## Northwestern University

# The CMS combine tool 

A. Gilbert

Publication of statistical models workshop 9 November 2021

## Introduction



- The combine tool is the primary software framework used for statistical model building \& inference in CMS physics analysis
- Developed for Higgs analysis in Run 1, now used in all physics areas
- Built on top of ROOT and RooFit
- Likelihood is persisted in a RooFit workspace
- Input based on plain text "datacards"
- While combine is developed for CMS analysis, and with CMS users in mind, the code is public and can be compiled in "standalone" mode
- An extensive manual is provided, along with links to tutorials and examples:
https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/



## Typical combine workflow

## Typical combine workflow



- Text datacard for a single "channel"
- In this case a one bin counting experiment
- Each channel and process has a unique label:


## datacard.txt

Number of bins/channels



| bin | signal_region | signal_region | signal_region | signal_region | signal_region |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| process | ttbar | diboson | Ztautau | jetFakes | bbHtautau | Process label |
| process | 1 | 2 | 3 | 4 | 0 | Process ID (<=O for signal) |
| rate | 4.43803 | 3.18309 | 3.7804 | 1.63396 | 0.711064 | Expected number of events |


| CMS_eff_b | $\operatorname{lnN}$ | 1.02 | 1.02 | 1.02 | - | 1.02 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CMS_eff_t | lnN | 1.12 | 1.12 | 1.12 | - | 1.12 | ¢ |
| CMS_eff_t_highpt | $\operatorname{lnN}$ | 1.1 | 1.1 | 1.1 | - | 1.1 | $\stackrel{\square}{0}$ |
| acceptance_Ztautau | $\operatorname{lnN}$ | - | - | 1.08 | - | - | 0 |
| acceptance_bbH | lnN | - | - | - | - | 1.05 | $\stackrel{\text { ¢ }}{ }$ |
| acceptance_ttbar | $\operatorname{lnN}$ | 1.005 | - | - | - | - | $\bigcirc$ |
| lumi_13TeV | lnN | 1.025 | 1.025 | 1.025 | - | 1.025 | $\stackrel{\text { ¢ }}{ }$ |
| norm_jetFakes | $\operatorname{lnN}$ | - | - | - | 1.2 | - | 2. |
| xsec_Ztautau | $\operatorname{lnN}$ | - | - | 1.04 | - | - | $\stackrel{\rightharpoonup}{\square}$ |
| xsec_diboson | lnN | - | 1.05 | - | - | - | 8 |
| xsec_ttbar | $\operatorname{lnN}$ | 1.06 | - | - | - | - |  |
| Name | Type | Effect on process |  |  |  |  |  |

## Typical combine workflow

- Datacards can describe multiple channels
- Separate cards can be merged using the combineCards.py script
- Each channel can also represent a distribution
- "shapes" directives link to input ROOT histograms for binned analyses:



Shape uncertainties: per-bin interpolation of yield fractions between nominal, "up" and "down" templates:

$$
f(\theta)=\frac{1}{2}\left(\left(\delta^{+}-\delta^{-}\right) \theta+\frac{1}{8}\left(\delta^{+}+\delta^{-}\right)\left(3 \theta^{6}-10 \theta^{4}+15 \theta^{2}\right)\right)
$$

## Typical combine workflow

- Also possible to import any arbitrary binned/ unbinned RooFit pdfs
- Shape and normalisation systematics can be added in the same way

A. Gilbert (NWU)


## Typical combine workflow

- The text2workspace.py script converts the datacard into a self-contained RooFit workspace
- Also introduces a "physics model"
- By default, adds a floating parameter "r" that multiples the normalisation of all processes marked as signal in the datacard
- Customised models can be applied by providing a simple extension of the PhysicsModel class
- E.g. coupling modifier parameterisation of Higgs processes:

class PhysicsModelBase(object) "Connect to the ModelBuilder to get workspas self.modelBuilder = modelBuilder self. $D C=$ modelBuilder. $D C$ self.options $=$ modelBuilder.options
def setPhysicsoptions(self, physOptions)
"Receive a list of strings with the physics options from command line"


