

Simplified Likelihoods (at least one approach)

Nicholas Wardle

Publication of statistical models: hands-on workshop
Simplified likelihoods

10/11/2021

General form* for our experimental likelihood (for measurements, searches ...) is

$$L(\boldsymbol{lpha}, \boldsymbol{\delta})\pi(\boldsymbol{\delta}) = \prod_{I=1}^{P} \Pr\Big(n_I^{ ext{obs}} \,\Big|\, n_I(\boldsymbol{lpha}, \boldsymbol{\delta})\Big)\pi(\boldsymbol{\delta})$$

Where α are the "parameters of interest" (mass of a new hypothetical particle, cross-section for some new process ...) and δ are the "nuisance parameters".

General form* for our experimental likelihood (for measurements, searches ...) is

$$L(\boldsymbol{lpha}, \boldsymbol{\delta})\pi(\boldsymbol{\delta}) = \prod_{I=1}^{P} \Pr\Bigl(n_I^{ ext{obs}} \, \Big| \, n_I(\boldsymbol{lpha}, \boldsymbol{\delta}) \Bigr)\pi(\boldsymbol{\delta})$$

Where α are the "parameters of interest" (mass of a new hypothetical particle, cross-section for some new process ...) and δ are the "nuisance parameters".

$$\alpha = \mu$$

At the LHC, the profiled likelihood ratio test statistic is $\alpha = \mu$ the most common choice [1] \rightarrow one parameter of interest μ – common multiplier for total signal yield

[1] G. Cowan, K. Cranmer, E. Gross, O. Vitells Eur. Phys. J. C71:1554,2011

* For Bayesian approaches $\pi(oldsymbol{\delta}) o \pi(oldsymbol{lpha}, oldsymbol{\delta})$

General form* for our experimental likelihood (for measurements, searches ...) is

$$L(\boldsymbol{lpha}, \boldsymbol{\delta})\pi(\boldsymbol{\delta}) = \prod_{I=1}^{P} \Pr\Bigl(n_I^{ ext{obs}} \, \Big| \, n_I(\boldsymbol{lpha}, \boldsymbol{\delta}) \Bigr)\pi(\boldsymbol{\delta})$$

Where α are the "parameters of interest" (mass of a new hypothetical particle, cross-section for some new process ...) and δ are the "nuisance parameters".

$$\alpha = \mu$$

$$n_I(\mu, \delta) \to \mu \cdot \sum_{\text{sigs}} n_{s_k, I} + \sum_{\text{bkgs}} n_{b_k, I}(\delta) \to \mu \cdot n_{s, I} + n_{b, I}(\delta)$$

$$Pr(n|\lambda) = \frac{\lambda^n}{n!}e^{-\lambda}$$

 $\alpha=\mu$ At the LHC, the profiled likelihood ratio test statist the most common choice [1] \rightarrow one parameter of interest μ - common ratio. At the LHC, the profiled likelihood ratio test statistic is interest μ – common multiplier for total signal yield

Sum over the signals / background contributions

 $Pr(n|\lambda) = \frac{\lambda^n}{n!} e^{-\lambda}$ Often use binned likelihood \Rightarrow Pr(.) are Poisson probabilities

* For Bayesian approaches $\pi(oldsymbol{\delta})
ightarrow \pi(oldsymbol{lpha},oldsymbol{\delta})$ [1] G. Cowan, K. Cranmer, E. Gross, O. Vitells Eur. Phys. J. C71:1554,2011

General form* for our experimental likelihood (for measurements, searches ...) is

$$L(\boldsymbol{lpha}, \boldsymbol{\delta})\pi(\boldsymbol{\delta}) = \prod_{I=1}^{P} \Pr\Bigl(n_I^{ ext{obs}} \, \Big| \, n_I(\boldsymbol{lpha}, \boldsymbol{\delta}) \Bigr)\pi(\boldsymbol{\delta})$$

Where α are the "parameters of interest" (mass of a new hypothetical particle, cross-section for some new process ...) and δ are the "nuisance parameters".

$$\alpha = \mu$$

$$n_I(\mu, \delta) \to \mu \cdot \sum_{\text{sigs}} n_{s_k, I} + \sum_{\text{bkgs}} n_{b_k, I}(\delta) \to \mu \cdot n_{s, I} + n_{b, I}(\delta)$$

$$Pr(n|\lambda) = \frac{\lambda^n}{n!}e^{-\lambda}$$

$$\pi(\boldsymbol{\delta})$$

 $lpha=\mu$ At the LHC, the profiled likelihood ratio test statistic is the most common choice [1] ightarrow one parameter of interest μ interest μ – common multiplier for total signal yield

