversion


• Possible to add penalty term to the likelihood to perform regularisation

- Flexible datacard syntax to introduce constraints

Unfolding

15

Andrea Carlo Marini 16th December 2020

• In order to reach the same penalization 
we will use a series of gaussian constraints on  
the POIs

SVD  Combine

29

6 Regularization and unfolding

The transition from (28) to (35) changes the appearance of the system from (2) to (36).
The singular values of the matrix are also changed, but the main problem with small
singular values still remains. The exact solution of (36) will again most certainly lead to
a rapidly oscillating distribution, which may have a smaller amplitude but is still useless.
This spurious oscillatory component should be suppressed, using some a priori knowledge
about the solution. Technically this can be achieved by adding the regularization or
stabilization term to the expression to be minimized (see [6, 1, 4] and references therein):

(Ã w − b̃)T (Ãw − b̃) + τ · (C w)TC w = min. (37)

Here C is a matrix which defines the a priori condition on the solution, while the value
of the regularization parameter τ determines the relative weight of this condition. For
example, the choice Cik = δik would minimize the euclidean norm of the vector w, and if
τ is set to be infinitely large, this would result in a vector wj = 0 for any Ã and b̃.

While the optimal value of τ is very much problem-dependent and its determination
is an important part of our procedure, the explicit form of the matrix C should be chosen
from general considerations. The common belief is that the solution histogram w should
be smooth, with small bin-to-bin variation. Let us define the ”curvature” of the discrete
distribution wj as the sum of the squares of its second derivatives:

∑

i

[(wi+1 − wi) − (wi − wi−1)]
2 . (38)

Then the choice

C =





















−1 1 0 0 . . .
1 −2 1 0 . . .
0 1 −2 1 . . .

. . . . . .

. . . 1 −2 1

. . . 1 −1





















(39)

will suppress solutions w having large curvatures. Minimization of (37) leads to a new
linear system, which has nx additional equations:

[

Ã√
τ · C

]

w =

[

b̃
0

]

. (40)

This system is clearly over-determined, and one can apply SVD to the (nb + nx) × nx

matrix in the l.h.s. in order to solve it. This is possible, but would require calling SVD
for each value of τ . Fortunately, a more efficient method (called sometimes damped least
squares [6] ) can be suggested, which allows to express the solution of (40) for any τ
through the solution of the initial non-regularized problem corresponding to τ = 0. The
first step is to make the regularization term proportional to the unit matrix I:

[

Ã C−1
√

τ · I

]

C w =

[

b̃
0

]

. (41)

11

Check out the twikis on how to chose

this number!!! �2 logL = �2 logLstat + ⌧kL · ~µk2

<latexit sha1_base64="7+4NCytvI39W78ucRAQdQPJosK8=">AAACPXicbVBNSxxBEO1Rk5jN10aPuQwugUDIMruRqAdBzMVDDgquCtubpaa3Zm3smR66qyXLOH8sl/wHb95y8aAEr17tGReJ2TwoeLxXRVW9OFfSUhRdBHPzC0+ePlt83njx8tXrN823SwdWOyOwJ7TS5igGi0pm2CNJCo9yg5DGCg/jk6+Vf3iKxkqd7dMkx0EK40wmUgB5adjc/9TlSo95CnQsQBXfys0ZZcgJf5DLC0tA5UdO4PhZ7ceJt7kYaeKnKAqeupKffe8Om62oHdUIZ0lnSlpsit1h85yPtHApZiQUWNvvRDkNCjAkhcKywZ3FHMQJjLHvaQYp2kFRf1+G770yChNtfGUU1urfEwWk1k7S2HdWN9t/vUr8n9d3lKwPCpnljjAT94sSp0LSYRVlOJIGBamJJyCM9LeG4hgMCPKBN+oQNip8eXh5lhx0253P7dW91dbW9jSORfaOrbAPrMPW2BbbYbusxwT7yX6zK3Yd/Aougz/BzX3rXDCdWWaPENzeAYMtsWg=</latexit>

L = Lstat · N (L~µ|1, �) · . . .
<latexit sha1_base64="pDUAuvt6JJ1kEIpkKdC7i0+m40s="></latexit>

