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Common choices for searches at the LHC

General form* for our experimental likelihood b
; L(e, 8)m(8) = [] Pr(ns"

(for measurements, searches...)is

(e, 5))7r(5)

Where o are the “parameters of interest” (mass of a new hypothetical particle, cross-section for some new
process ...) and & are the “nuisance parameters”.

[1] G. Cowan, K. Cranmer, E. Gross, O. Vitells Eur.Phys.J.C71:1554,2011 * For Bayesian approaches 7T(5) — 7T(C¥, 6)
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Common choices for searches at the LHC

(for measurements, searches...)is

General form* for our experimental likelihood L(a, 5)7'('(5) _ H Pr (n(;bs nI(a’ 5)) 71.(6)

Where o are the “parameters of interest” (mass of a new hypothetical particle, cross-section for some new
process ...) and & are the “nuisance parameters”.

At the LHC, the profiled likelihood ratio test statistic is
& = [l | the most common choice [1] = one parameter of
interest u — common multiplier for total signal yield

[1] G. Cowan, K. Cranmer, E. Gross, O. Vitells Eur.Phys.J.C71:1554,2011 * For Bayesian approaches 7T(5) — ﬂ-(a7 5)
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Common choices for searches at the LHC

General form* for our experimental likelihood obs
(for measurements, searches ...)is L(aa 5)7‘-(5) — I I Pr (nI

(e, 5)) (&)

Where a are the “parameters of interest” (mass of a new hypothetical particle, cross-section for some new
)
process ) and & are the “nuisance paran eters”.

At the LHC, the profiled likelihood ratio test statistic is
& = [l | the most common choice [1] = one parameter of
interest u — common multiplier for total signal yield

nr(p,8) = 1 - Z N, 1 + Z Ny, 1(8) — p1 - ng 1 +np 7(8)| Sum over the signals / background contributions
sigs bkgs

A" | Often use binned likelihood = Pr(.) are Poisson

Pr(n|\) = He_ probabilities

[1] G. Cowan, K. Cranmer, E. Gross, O. Vitells Eur.Phys.J.C71:1554,2011 * For Bayesian approaCheS 7T(5) — ﬂ-(a7 5)
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Common choices for searches at the LHC

General form* for our experimental likelihood obs
(for measurements, searches ...)is L(aa 5)7.‘-(5) — I I Pr (nI

(e, 5)) (&)

Where a are the “parameters of interest” (mass of a new hypothetical particle, cross-section for some new
)
process ) and & are the “nuisance paran eters”.

At the LHC, the profiled likelihood ratio test statistic is
& = [l | the most common choice [1] = one parameter of
interest u — common multiplier for total signal yield

nr(p,8) = 1 - Z N, 1 + Z Ny, 1(8) — p1 - ng 1 +np 7(8)| Sum over the signals / background contributions

sigs bkgs
p A\ A" _ | Often use binned likelihood - Pr(.) are Poisson
r(n|A) = ol € probabilities
5 Nuisance parameter priors and/or “in-
7T( ) situ” measurements of &
[1] G. Cowan, K. Cranmer, E. Gross, O. Vitells Eur.Phys.J.C71:1554,2011 * For Bayesian approaches 7T(5) — ﬂ-(aa 5)
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Toy search for new physics

Category 1 N =1006.50 7, (eff.) 72 (s.f.) Category 2 N =256.40 500 (eff) T (s.f) Category 3 N =52.60 "o (eff) "2 (s.f)
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Imagine a (rather simplified) model inspired by a typical search for some Supersymmetric particle or exotic signature.

* There s a single source of background (can also think of this as the sum of all backgrounds)
* The data (observations) are divided into regions we have;

* 3 categories for the data = each category has 30 bins

* Increasing S/B with bin-number, within each category
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Toy search for new physics

Category 1 N =1006.50 > (eff.) *'°% (s.f.) Category 2 N =256.40 5o (eff.) 2% (s.f.) Category 3 N =52.60 o, (eff) 72 (s.f.)

-54.12 -26.11 -39.01

e X Observed data

-
(@}
N

Nominal background (= stat unc.)

Number of events

—_
o

New physics signal
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There are two uncertainties (labelled “efficiency” and “scale-factor’”) on the background yields (N), and each bin has an
uncertainty which is uncorrelated between bins (e.g this could be from limited Monte Carlo statistics used to estimate n))
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Toy search for new physics

+43.50 +13.50 +18.60 +31.10 +7.40 -12.60
Category 1 N =1006.50 ,,, (eff.) ey (s.f.) Category 2 N =256.40 ., (eff.) 3001 (s.f.) Category 3 N =52.60 _;, (eff.) 690 (s.f.)

