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Searching For Dispersed Signals

● Huge number of experimental results

● What if new physics is already slowly seeping into our analyses, 
but in a very dispersed manner?
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Hunting For Dispersed Signals
in LHC’s Published BSM Search 

Results

Our aim:
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Hunting For Dispersed Signals
in LHC’s Published BSM Search 

Results

The enormity of LHC 
data of the BSM 
searches …. 

… has been 
summarized in 
simplifed models 
results ….

… from which we 
construct precursor 
theories, identifying 
potential dispersed 
signals ….

…. only later will we 
worry about 
fundamental BSM 
Lagrangians.
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Hunting For Dispersed Signals
in LHC’s Published BSM Search 

Results

The enormity of LHC 
data of the BSM 
searches …. … has been 

summarized in  
simplifed models 
results ….

… from which we 
construct precursor 
theories, identifying 
potential dispersed 
signals ….

…. only later will we 
worry about 
fundamental BSM 
Lagrangians.

Two important aspects:

● need to combine likelihoods for all possible combinations of 
results

● build up precursor theories “proto-models” ( := consistent sets of 
simplified models) for context



  

Artificial 
Proto-modelling

an MCMC-like walk

a test statistic

potential
dispersed
signals

A hiscore 
protomodel

Particle
spectra

6https://smodels.github.io/protomodels/videos

Random 
modifications

https://smodels.github.io/protomodels/videos
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The Test Statistic

Priors of the models
used to penalize for
model complexity, 
they are of the form

Joint likelihoods: combining 
“complete” sets of results that 
are assumed to be approximately 
uncorrelated.

We search for proto-models and combinations of results / likelihoods that maximize Kc 
while remaining compatible with all negative results in our database. 

The test statistic Kc is a likelihood-ratio test that quantifies how much better the proto-model 
describes the data than the Standard-Model (plus a penalty for model complexity).

“AIC-like”



  

Input Data
The test statistic is based on likelihoods.
● likelihood computation based on simplified models results in SModelS database
● vast number efficiency and upper limit maps from ~ 50 CMS and ~ 50 ATLAS publications.

8
https://smodels.github.io/docs/ListOfAnalyses210

https://smodels.github.io/docs/ListOfAnalyses210


  

As we are chasing dispersed signals, we need to allow the machine to 
combine likelihoods.

The Combiner

https://arxiv.org/abs/2002.12220 9

green: 
approximately 
uncorrelated

 → combinable

red: correlated,
not combinable

White: cannot 
construct a 
likelihood

Les Houches effort:

https://arxiv.org/abs/2002.12220


  

Ongoing effort: TACO collaboration

Study of inter-analyses 
correlations
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● Small collaboration: 
members of MA5, SModelS, 
rivet, gambit

● Builds on Les Houches effort 
(see previous slide)

● Aim: systematically study 
“overlaps” between signal 
regions, develop smart 
combination algorithm

● Best possible effort in case of 
simplified likelihoods

● Can go further with full 
likelihoods (and standardized 
naming conventions for 
nuisances)

Work in progress

Andy Buckley, Benjamin Fuks, Humberto Reyes-González, WW, Sophie 
Williamson, Jamie Yellen



  

Protomodeller: Walking Over the 
SModelS Database

We defined a “run” as 50 parallel walkers, making 1,000 steps each. 
We performed 10 such runs on the SModelS database:

All 10 runs introduced a top partner as well as a light quark partner. The cross sections are 
compatible with values expected from the MSSM. The best test statistic was K=6.9.
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Global p-Value
With our simplified statistical models of the search results, we can synthesize databases 
of results that are “typical”, if no new physics is in the data.

From this we can compute an approximate p-value for the Standard Model hypothesis: that 
is the chances that – under the SM hypothesis – we would obtain a results as extreme as 
ours or more extreme.

12
Long term goal: full statistical models, proper sampling also of shared systematics.



  

So …. what’s our Verdict?

● After 1,000,000 CPU hours of running the procedure, it is 
still unclear! The result is not entirely as expected, under 
the Standard Model hypothesis.

● But there are actually tensions between some of the 
experimental results.

● Proof-of-concept has been given. Now rerun with more 
results, larger number of “theory parameters”, improved 
methodology, more accurate statistical models.

https://arxiv.org/abs/2012.12246

https://arxiv.org/abs/2012.12246


  

Backup
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For every legal combination, we define a test statistic K
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The Test Statistic

Eq. 6

π(BSM) is the prior of the BSM model. We use it to “regularize” the model, i.e. impose
the law of parsimony:

Eq. 9

That way, one new particle with one non-trivial branching ratio and two production 
modes is similar to one degree of freedom in Akaike’s information criterion (the sign is 
however flipped, and it’s a likelihood ratio), i.e. the test statistic is roughly equivalent to

An additional particle will have to increase the “(delta-)chi-square” by approximately 
two units.
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● Only exclusion lines
If only exclusion lines are given, without upper limits, we can do nothing

● Observed 95% CL upper limits only:
cannot construct likelihood, binary decision “excluded” / “not-excluded” only (“critic”)

● Expected and observed 95% CL upper limits
can construct an approximate likelihood with truncated Gaussian, 
cannot combine topologies, very crude approximation

● Efficiency maps
can construct a likelihood as Gaussian (for the nuisances) * Poissonian  
(for yields), can work per SR, and combine topologies in each SR [*]

● Efficiency maps + correlation matrices
can combine signal regions via multivariate Gaussian * Poissonians

● Efficiency maps + full likelihoods
full realism, correct statistical model

Li
ke
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om
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s

Likelihoods
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[*] if efficiency maps are not supplied, we can try to produce them with recasting frameworks



  

 we allow the machine 
to combine likelihooods.