� =
1p
⌧

<latexit sha1_base64="uygWRF7f0cS6YkgxJTsNu7n1cVc=">AAACBXicbVDLSsNAFJ3UV62vqEtdBIvgqiRafCyEohuXFewDmlAmk0k7dPJw5kYoIRs3/oobF4q49R/c+TdO0iJqPXDhcM693HuPG3MmwTQ/tdLc/MLiUnm5srK6tr6hb261ZZQIQlsk4pHoulhSzkLaAgacdmNBceBy2nFHl7nfuaNCsii8gXFMnQAPQuYzgkFJfX3X9igHfG77ApPUylJb3gpIbcBJlvX1qlkzCxizxJqSKpqi2dc/bC8iSUBDIBxL2bPMGJwUC2CE06xiJ5LGmIzwgPYUDXFApZMWX2TGvlI8w4+EqhCMQv05keJAynHgqs4Aw1D+9XLxP6+XgH/qpCyME6AhmSzyE25AZOSRGB4TlAAfK4KJYOpWgwyxygNUcJUihLMcx98vz5L2Yc06qtWv69XGxTSOMtpBe+gAWegENdAVaqIWIugePaJn9KI9aE/aq/Y2aS1p05lt9Ava+xeuAZl7</latexit>

for i in range(1,hGen.GetNbinsX()+1): 
    if i==1:  
        datacard.write("constr%d"%i+ " constr r_bin%(next)d-r_bin%(bin)d delta[%(delta)s]\n" %
{"bin":i,"next":i+1,"prev":i-1,"delta":1./math.sqrt(tau)} ) 
    elif i==hGen.GetNbinsX():  
        datacard.write("constr%d"%i+ " constr r_bin%(prev)d+-r_bin%(bin)d delta[%(delta)s]\n" %
{"bin":i,"next":i+1,"prev":i-1,"delta":1./math.sqrt(tau)} ) 
    else: 
        datacard.write("constr%d"%i+ " constr r_bin%(prev)d+r_bin%(next)d-2*r_bin%(bin)d delta[%(delta)s]\n" %
{"bin":i,"next":i+1,"prev":i-1,"delta":1./math.sqrt(tau)} )

Andrea Carlo Marini 16th December 2020

• You can choose any regularisation matrix

• You can penalise on the strength modifiers or 

also on the yields.

… and get the results

30

6 Regularization and unfolding

The transition from (28) to (35) changes the appearance of the system from (2) to (36).
The singular values of the matrix are also changed, but the main problem with small
singular values still remains. The exact solution of (36) will again most certainly lead to
a rapidly oscillating distribution, which may have a smaller amplitude but is still useless.
This spurious oscillatory component should be suppressed, using some a priori knowledge
about the solution. Technically this can be achieved by adding the regularization or
stabilization term to the expression to be minimized (see [6, 1, 4] and references therein):

(Ã w − b̃)T (Ãw − b̃) + τ · (C w)TC w = min. (37)

Here C is a matrix which defines the a priori condition on the solution, while the value
of the regularization parameter τ determines the relative weight of this condition. For
example, the choice Cik = δik would minimize the euclidean norm of the vector w, and if
τ is set to be infinitely large, this would result in a vector wj = 0 for any Ã and b̃.

While the optimal value of τ is very much problem-dependent and its determination
is an important part of our procedure, the explicit form of the matrix C should be chosen
from general considerations. The common belief is that the solution histogram w should
be smooth, with small bin-to-bin variation. Let us define the ”curvature” of the discrete
distribution wj as the sum of the squares of its second derivatives:

∑

i

[(wi+1 − wi) − (wi − wi−1)]
2 . (38)

Then the choice

C =





















−1 1 0 0 . . .
1 −2 1 0 . . .
0 1 −2 1 . . .

. . . . . .

. . . 1 −2 1

. . . 1 −1





















(39)

will suppress solutions w having large curvatures. Minimization of (37) leads to a new
linear system, which has nx additional equations:

[

Ã√
τ · C

]

w =

[

b̃
0

]

. (40)

This system is clearly over-determined, and one can apply SVD to the (nb + nx) × nx

matrix in the l.h.s. in order to solve it. This is possible, but would require calling SVD
for each value of τ . Fortunately, a more efficient method (called sometimes damped least
squares [6] ) can be suggested, which allows to express the solution of (40) for any τ
through the solution of the initial non-regularized problem corresponding to τ = 0. The
first step is to make the regularization term proportional to the unit matrix I:

[

Ã C−1
√

τ · I

]