Sum over the signals / background contributions

 $Pr(n|\lambda) = \frac{\lambda^n}{n!} e^{-\lambda}$ Often use binned likelihood \Rightarrow Pr(.) are Poisson probabilities $\pi(\pmb{\delta})$ Nuisance parameter priors and/or "insitu" measurements of $\pmb{\delta}$

[1] G. Cowan, K. Cranmer, E. Gross, O. Vitells Eur. Phys. J. C71:1554,2011

^{*} For Bayesian approaches $\pi(oldsymbol{\delta}) o \pi(oldsymbol{lpha}, oldsymbol{\delta})$

Imagine a (rather simplified) model inspired by a typical search for some Supersymmetric particle or exotic signature.

- There is a single source of background (can also think of this as the sum of all backgrounds)
- The data (observations) are divided into regions we have;
 - 3 categories for the data → each category has 30 bins
 - Increasing S/B with bin-number, within each category

There are **two** uncertainties (labelled "efficiency" and "scale-factor") on the background yields (N), and **each bin** has an uncertainty which is uncorrelated between bins (e.g this could be from limited Monte Carlo statistics used to estimate n_l)

There are **two** uncertainties (labelled "efficiency" and "scale-factor") on the background yields (N), and **each bin** has an uncertainty which is uncorrelated between bins (e.g this could be from limited Monte Carlo statistics used to estimate n_l)

Another two uncertainties correlated between bins ("energy scale" and "theory" uncertainty)

In total this means 94 nuisance parameters

Think of the expected number of background events in a given bin I, as the fraction of events in that bin (f_I) multiplied by the total number of events (N)

δ are nuisance parameters representing independent sources of uncertainty (in our case 94 of them)

$$n_I(\boldsymbol{\delta}) \equiv f_I(\boldsymbol{\delta}) N(\boldsymbol{\delta})$$

$$N(\boldsymbol{\delta}) = N^0 \cdot \prod_j (1 + K_j)^{\delta_j}$$

Uncertainties in the normalisation (N) typically follow log-normals

$$\frac{n_I(\boldsymbol{\delta})}{n_I^0} = \prod_j (1 + \epsilon_{Ij})^{\delta_j}$$

Similarly for un-correlated bin-by-bin uncertainties

 K_j and ε_{lj} represent the relative size and direction of the uncertainty

The effects of correlated systematic uncertainties on n_l are modelled using quadratic(linear) interpo(extrapo) lation function

$$f_I(\boldsymbol{\delta}) = f_I^0 \cdot \frac{1}{F(\boldsymbol{\delta})} \prod_j p_{Ij}(\delta_j)$$

$$F(\boldsymbol{\delta}) = \sum_{I} f_{I}(\boldsymbol{\delta})$$

$$p_{Ij}(\delta_j) = \begin{cases} \frac{1}{2} \delta_j(\delta_j - 1) \kappa_{Ij}^- - (\delta_j - 1)(\delta_j + 1) + \frac{1}{2} \delta_j(\delta_j + 1) \kappa_{Ij}^+ & \text{for } |\delta_j| < 1 \\ \left[\frac{1}{2} (3\kappa_{Ij}^+ + \kappa_{Ij}^-) - 2 \right] \delta_j - \frac{1}{2} (\kappa_{Ij}^+ + \kappa_{Ij}^-) + 2 & \text{for } \delta_j > 1 \\ \left[2 - \frac{1}{2} (3\kappa_{Ij}^- + \kappa_{Ij}^+) \right] \delta_j - \frac{1}{2} (\kappa_{Ij}^+ + \kappa_{Ij}^-) + 2 & \text{for } \delta_j < -1 \end{cases}$$

Experimental likelihood

Now we can write the likelihood for this search as follows;

$$L(\mu, \boldsymbol{\delta})\pi(\boldsymbol{\delta}) = \prod_{I=1}^{90} P(n_I^{\text{obs}}|\mu \cdot n_{s,I} + n_{b,I}(\boldsymbol{\delta})) \cdot \prod_{j=1}^{94} e^{-\delta_j^2}$$

$$(\delta) = N_c^0 \cdot \prod_{k=1}^2 (1 + K_k)^{\delta_k} \cdot f_I^0 \cdot \frac{1}{F(\delta)} \prod_{j=3}^4 p_{I,j}(\delta_j) \cdot (1 + \epsilon_I)^{\delta_I}$$

