Public Likelihoods for Higgs Searches and Measurements

Jonas Wittbrodt Publication of Statistical Models Workshop, 08.11.21

Lund University, Theoretical Particle Physics

Higgs Measurements

Results of a Higgs measurement:

- + binned rate measurements
- + gaussian correlation matrix
- (+) mass, width [CMS 1901.00174], or CP-phase [CMS 2110.04836] measurements

$$\Rightarrow \chi^2 = (\mu - \hat{\mu})^T (\text{Cov}_{exp} + \text{Cov}_{theo})^{-1} (\mu - \hat{\mu})$$

Same for the (naive) combination of multiple analyses:

- theory uncertainty correlations
- experiment wide correlations (e.g. luminosity)

Fit model predictions to the latest measurements of h_{125} . $\rightarrow \chi^2$ or Likelihood

Two public codes dedicated to this task:

HiggsSignals [Bechtle et al. 2012.09197]

- stick to the gaussian limit with all available correlations (theory + experiment)
- STXS results to include differential effects
- + LHC Run 1 combination
- + Run 2 results \leq 139 fb⁻¹

Lilith [Kraml et al. 1908.03952]

- stay inclusive but try to go beyond the gaussian limit
- use any available LLH information to better capture non-gaussian effects
- + LHC Run 1 combination
- + Run 2 results @36 fb⁻¹

Higgs Measurements — Reconstructed LLH from μ Measurements

CMS $H \rightarrow WW$ signal-strength measurements in sub-channels aimed at different production modes.

no signal efficiencies [CMS HIG-16-021]

signal efficiencies [CMS 1806.05246]

New 139 fb⁻¹ analysis additionally includes inter-bin correlations but no usable validation plots! [CMS 2007.01984]

Higgs Measurements — Limitations of Reconstructed LLHs

Example: ATLAS $H \rightarrow ZZ \rightarrow 4\ell$ [ATLAS 2004.03447]

HiggsSignals implementation

 measurements (12-bin STXS)

• experimental correlations

 theory correlations [2017 Scheme]

Performance of HiggsSignals compared to official κ -fit.

Higgs Measurements — Open Likelihoods

Final goal: one combined LLH that covers everything

- $\cdot\,$ all production $\times \, decay$ modes, ideally in STXS bins
- mass and width measurements, CP-phases, ...

Immediate goal: open likelihoods for new analyses

- publish a full LLH that can be simplified as needed
- \cdot a simplified $-2 \ln \mathcal{L}(\text{binned rates})$ is directly applicable to pheno studies

Open questions

- who performs the simplification?
- multiple contributing particles (please don't use BR ratios!)

Most searches for additional scalars (and most resonance searches in general) present results as "model-independent" upper limits on some σ .

[CMS 1907.03152]

Assumption: BSM physics only scales the signal rate and $\Gamma_{tot}.$

- changing signal composition (e.g. $gg/bb \rightarrow H$)?
- interference effects?
- shape changes from BSM in loops?
- multiple particles of indistinguishable mass?

Higgs Searches — Tools

HiggsBounds

- \cdot exclusion bounds from over 200 analyses at LEP, Tevatron and the LHC
- $\cdot\,$ determine most sensitive analyses to obtain a combined limit at \sim 95 % C.L.
- use model-independent limits (if possible) or check analysis assumptions

What if the signal composition can change?

worst: limit without additional information and SM-like assumptions

- have to assume SM-like signal composition
- $\Rightarrow~$ only usable with a model-likeness test: for each channel $\mu_{\rm channel}\approx\mu$

better: provide SM-like signal efficiencies for each channel

• efficiencies stay unchanged as long as the other basic assumptions hold

best: LLH in the sub-channel rates

Higgs Searches — Simplified Likelihoods in ${\rm H} \rightarrow \tau \tau$

Simplified exclusion likelihood profiles are available for:

- LEP Higgs Combination [ALEPH, DELPHI, L3, OPAL hep-ex/0602042]
- ATLAS and CMS $H \to \tau\tau$ searches [CMS HIG-14-029; ATLAS 1709.07242; CMS 1803.06553; ATLAS 2002.12223]

Likelihood profile as function of kinematical parameters and sub-channel rates.

$$-2 \ln \mathcal{L}(m_h, \sigma(ggF
ightarrow au au), \sigma(bbH
ightarrow au au))$$

- $\rightarrow\,$ construct 95 % C.L. CL_{s} limits
- ightarrow as likelihood contribution in a fit

Contains full information for all sub-channel rates.

Higgs Searches — Open Likelihoods

For model fits

- \cdot model fits currently have to incorporate Higgs searches as hard cuts
- \cdot available LLHs allow including the searches in the fit instead

To avoid model assumptions

- \cdot a LLH as a function of the sub-channel-rates avoids model assumptions
 - · $\mathcal{L}(m_h, \sigma(pp \to \tau\tau))$ vs $\mathcal{L}(m_h, \sigma(ggF \to \tau\tau), \sigma(bbH \to \tau\tau))$
 - $\cdot \ pp \rightarrow H \rightarrow ZZ \quad \Rightarrow \quad [ggH + bbH + vbfH] \rightarrow ZZ$
 - $\cdot pp \rightarrow 4t \Rightarrow [ttH + (qq \rightarrow tH) + (gg \rightarrow tH) + tWH + ggF] \rightarrow tt$
- this may require extra work on the experimental side

For recasting

• see later talks

Summary

Higgs Measurements

- Gaussian limit results insufficient to reproduce highest precision channels
 - \Rightarrow urgent need for LLH information
- better combination between different analyses
- incorporate mass, width and CP-measurements

Higgs searches

- (observed + expected) LLH \geq cxn limit
 - immediately useful for model fits
 - allows reconstruction of the CLs limits
 - allows recasting to modified kinematics
- LLH in the sub-channels to avoid model assumptions