C w =

[

b̃
0

]

. (41)
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← How TUnfold will look like

(Parametric dc, or substitute  
shape…__norm with value)  

<latexit sha1_base64="jp1vWY4JKS3OU5TaMJW5Qbt3NGM="></latexit>

⌧kL · (�� �MC)k2
<latexit sha1_base64="z0pJlqE8TRUcHWewouE59ZznyGI="></latexit>

⌧kL · (ri � 1)�MCk2
Each method needs to have the 

strength tuned and studied separately 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Discussion points

16
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Preserving the full likelihood
• General likelihood:

17

ℒ(data ∣ ⃗α , ⃗θ ) = ∏
i

Poisson(ni ∣ si( ⃗α , ⃗θ ) + bi( ⃗θ ))p( ˜ ⃗θ ∣ ⃗θ )

RooGaussian.cxx

CMSHistFunc.cxx

SomeArbitraryPdf.cxx [...]

workspace.root


CMSHistFunc::Hist_Chn1_Sig[s1, s2, s3,...]

CMSHistFunc::Hist_Chn1_Bkg[b1, b2, b3,...]


[....]

Gaussian(lumi, 0, 1)

Gaussian(JES, 0, 1)


[....]


+

• Natural division between:


• Input values specific to the analysis (observed data, list of pdfs, pdf input data...) ⇒ Workspace


• General specifications of pdfs that define si, bi, and p(θ) ⇒ C++ class definitions


• Both must be made public to claim we have "published the full likelihood"

Parameters of interest

Nuisance parameters

Signal and background pdfs

External measurement pdfs

PUBLIC
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Preserving the full likelihood

• Some thoughts on use cases. I want to...

- Inspect the full form of the likelihood


‣ Requires reading code and/or comments, but possible to extract full definition and reimplement


- Evaluate the likelihood as a function of all POIs and NPs

‣ Can treat the above as a black box, with external handles for setting the parameter values


- Evaluate the profiled likelihood as a function of the POIs

‣ Can treat the above as a black box, with handles for the POIs, and some minimizer algo provided


- Evaluate the profiled likelihood as a function of reparametrised POIs

‣ As above, but take diff. or Higgs STXS measurement cross sections σi,  reparametrize in coupling modifiers or EFT 

coefficients


- Combine likelihoods from multiple analyses

‣ Possible (done by experiments in some cases), but requires care - may be incompatibilities


- Modify the (s+b) PDF(s)

‣ E.g. to add a different signal prediction. Possible, but RooFit manipulation can be non-trivial (esp. without expts. 

providing more useful wrapper tools)

18

RooGaussian.cxx

CMSHistFunc.cxx

SomeArbitraryPdf.cxx [...]workspace.root +

[A]

[B]

[C]

[D]
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Serialising combine models
• Could pyhf be used?


- The combine and HistFactory/pyhf feature sets are roughly similar

‣ Close enough that a basic converter from datacards to pyhf JSON format should not to too difficult


‣ Harder to make the pyhf likelihood exactly equivalent to the combine one (and if not identical, 
the likelihood is not preserved)


- Some things (MC stat uncertainties) are definitely handled differently... other things (e.g. 
shape morphing) may appear to be the same, but subtle details may differ


- Unclear if other commonly used features available (e.g. writing bin contents for some 
processes as generic formulae (RooFormulaVars))
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datacard.txt

pyhf_model.json

text2pyhf.py

1) someone needs to write this!

pyhf python module

[implementation]

+

2) Then someone needs to modify 
this to match CMS code exactlyPUBLIC



A. Gilbert (NWU)9/11/21

Differences to HistFactory

• Disclaimer: I am not a HistFactory expert - observations are based on public documentation, 
not detailed comparison of the codes


- Uncorrelated shape:  for single-bin counting channels (gmN), for shapes, RooParametricHist with CR

- Correlated shape: unclear if default CMS interpolation available  (6th order poly interp. + linear extrap)

- Normalisation: CMS lnN with single value [u] : κ = uα ,  with asymmetric [d]/[u],  f(α,d,u)α,  where f 

interpolates between log(u) and log(d)

- MC Stat. uncertainty: HF approach similar for combine Barlow-Beeston lite (δb2 updated dynamically)

- Luminosity: not commonly used (treated with lnN)

- Normalisation: OK

- Data-driven shape: RooParametric hist
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