Experimental likelihood

Now we can write the likelihood for this search as follows;

$$L(\mu, \boldsymbol{\delta})\pi(\boldsymbol{\delta}) = \prod_{I=1}^{90} P(n_I^{\text{obs}}|\mu \cdot (n_{s,I}) + n_{b,I}(\boldsymbol{\delta})) \cdot \prod_{j=1}^{94} e^{-\delta_j^2}$$

$$n_{b,I}(\boldsymbol{\delta}) = N_c^0 \cdot \prod_{k=1}^2 (1 + K_k)^{\delta_k} \left(f_I^0 \right) \frac{1}{F(\boldsymbol{\delta})} \prod_{j=3}^4 p_{I,j}(\delta_j) \cdot (1 + \epsilon_I)^{\delta_I}$$

Specifying these terms with this generic form means the full likelihood can be communicated as plain text!

A lot of physicists' time working on an LHC search is spent on these!

Re-parameterize the backgrounds

We can generate pseudo-experiments for $n_{b,l}$ since we know $p(\delta) := \pi(\delta) \sim e^{-\frac{1}{2}\delta \cdot \delta}$ Use randomly sampled $\pmb{\delta}'$ and $\hat{n}_I = n_{b,I}(\pmb{\delta}')$ to determine the distribution of the backgrounds...

0.18

In some bins, distributions looks symmetric and Gaussian → can be described by 2 moments (mean and variance)

Re-parameterize the backgrounds

We can generate pseudo-experiments for $n_{b,I}$ since we know $p(\boldsymbol{\delta}) := \pi(\delta) \sim e^{-\frac{1}{2}\boldsymbol{\delta}\cdot\boldsymbol{\delta}}$ Use randomly sampled $\boldsymbol{\delta}'$ and $\hat{n}_I = n_{b,I}(\boldsymbol{\delta}')$ to determine the distribution of the backgrounds...

In other cases however, distributions are very asymmetric

- \rightarrow Skewness (γ) provides a measure of asymmetry
- \rightarrow 3rd moment relevant for describing backgrounds

$$\gamma = rac{m_3}{(m_2)^{rac{3}{2}}}$$

Simplifying the likelihood?

For statistical (re-) interpretation purposes we eliminate nuisance parameters (δ)

ightarrow We are mainly interested in profiled / marginalized likelihoods $L(\mu, \pmb{\delta})
ightarrow L(\mu)$

Since the "backgrounds" are only dependent on the nuisance parameters, we can approximate in such a way that the profiled (or marginal) likelihood is preserved as follows [1];

1. Express $n_{b,l}$ as a simple expansion (quadratic) in terms of combined nuisance parameters θ_l

$$n_{b,I} \simeq a_I + b_I \theta_I + c_I \theta_I^2$$
 I=1...90

[1] A. Buckley, M. Citron, S. Fichet, S. Kraml, W. Waltenberger, NW J. High Energ. Phys. 2019, 64 (2019)

* We can restore $\mu \cdot n_{s,I} \to n_{s,I}(\alpha)$ if needed, but for this toy we keep μ

Simplifying the likelihood?

For statistical (re-) interpretation purposes we eliminate nuisance parameters (δ)

o We are mainly interested in profiled / marginalized likelihoods $L(\mu, oldsymbol{\delta}) o L(\mu)$

Since the "backgrounds" are only dependent on the nuisance parameters, we can approximate in such a way that the profiled (or marginal) likelihood is preserved as follows [1];

- 1. Express $n_{b,l}$ as a simple expansion (quadratic) in terms of
- combined nuisance parameters θ_l

$$n_{b,I} \simeq a_I + b_I \theta_I + c_I \theta_I^2$$
 I=1...90

2. Re-parameterize likelihood in terms of μ^* and $\theta_l \rightarrow$ Need to derive $\pi(9)$!

$$L(\mu, \boldsymbol{\delta})\pi(\boldsymbol{\delta}) \to L(\mu, \boldsymbol{\theta})\pi(\boldsymbol{\theta}) = \prod_{I=1}^{P=90} P(n_I^{\text{obs}}|\mu \cdot n_{s,I} + a_I + b_I\theta_I + c_I\theta_I^2) \cdot \frac{1}{\sqrt{(2\pi)^P}} e^{-\frac{1}{2}\boldsymbol{\theta}^T\boldsymbol{\rho}^{-1}\boldsymbol{\theta}}$$

$$P(x|y) = \text{Poisson probability as before}$$
 These are the same as the full likelihood

[1] A. Buckley, M. Citron, S. Fichet, S. Kraml, W. Waltenberger, **NW** J. High Energ. Phys. **2019**, 64 (2019)

* We can restore $\ \mu \cdot n_{s,I} o n_{s,I}(m{lpha}) \$ if needed, but for this toy we keep μ

Nearly done with the formulae...