X Observed data
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————— Theory uncertainty up/down

Number of events

10
New physics signal

rrl—r;fw: : m
N I e s e e I o B N I v I v N Y I v A A
O

I
TANTDONODOT AN FLOONODNOT AN IO ONODOTAM FLOON 0 AN 0O © O AMTOONORNOT N
FFFFFFFFFF RN I N S R e L e R e e Y ITINQ LLHV WV OWOO G

| IIIIII|
x
ii'x
X
X

4

There are two uncertainties (labelled “efficiency” and “scale-factor’”) on the background yields (N), and each bin has an
uncertainty which is uncorrelated between bins (e.g this could be from limited Monte Carlo statistics used to estimate n))

Another two uncertainties correlated between bins (“energy scale” and “theory” uncertainty)

In total this means 94 nuisance parameters
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Toy search for new physics

Think of the expected number of background eventsin a
given bin I, as the fraction of events in that bin (f;) multiplied
by the total number of events (N)

+++++
-54.12

Category 1 N =1006.50 (eff) 0o% (s.1.) Category 2 N =256.40 Lo (eff) o7 (s.f.) Category 3 N =52.60 "y, (eff) 12 (s.f)

Observed data

Nominal background (+ stat unc.)

Energy scale up/down

Number of events

————— Theory uncertainty up/down

New physics signal

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

0 are nuisance parameters representing
independent sources of uncertainty (in our
case 94 of them) nr(d) = f1(6)N(9)
0 5. Uncertainties in the normalisation (N)
N(d)=N"- H(l + K;)" «—— typically follow log-normals
J
Similarly for un-correlated bin-by-bin
ny (5) 5. uncertainties
9 _[a+ep|
ny ] K;and g;; represent the relative size and
direction of the uncertainty
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. = 2.5f
Toy search for new physics g_ [
X 2
The effects of correlated systematic uncertainties on n,are ) [ '
modelled using quadratic(linear) interpo(extrapo)lation —~ Nominal
function Dl ¥
: \
1 =
_ 40 c 1
f1(8) = fr - 703) [ [»:505) S
(9) J -
= 05
- Alternates
F(8) = 52, /1(6) _ ‘
% "4 3 2 1 0 1 2 3 4 5
o)
1
—(5 (0 — Drp; — (65 —1)(6; +1) + 563-((5]- + l)li_;j for [§;] < 1
-1 N | 1 N
i 1 | 1
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Experimental likelihood

Now we can write the likelihood for this search as follows;

90 94
L(, 8)r(8) = [] Pl - s s +> e
=1 / j=1
/2
np,1(6) = N, H(l + Kj)% le,g (1+ep)™

Nicholas Wardle
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Experimental likelihood

Now we can write the likelihood for this search as follows;

L(p, 8)m HP () 0,1 (8)) He_532'
np,1(0) ZOﬁ @ ‘F ﬁ‘( ) - (1+(ep)”

Specifying these terms with this generic form means the full likelihood can be communicated as plain text!

A lot of physicists’ time working on an LHC search is spent on these!

Nicholas Wardle
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Re-parameterize the backgrounds

We can generate pseudo-experiments for ny, since we know p(§) := 7(§) ~ o~ 300

Use randomly sampled §’and 7,; = n, 1(5’) to determine the distribution of the

backgrounds...
Category 1 N =1006.50 ;2 (eff) _‘2‘:"5"’ (s.) Category 2 N =256.40 .77 (eff) :9‘ o':’ (s.t) Category 3 N =52.60 s, (eff) ;f':“ (s.t)
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New physics signal
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Bin index

In some bins, distributions looks symmetric and Gaussian
—> can be described by 2 moments (mean and variance)
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Re-parameterize the backgrounds

We can generate pseudo-experiments for n,, since we know p(§) := 7(5) ~ o300
Use randomly sampled §’and 7,; = n, 1(5’) to determine the distribution of the

Category 1 N =1006.50 ., (eff) """ (s.1) Category 2 N =256.40 )7 (eff) 7' (s.£) Category 3 N =52.60 7 (eft) 1° " (1)

x Observed data

Energy scale up/down

I TTTTm

Number of events

Theory uncertainty up/down

New physics signal
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Nominal background (= stat unc.)

0 e v | ) v v o A | ) A v

T O D R R R R N R R B B I s R T Y I SNy By R R e B R B Y B B BB BR RN LR R8BI 85 R88
Bin index
In other cases however, distributions are very asymmetric ms

—> Skewness (y) provides a measure of asymmetry —
- 3¥ moment relevant for describing backgrounds
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Simplifying the likelihood?