The Combiner

A combination “c” of analyses is “legal” if the following conditions are met:

● all results are mutually uncorrelated (= ”combinable”)

● if a result can be added, it has to be added (any subset of a 
legal combination is not itself legal)

● combined likelihood:

Fig. 2
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Approximately uncorrelated are analyses that are:

● from different runs, and/or

● from different experiments, and/or

● looking for (clearly) different signatures



  

For every legal combination, we define a test statistic K

(Remember, we have a database of results from ~ 100 CMS+ATLAS searches. We want to find the most 
interesting combinations of these results, i.e. the ones that maximally violate the SM hypothesis)

Of all “legal” combinations of experimental results, the builder 
chooses the one combination “c” that maximizes K:

18

The Test Statistic

μ denotes an global signal strength multiplier – the production cross sections are free parameters 

 It is maximized in the denominator, but its support is confined such that no limits in the SModelS 
database are violated (the “critic”),

Eq. 6

Eq. 7



  

The Walker takes care of moving in the protomodel space with 
varying dimensionality by performing the following types of
modifications to the protomodel:

● add or remove particles from 
the protomodel

● change the masses of particles
● change the signal strengths of 

production modes 
● change decay channels and 

branching ratios

At each step the test statistic K is computed. An MCMC-like 
procedure[*] is then applied in the sense that the step is reverted 
with a probability of 

19

The Walker

if and only if Ki is smaller than Ki-1 

* (note however, instead of ratios of 
unnormalized posteriors we have ratios 
of ratios of unnormalized posteriors)



  

Walking Over Fake Standard Model 
Databases

K for one “fake”
background-only 
database.

Density of K 
estimated via a 
simple Kernel 
density 
estimator.
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● Produced 50 “fake” SModelS databases by sampling background models
● Corresponds to typical LHC results if no new physics is in data
● Determine 50 “fake” K values by running 50 walkers on each of the 50 databases (50 x 

50 walkers in total) → density of K under null SM-only hypothesis



  

We define a “run” as 50 parallel walks, each taking 1000 steps.

We performed 

● 10 runs on the SModelS database (Sec. 5.2)

● 50 runs on fake “Standard Model-like” databases (Sec 5.1)
to be able to determine a global p-value under the SM hypothesis

● 2x10 runs on fake “Signal-like” databases (Sec 5.3)
to show closure of the method

21

The Walks



  

The Hiscore Proto-Model

https://smodels.github.io/protomodels/2020_PioneerStudy/real9/index.html

the dispersed excess

what is driving the “critic”

22

Tension!

https://smodels.github.io/protomodels/2020_PioneerStudy/real9/index.html


  

Walking Over  Databases With Fake 
Signals

To show closure of our method, we inject the winning protomodel as a signal in fake 
databases, and see if the algorithm can reconstruct the injected signal.

No sampling of the models for the SRs, i.e. 
observed events := expected SM + 
expected signal events

Sampling turned on

23

Fig. 11 Fig. 10

Sec 5.3

Technical closure test Physics closure test



  

Future Developments
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Future Improvements
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Improvements of the SModelS database:

● add latest full run-2 CMS and ATLAS publications (Moriond!)
● produce efficiency maps for existing results
● enlarge mass range of older efficiency maps

Improvements in speed:

● learn the SModelS database
● make everything differentiable

Improvements in procedure:

● improve the “analyses correlation matrix”, automate the determination
● ponder relationship between proto-models and effective field theories
● connect proto-models with complete theories



  

If we had gradients we could perform gradient descent to find the best model, and we could use e.g. 
the Fisher information to infer the error on its parameters (or, alternatively we can then MCMC-
sample).

Needless to say, the data pipeline sketched above is not the only feasible one. Differentiability however would 
be a helpful tool for all possible data pipelines. A similar rationale would apply also to EFTs, Wilson coefficients 
and data from measurements.

described as likelihoods L that are 
differentiable with respect to the 
yields yi

we have started an effort 
to make SModelS 
differentiable w.r.t SMS 
parameters pj, by learning 
our entire database: 

for individual candidates we can make this 
differentiable w.r.t fundamental parameters 
Θl, via neural networks, with efforts similar to 
DeepXS, or “TheoryGANs” [*]:

that’s just a sum of
simplified models → 
differentiable!

https://arxiv.org/abs/1810.08312

. . .
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Why Differentiable?

 →Differentiable Inductive Reasoning!

https://arxiv.org/abs/1810.08312
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Why Differentiable?

 →Differentiable Inductive Reasoning!

https://arxiv.org/abs/1810.08312
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