Coefficients obtained by matching moments and appealing to CLT at NLO.

Coefficients a, b and c are determined from the first 3 central moments of the joint distributions of $n_{b,l}$ - Mean, covariance **and skew**

Solutions valid for
$$\frac{8(m_{2,II})^3}{(m_{3,I})^2} \ge 1$$

$$c_{I} = -\operatorname{sign}(m_{3,I}) \sqrt{2m_{2,II}} \cos \left(\frac{4\pi}{3} + \frac{1}{3}\arctan\left(\sqrt{8\frac{m_{2,II}^{3}}{m_{3,I}^{2}}} - 1\right)\right)$$

$$b_I = \sqrt{m_{2,II} - 2c_I^2},$$

$$a_I = m_{1,I} - c_I,$$

$$\rho_{IJ} = \frac{1}{4c_I c_J} \left(\sqrt{(b_I b_J)^2 + 8c_I c_J m_{2,IJ}} - b_I b_J \right).$$

Nearly done with the formulae...

Coefficients obtained by matching moments and appealing to CLT at NLO.

Coefficients a, b and c are determined from the first 3 central moments of the joint distributions of $n_{b,l}$ - Mean, covariance **and skew**

Solutions valid for
$$\frac{8(m_{2,II})^3}{(m_{3,I})^2} \ge 1$$

$$c_{I} = -\operatorname{sign}(m_{3,I}) \sqrt{2m_{2,II}} \cos \left(\frac{4\pi}{3} + \frac{1}{3}\arctan\left(\sqrt{8\frac{m_{2,II}^{3}}{m_{3,I}^{2}}} - 1\right)\right)$$

$$egin{aligned} b_I &= \sqrt{m_{2,II} - 2c_I^2} \,, \ a_I &= m_{1,I} - c_I \,, \end{aligned}$$

$$\rho_{IJ} = \frac{1}{4c_I c_J} \left(\sqrt{(b_I b_J)^2 + 8c_I c_J m_{2,IJ}} - b_I b_J \right) .$$

Moments can be calculated analytically or (my preference) using pseudo experiments

$$egin{align} m_{1,I} &= \mathbf{E}[\hat{n}_I] \ m_{2,IJ} &= \mathbf{E}[(\hat{n}_I - \mathbf{E}[\hat{n}_I])(\hat{n}_J - \mathbf{E}[\hat{n}_J])] \ m_{3,I} &= \mathbf{E}[(\hat{n}_I - \mathbf{E}[\hat{n}_I])^3] \ \end{pmatrix}$$

These quantities are the inputs needed to determine the simplified likelihood

<u>Convergence of moment calculation</u> <u>with pseudo-data</u>

 3^{rd} Moment typically requires most toys to get accurate value, however this is mostly true when m_3 is small and therefore not so relevant!

How well does this approximate the distribution of n₁?

We can compare the distribution of $\,\hat{n}_{I}\,$ obtained in the pseudo-data from

A.
$$\hat{n}_I = n_{b,I}(\pmb{\delta}')$$
 generating from $\ p(\pmb{\delta}) := \pi(\delta) \sim e^{-\frac{1}{2}\pmb{\delta}\cdot\pmb{\delta}}$

B.
$$\hat{n}_I=n_{b,I}(\theta_I')$$
 generating from $\ p(\pmb{\theta})\sim e^{-\frac{1}{2}\pmb{\theta}^T\rho^{-1}\pmb{\theta}}$

How well does this approximate the distribution of n₁?

*X*₆₂

 X_4

*X*₇

*X*₃₁

*approach as in CMS-NOTE-2017-001, and K. Cranmer, S. Kreiss, D. López-Val, T. Plehn, PhysRevD 91 054032

Nicholas Wardle

X₈₆

How well does this approximate the distribution of n₁?

*X*31

*X*₆₂

X₈₆

In C, there is a further simplification that $m_{3,l}$ is o. In this case, the expressions simplify to*

$$n_{b,I}(\theta_I) = A_I + B_I \theta_I$$

$$p(\boldsymbol{\theta}) \sim e^{-\frac{1}{2}\boldsymbol{\theta}^T \boldsymbol{v}^{-1} \boldsymbol{\theta}}$$

$$A_I = m_{1,I}, \ B_I = m_{2,II}, \ v_{IJ} = m_{2,IJ}$$

When $m_{3,I}/(m_{2,II})^{\frac{3}{2}}$ (the skew) is small, the linear approximation is fairly good, as expected.

