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Simplified Statistical Models

• Accurate reinterpretations and global combination need the full measurement PDF, or a very good approximation

• Currently, often rely on covariance matrices for the total uncertainty only – suboptimal in several ways

– No description of non-Gaussian effects (important in tails, e.g. for EFT)

– No uncertainty breakdowns  no way to correlate systematics across measurements⇒

• Effort by experiments to publish the full measurement PDF (pyhf, combine) finally gathering steam:

 ⊕ HistFactory description includes non-Gaussian effects

 ⊕ Independent NPs for systematics: can in principle properly correlate (although not always trivial in practice)

 ⊖ However models sometimes quite large: difficult to handle and long to evaluate

 ⊖ More difficult to tackle unbinned models (need something like RooAbsPdf...)

• Simplified statistical models : retain key features of the full likelihood, going beyond covariance matrices

→ Several approaches: JHEP04 (2019) 064, CMS Note 2017/001, … 

→ This talk: “bottom-up” approach starting from HistFactory workspaces

https://link.springer.com/content/pdf/10.1007/JHEP04(2019)064.pdf
https://cds.cern.ch/record/2242860
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Starting point: the HistFactory description
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Binned likelihood form, with parameters of interest (μ) and nuisance parameters (θ) :

Poisson PDF 

in each bin

Observed 

bin yield

Expected bin yield, function of 

both POIs and NPs.

● Several possible forms: linear, 

exponential, etc.

● Implements correlations 

between bins

NP constraints 

(from auxiliary 

measurements a)

Complete description of binned measurements, but can be quite complex  how to simplify ?⇒
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Linear binned likelihoods

→ Consider only Gaussian constraints

→ Keep full description of bin counting (Poisson PDF) and POIs (μ)

→ Treat NPs (i.e. systematics, among others) at linear order only.
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Linear binned likelihoods

→ Consider only Gaussian constraints

→ Keep full description of bin counting (Poisson PDF) and POIs (μ)

→ Treat NPs (i.e. systematics, among others) at linear order only.
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Linear binned likelihoods

→ Consider only Gaussian constraints

→ Keep full description of bin counting (Poisson PDF) and POIs (μ)

→ Treat NPs (i.e. systematics, among others) at linear order only.
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Fast profiling: with these assumptions, can profile θ in closed form

using linear algebra (least squares) : 
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Linear binned likelihoods

→ Consider only Gaussian constraints

→ Keep full description of bin counting (Poisson PDF) and POIs (μ)

→ Treat NPs (i.e. systematics, among others) at linear order only.

Profiling steps:

● Invert a matrix of size (n
NPs

 × n
NPs

)

● Perform matrix/vector multiplications (np.einsum) 

→ Significantly faster than non-linear minimization

→ Non-linear minimization still performed in POI-space, since POIs treated exactly, but typically smaller dimension.

→ All NPs retained: systematics all included, can correlate across analyses as done within experiments.

→ Linear approximation: good for small systematics (e.g. searches) and systematics that are naturally linear

    (examples later)

→ Similar to approaches in JHEP04 (2019) 064, CMS Note 2017/001, but preserves sample and NP structure

^̂
θ (μ) = [Γ+P(μ)]

−1
[Γ θ

 obs
−Q(μ )]

https://link.springer.com/content/pdf/10.1007/JHEP04(2019)064.pdf
https://cds.cern.ch/record/2242860
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Example: ATLAS Search for trilepton resonances

Analysis published in 2020,  HEPData record include the 

full statistical model in pyhf JSON format

Analysis:

• 3 signal regions with 16 bins each, 3 control regions  51 bins total⇒

• 582 NPs: 3 free background normalizations, 579 systematics NPs 

• Consider a 500 GeV signal, measure μsig  1 POI (⇒ μsig)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-36/
https://www.hepdata.net/record/ins1831992
https://www.hepdata.net/record/resource/2592329?view=true
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Fast profiling implementation

Automatically convert model from pyhf format (linearize pyhf modifiers)

Distributions similar

to the ones in the

published paper:



10

Fast profiling implementation

Perform profile-likelihood scans for μ
sig

 with

1) pyhf (pyhf.infer.mle.fixed_poi_fit) with numpy backend

2) fast profiling code, also using numpy

Fit time:

● 4 min using pyhf,

● ~0.025 sec using fastprof

Absolute times not relevant (pyhf is much faster using better 

backends than numpy!)