For statistical (re-) interpretation purposes we eliminate nuisance parameters (9)
- We are mainly interested in profiled / marginalized likelihoods L(u, d) — L(u)

Since the “backgrounds’ are only dependent on the nuisance parameters, we can approximate in such a
way that the profiled (or marginal) likelihood is preserved as follows [1];

1. Express ny,as a simple expansion (quadratic) in terms of

bined nui ters 9
combined nuisance parameters 9, np.1 ~ a7 + 5191 + CIQ% [=1...90

[1] A. Buckley, M. Citron, S. Fichet, S. Kraml, W.
Waltenberger, NW J. High Energ. Phys. 2019, 64 (2019) *We canrestore (- Ns 1 — Ng (@) if needed, but for this toy we keep u
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Simplifying the likelihood?

For statistical (re-) interpretation purposes we eliminate nuisance parameters (9)
- We are mainly interested in profiled / marginalized likelihoods L(u, d) — L(u)

Since the “backgrounds” are only dependent on the nuisance parameters, we can approximate in such a
way that the profiled (or marginal) likelihood is preserved as follows [1];

1. Express ny,as a simple expansion (quadratic) in terms of

bined nui ters 9
combined nuisance parameters 9, np.1 ~ a7 + 5191 + CIQ% [=1...90

2. Re-parameterize likelihood in terms of u* and 9,> Need to derive (9)!

P=90
1 17T —1
L(p, 8)w(6) = L(p, 0) H P(nS |- ne 1+ ag + b0 + c10?) - e 20 P 0

\ e
Vo pI,J:PJ,IJ

P(x|y) = Poisson probability as before These are the same as
the full likelihood

[1] A. Buckley, M. Citron, S. Fichet, S. Kraml, W.
Waltenberger, NW J. High Energ. Phys. 2019, 64 (2019) *We canrestore (- Ns 1 — Ng (@) if needed, but for this toy we keep u
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Nearly done with the formulae...

Coefficients obtained by matching moments o dr 1
c;y = —sign(ms ) /2m cos| — + - arctan
and appealing to CLT at NLO. I gn(ms,r) 21 3 3
.. : 2

Coefflaents a, b and c are determlpgd from by = \/mQ,II — 27,
the first 3 central moments of the joint
distributions of n,,, - Mean, covariance and ar = myr—Cr,
skew 1 5

8(ma.11)° Iy = (\/(bIbJ) + 8creymo 1y — bIbJ) :
Solutions valid for 5 > 1 I=J

(ms,r)

Nicholas Wardle
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Nearly done with the formulae...

Coefficients obtained by matching moments - dr 1 Ma, 11
c;y = —sign(ms ) /2m cos| — + - arctan 8
and appealing to CLT at NLO. I gn(ms,r) 21 3 3 mg 7
.. : 2
Coefflaents a, b and c are determlr.we.d from by = \/mz,II — 27,
the first 3 central moments of the joint
distributions of n,,, - Mean, covariance and ar = myr—Cr,
skew 1
3 = bibs)° +8 — byb
8(m2,1[) PI] = 4 (brby)” +8creymg ;s —brby |
Solutions valid for 5 > 1 I=J
(ms,1)

Moments can be calculated analytically or (my preference) using pseudo experiments

my 1|= E[n]
o ) A A Th titi the inbut
aas|= Bl ~ B, )] R
(H A 113 simplified likelihood
mg 1|= E[(2; — E[n/])’]

Nicholas Wardle
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Convergence of moment calculation

with pseudo-data

Fractional RMS i

O"l L ®. e, e

- Bin 4
- Bin 62
-»-Bin 86

10*

1

05

Number of pseudo-datasets

319 Moment typically requires most toys to get accurate value, however this is mostly true

Fractional RMS in bI

0.2¢
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0.16}
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0.12}

0.1
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1
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I R
0 10* 10°

Number of pseudo-datasets

when ms is small and therefore not so relevant!

Fractional RMS in C,

o
Tlm

0.5
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o
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10°

Number of pseudo-datasets
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How well does this approximate the distribution of n;?

We can compare the distribution of 727 obtained in the pseudo-data from

g / — A(full
9 likelihood)
- =3
g ___ B (simplified
5 E likelihood)
< a
* ---  C(linear SL, Pl
explainitin
1 the next slide)
n,

Nicholas Wardle
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How well does this approximate the distribution of n;2

1 D h istog rams Category 1 N =1006.50 0, (eff) o= (s.f) Category 2 N =256.40 577 (6ff) 50 (s.£.) Category 3 N =5260 0 (eff) 15 (s
1 1 x Observed data
—— A (full likelihood . |
I:l TI"U e ( u I e l O O x : : - Nominal background (= stat unc.)
l:] Sy m m z X Energy scale up/down
X x
X
x

77777 Theory uncertainty up/down

Number of events

1 Asymm —— B (simplified likelihood)

New physics signal

2D correlations === C (Imear SL)

%  True pdf max 885833
---= Symm pdf
—— Asymm pdf

X7

LY
5

X62
l@
\

\
I@
{

\

A\

®

X86

B =N =0 N P
/ N 8 \ ) > . 1
( \1 ( \I 1 \ ,’/ /II
il = Lt e 34
X4 X7 X31 X62 X86 *approach as in CMS-NOTE-2017-001, and K. Cranmer, S. Kreiss, D. Lépez-Val, T. Plehn, PhysRevD 91 054032
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How well does this approximate the distribution of n;2