 X_4

*X*₇

^{*}approach as in CMS-NOTE-2017-001, and K. Cranmer, S. Kreiss, D. López-Val, T. Plehn, PhysRevD 91 054032

Get to the punchline already Nick ...

Eliminating nuisance parameters (δ or θ) indicates how accurately we can reproduce statistical interpretations.

e.g. the profiled likelihood ratio test-statistic* is used to set limits on new physics processes at the LHC

$$t_{\mu} = -2\ln\frac{L_{\rm S}^{\rm max}(\mu)}{L_{\rm S}^{\rm max}}$$

$$L_{\mathrm{S}}^{\mathrm{max}}(\mu) = \max_{\theta_{\mathrm{I}}} \left\{ L_{\mathrm{S}}(\mu, \boldsymbol{\theta}) \right\}$$

Inputs for toy search uploaded to HepData

Public scipy-based code to calculate SL coefficients and run statistical tests on <u>GitLab</u>

*No reason why we couldn't have marginalised the likelihood to compare Bayesian posterior distributions instead of profiling.

Discussion

Can we implement this in phHF simplification routines?

Some things to mull over

- → One only needs to calculate moments in different signal region bins : use MC (as we do in CMS) or propagate directly and use logL derivatives?
- → Signal region vs control regions: For simplification, assume only interested in signal region (control data summarized also in covariance/skews)
- → If using CRs and not including in procedure, ideally use post-fit estimates for generating the toys (include CRs in fit but not SRs to avoid double counting!)

Backup slides

Simplified likelihood log-likelihood

$$\ln(L_{S}(\mu, \boldsymbol{\theta})\pi(\boldsymbol{\theta})) = \sum_{I}^{P} \left[n_{I}^{\text{obs}} \ln(\mu n_{s,I} + n_{b,I}(\boldsymbol{\theta})) - (\mu n_{s,I} + n_{b,I}(\boldsymbol{\theta})) - n_{I}^{\text{obs}}! \right] - \frac{1}{2} \boldsymbol{\theta}^{T} \boldsymbol{\rho}^{-1} \boldsymbol{\theta} - \frac{P}{2} \ln 2\pi$$
(B.1)

$$\frac{\partial \ln L_{\rm S}}{\partial \mu} = \sum_{I}^{P} \left(\frac{n_I^{\rm obs}}{\mu n_{s,I} + n_{b,I}(\boldsymbol{\theta})} - 1 \right) \cdot n_{s,I}$$
(B.2)

$$\frac{\partial \ln L_{\rm S}}{\partial \theta_A} = \left(\frac{n_A^{\rm obs}}{\mu n_{s,A} + n_{b,A}(\boldsymbol{\theta})} - 1\right) \cdot \left(b_A + 2c_A \theta_A\right) - \sum_{I}^{P} \rho_{AI}^{-1} \theta_I , \qquad (B.3)$$

Analytic simplified likelihood coefficients

$$\begin{split} a_I &= n_I^0 \left(1 + \operatorname{tr} \Delta_{2,I} - \frac{1}{6} \sum_{i=1}^N \gamma_i (\Delta_{1,I,i})^3 + O(\Delta^4) \right) \,, \\ b_I &= a_I \left(\Delta_{1,I}^{\mathrm{T}} . \Delta_{1,I} + 2 \sum_{i=1}^N \gamma_i \Delta_{1,I,i} \Delta_{2,I,i} + O(\Delta^4) \right)^{1/2} \,, \\ \rho_{IJ} &= \frac{a_I a_J}{b_I b_J} \left(\Delta_{1,I}^{\mathrm{T}} . \Delta_{1,J} + \sum_{i=1}^N \gamma_i (\Delta_{1,I,i} \Delta_{2,J,i} + \Delta_{1,J,i} \Delta_{2,I,i}) \right) + O(\Delta^4) \,, \\ c_I &= \frac{a_I}{6} \sum_{i=1}^N \gamma_i (\Delta_{1,i})^3 + O(\Delta^4) \,, \end{split}$$

Corrections to correlations

NSL definition of correlation modified due to skew term

Ratio of pIJ to linear correlation shows up to 15% correction in toy model

SL approximation for a log-normal

Figure 1. The log normal PDFs and corresponding normal approximations for $\sigma = 0.1$, 0.3 and 0.45 are shown in blue, cyan and purple respectively. Solid curves show the true distributions, dashed curves show the approximate distributions.