## @abstractmethod

def doParametersOfInterest(self):
"""Create POI and other parameters, and define the POI set."""
def preProcessNuisances(self, nuisances):
"receive the usual list of (name, nofloat, pdf,args,errline) to be edited"
pass \# do nothing by defautt
def getYieldScale(self,bin, process):
"Return the name of a RooAbsReal to scale this yield by or the two special values 1 and 0 (don't scale, and set to zero)" return "r" if self.DC.isSignal[process] else 1;

## Typical combine workflow



## (Non exhaustive) summary of other features

## MC statistical uncertainties

- autoMCStats: A feature in combine for incorporating uncertainties due to finite event counts in templates
- Full documentation here, more background in [Barlow, Beeston '93] [Conway '11]
- Automatically models total uncertainty in each bin with a single Gaussian ("lite" approach)
- Analysts only have to add a single line in the datacard to enable
- Falls back to per-process Poisson if MC stats too low in any particular bin



## MC statistical uncertainties

- There is no pruning of uncertainties in this implementation (too error prone) - there will be one nuisance parameter for every populated bin
- Fitting time can still be long if many bins
- But with the lite approach the maximum likelihood for each parameter is independent of the others and has a simple form that we can solve
- The custom minimizer in combine handles the analytic minimisation of these parameters
- Large speed-up possible compared to using normal numeric minimisation:
$35.9 \mathrm{fb}^{-1}(13 \mathrm{TeV})$




## Nuisance parameter impacts



- Combine automates the calculation of impacts for the nuisance parameters
- Define the impact of a nuisance parameter on the POI as the shift in the POI that is induced as the NP is fixed and brought to its $+1 \sigma$ or $-1 \sigma$ post-fit values



## Goodness-of-fit



- Support for calculating saturated model, Kolmogorov-Smirnov and AndersonDarling test statistics
- Combine's toy generation routines used for building up expected distributions



## Discrete profiling

- Method first proposed in https:// arxiv.org/abs/1408.6865
- Introduces discrete nuisance parameters (implemented via RooCategory) that correspond to the choice of pdf for a given process (RooMultiPdf)
- Allow the discrete parameter to vary in the maximum likelihood fit
- Gives an uncertainty due to uncertainty on the choice of PDF functional form
- Can be considered an alternative to traditional "spurious signal" approach
- NB: Minuit does not support fitting for discrete parameters

| exponential polynomial powerlaw envelope |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |



- Handled directly by combine


## Unfolding



- The physics model flexibility makes it straightforward to perform unfolding of distributions
- Datacard processes should be defined in terms of fiducial bins
- Max. likelihood fit for normalisations in unfolded space
- Takes the place of traditional matrix inversion

$$
\begin{gathered}
x^{2}=\left(\vec{x}_{\text {reco }}-\vec{b}-\mathbf{R} \vec{\mu}\right)^{\mathrm{T}} \mathcal{\Sigma}^{-1}\left(\vec{x}_{\text {reco }}-\vec{b}-\mathbf{R} \vec{\mu}\right) \\
\mathcal{L}=\prod_{i \in \mathrm{recoc}} \mathcal{P}\left(x_{\text {reco }, i} \mid \sum_{j \in \mathrm{gen}} \mu_{j} \mathbf{R}_{i j}+\vec{b}_{i}\right)
\end{gathered}
$$

- Possible to add penalty term to the likelihood to perform regularisation
- Flexible datacard syntax to introduce constraints

$$
\begin{aligned}
& \text { name constr @0-2*@2+@1 r_Bin0, r_Bin1, r_Bin2 } 0.03 \\
& -2 \log \mathcal{L}=-2 \log \mathcal{L}_{\text {stat }}+\tau\|\mathbf{L} \cdot \vec{\mu}\|^{2} \\
& \mathcal{L}=\mathcal{L}_{\text {stat }} \cdot \mathcal{N}\left(\left.\mathbf{L} \vec{\mu}\right|_{1}, \delta\right) \cdot \ldots
\end{aligned}
$$




## Discussion points

## Preserving the full likelihood



- General likelihood:

- Natural division between:
- Input values specific to the analysis (observed data, list of pdfs, pdf input data...) $\Rightarrow$ Workspace
- General specifications of pdfs that define $\mathrm{s}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}$, and $\mathrm{p}(\theta) \Rightarrow \mathbf{C + +}$ class definitions