1 True
L1 Symm
L1 Asymm

X7

1D histog rams Category 1 N =1006.50 oy (eff) 1o (s.f) Category 2 N =256.40 [0 (eff) 50 (s.f) Category 3 N =5260 00 (eff) 2% (s1)
[2]
. . € x  Observed dat
— A (fU” IlkellhOOd) é 10° x No::::ba:k:round(:stalunc.)
g o . Energy scale up/down
—— B (simplified likelihood) = x e vyt
1 xx F i _»x jx =F I - x
. x B "' x x; X _ XX X 2% X XX BX X _ |
_ —== C(linear SL) 1 ‘ g L e ™Y,
2D correlations
%  True pdf max e R BRI RN B0 S5 85Y - ¥ T4 PRET RO DABF L BBEL BETBELBER R NRRNRRESTEIERBES
-=-= Symm pdf
—— Asymm pdf In C, there is a further simplification that m; is 0. In this case, the

expressions simplify to*

LY

ny 1(0r) = Ar + Br6;

p(g) N 6—%0Tv_10

X62
'O
\ )
\

Ar=my 1, Br =mao 1, V15 =ma 1y

3
When mg /(Mg 17)? (the skew) is small, the linear
21 . @ X approximation is fairly good, as expected.
Xa X7 X31 X62 X386 *approach as in CMS-NOTE-2017-001, and K. Cranmer, S. Kreiss, D. Lépez-Val, T. Plehn, PhysRevD 91 054032
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Get to the punchline already Nick ...

Eliminating nuisance parameters (8 or 0) indicates how @ ;
—— Full likelihood

accurately we can reproduce statistical interpretations. o | == Simplified likelihood (ms, =0, mz.1;=0)

. . . . e ie w e —-== Simplified likelihood (m3 ;= 0)
e.g. the profiled likelihood ratio test-statistic* is used | ——- Simpiified likelihood > /

to set limits on new physics processes at the LHC
max
Ls™ (1)
Lma.x
S

L™ (u) = maxg {Ls(u,6)}

t, = —21n

Inputs for toy search
@ HEPData uploaded to HepData

Public scipy-based code to calculate | éignal strength./.l
@ (Wi SL coefficients and run statistical tests
on GitlLab *No reason why we couldn’t have marginalised the

likelihood to compare Bayesian posterior distributions instead of profiling.
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Discussion

Can we implement this in phHF simplification routines ?

Some things to mull over

—> One only needs to calculate moments in different signal region bins :
use MC (as we do in CMS) or propagate directly and use logL derivatives?

—> Signal region vs control regions : For simplification, assume only
interested in signal region (control data summarized also in co-
variance/skews)

—> If using CRs and not including in procedure, ideally use post-fit

estimates for generating the toys (include CRs in fit but not SRs to avoid
double counting!)




Backup slides
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Simplified likelihood log-likelihood

P
In(Lg(u, 0)m(0)) = Z [’n?bs In (png ;4 np,1(0)) — (pns,r + 16,1(0)) — n?bs!]
I

(B.1)
1 4 P
29 p 0 5 In 27
P obs
8111LS ny
= — 1| -n, B.2
Op ZI: (uns,1+nb,1(9) ) ! e
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Analytic simplified likelihood coefficients

1

N
a; =nj (1 +trAgy — 6 Z%’(Al,f,z')g + 0(A4)) ,
i=1

N 1/2
by =a; (AEI-AI,I + 2 Z STASWRTACY I & O(A4)) :
i—1

N
ara
Pr] = bjbj (AlT,I-Al,J + ) 7i(Ag iy g + AI,J,z‘A2,I,z’)) +0(A%),
i—1
LN
4
cr = FI Z’Yi(A1,z‘)3 +0(A7),

=1

Nicholas Wardle
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Corrections to correlations

rho, /(m, /sar{m, m,,})

—1.1

1.08

1.06

1.04

1.02

0 10 20 30 40 50 60 70 80

NSL definition of correlation modified
due to skew term

Ratio of plJ to linear correlation shows
up to 15% correction in toy model

Nicholas Wardle
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SL approximation for a log-normal

w
°o
—
—~
——
=
8
|
=
~—

g=0.1 To+/ 2T 20°

N ¢
(3}
T T T T T

N
o
L B B

LogNormal PDFs
> &

o
(3]
L L

o
o
L L

Figure 1. The log normal PDFs and corresponding normal approximations for ¢ = 0.1, 0.3 and
0.45 are shown in blue, cyan and purple respectively. Solid curves show the true distributions,
dashed curves show the approximate distributions.
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