## - Both must be made public to claim we have "published the full likelihood"

## Preserving the full likelihood



- Some thoughts on use cases. I want to...
[A] Inspect the full form of the likelihood
- Requires reading code and/or comments, but possible to extract full definition and reimplement
[B] Evalluate the likelihood as a function of all POIs and NPs
- Can treat the above as a black box, with external handles for setting the parameter values
[C] Evaluate the profiled likelihood as a function of the POIs
- Can treat the above as a black box, with handles for the POIs, and some minimizer algo provided
[D] Evaluate the profiled likelihood as a function of reparametrised POIs
- As above, but take diff. or Higgs STXS measurement cross sections $\sigma_{\mathrm{i}}$, reparametrize in coupling modifiers or EFT coefficients
[E] Combine likelihoods from multiple analyses
- Possible (done by experiments in some cases), but requires care - may be incompatibilities
[F] Modify the (s+b) PDF(s)
- E.g. to add a different signal prediction. Possible, but RooFit manipulation can be non-trivial (esp. without expts. providing more useful wrapper tools)


## Serialising combine models

- Could pyhf be used?
- The combine and HistFactory/pyhf feature sets are roughly similar
- Close enough that a basic converter from datacards to pyhf JSON format should not to too difficult
- Harder to make the pyhf likelihood exactly equivalent to the combine one (and if not identical, the likelihood is not preserved)
- Some things (MC stat uncertainties) are definitely handled differently... other things (e.g. shape morphing) may appear to be the same, but subtle details may differ
- Unclear if other commonly used features available (e.g. writing bin contents for some processes as generic formulae (RooFormulaVars))



## Differences to HistFactory



- Disclaimer: I am not a HistFactory expert - observations are based on public documentation, not detailed comparison of the codes

| Description | Modification | Constraint Term $c_{\chi}$ | Input |
| :--- | :--- | :--- | :--- |
| Uncorrelated Shape | $\kappa_{s c b}\left(\gamma_{b}\right)=\gamma_{b}$ | $\prod_{b} \operatorname{Pois}\left(r_{b}=\sigma_{b}^{-2} \mid \rho_{b}=\sigma_{b}^{-2} \gamma_{b}\right)$ | $\sigma_{b}$ |
| Correlated Shape | $\Delta_{s c b}(\alpha)=f_{p}\left(\alpha \mid \Delta_{s c b, \alpha=-1}, \Delta_{s c b, \alpha=1}\right)$ | Gaus $(a=0 \mid \alpha, \sigma=1)$ | $\Delta_{s c b, \alpha= \pm 1}$ |
| Normalisation Unc. | $\kappa_{s c b}(\alpha)=g_{p}\left(\alpha \mid \kappa_{s c b, \alpha=-1}, \kappa_{s c b, \alpha=1}\right)$ | Gaus $(a=0 \mid \alpha, \sigma=1)$ | $\kappa_{s c b, \alpha= \pm 1}$ |
| MC Stat. Uncertainty | $\kappa_{s c b}\left(\gamma_{b}\right)=\gamma_{b}$ | $\prod_{b} \operatorname{Gaus}\left(a_{\gamma_{b}}=1 \mid \gamma_{b}, \delta_{b}\right)$ | $\delta_{b}^{2}=\sum_{s} \delta_{s b}^{2}$ |
| Luminosity | $\kappa_{s c b}(\lambda)=\lambda$ | Gaus $\left(l=\lambda_{0} \mid \lambda, \sigma_{\lambda}\right)$ | $\lambda_{0}, \sigma_{\lambda}$ |
| Normalisation | $\kappa_{s c b}\left(\mu_{b}\right)=\mu_{b}$ |  |  |
| Data-driven Shape | $\kappa_{s c b}\left(\gamma_{b}\right)=\gamma_{b}$ |  |  |

- Uncorrelated shape: for single-bin counting channels (gmN), for shapes, RooParametricHist with CR
- Correlated shape: unclear if default CMS interpolation available (6th order poly interp. + linear extrap)
- Normalisation: CMS InN with single value [u]: $K=u^{\alpha}$, with asymmetric [d]/[u], f(a,d,u)a, where f interpolates between $\log (\mathrm{u})$ and $\log (\mathrm{d})$
- MC Stat. uncertainty: HF approach similar for combine Barlow-Beeston lite ( $\delta_{b}{ }^{2}$ updated dynamically)
- Luminosity: not commonly used (treated with InN)
- Normalisation: OK
- Data-driven shape: RooParametric hist