Key point is the speedup (>1000) using linearization.

Excellent agreement(*) in the scans!

● No systs: exact by construction (POI effects only)

● With systs: shows small effect of linear approx. 

(*) 8 NPs (of 582) pruned: either very large impacts in some bins (> 100%) or ± 1σ impacts large and same-sign
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Fast profiling implementation

fastprof profiled values for each NP Δ(fastprof-pyhf) profiled values for each NP

Still some somewhat problematic NPs, but good agreement overall parameter-by-parameter

What is the impact of linearization on the low-level profiling mechanics ?

^̂
θ (μ)
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How good is the linear approximation ?

Dependence on POIs is exact, so all depends on effect of NPs. Some possible cases:

• Normalization factor

→ Already linear

• Symmetric Gaussian systematic

→ Already linear

• Asymmetric Gaussian systematic

→ Non-linear if |θ
+
 - θ

-
| large.

• Log-normal systematic

→ Non-linear, approximate linearity for δ
syst

 ≪ 1 

N (μ ,θ) = N nom
(μ) ( 1 + δsystθ )

N (μ ,θ) = θnorm N nom
(μ )

N (μ ,θ) = N nom
(μ) ( 1 + δ+ max(θ ,0) + δ- min (θ ,0) )

N (μ ,θ) = N nom
(μ) ( 1 + δsyst )

θ

Approximation should be good for small systematics, symmetric systematics and 

cases where the systematics are already linear (e.g. normalization factors, BLUE, ...)
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JSON Model description

{

   "model": {

      "name": "trileptons",

      "POIs": [

         {

            "name": "mu_SIG",

            "min_value": 0,

            "max_value": 10,

            "initial_value": 0

         }

      ],

      "NPs": [

         {

            "name": "lumi",

            "nominal_value": 1.0,

            "variation": 1,

            "constraint": 0.017,

            "aux_obs": "aux_lumi"

         },

         {

            "name": "mu_Diboson3l",

            "nominal_value": 1.0,

            "variation": 1

         },

(...other NPs...)

      "channels": [

         {

            "name": "SRFR",

            "type": "binned_range",

            "obs_name": "mZl",

            "obs_unit": "GeV",

            "bins": [

               {

                  "lo_edge": 90,

                  "hi_edge": 110

               },

               {

                  "lo_edge": 110,

                  "hi_edge": 130

               },

              (… other bins...)

               {

                  "lo_edge": 580,

                  "hi_edge": 700

               }

            ],

             "samples": [

               {

                  "name": "gaugino_500",

                  "norm_type": "parameter",

                  "norm": "mu_SIG",

                  "nominal_norm": 1,

                  "nominal_yields": [

                     0.0,

                     0.004717102274298668,

                     0.023676054552197456,

                     0.020949605852365494,

                     0.04523540660738945,

                     0.07067945599555969,

                     0.053064048290252686,

                     0.13616123795509338,

                     0.11419440805912018,

                     0.21818318963050842,

                     0.20385964214801788,

                     0.1761508285999298,

                     0.36816975474357605,

                     0.7275105714797974,

                     13.4906644821167,

                     0.3943091928958893

                  ],

"impacts": {

       "JET_GroupedNP_1": [

                        {

                           "+1": 0.04954936034965152,

                           "-1": -0.058600090987780185

                        },

                        {

                           "+1": 0.028759050612936488,

                           "-1": -0.06616945072658154

                        },

                        {

                           "+1": 0.03683137054692276,

                           "-1": -0.011133278521552992

                        },

       (...other bins...)

                (… other NPs...)

         (… other samples…)

(...other channels...)

YAML also supported, more compact format
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Approximating Unbinned Models

Binned models: just linearize NP impact in each bin

→ Automatic conversion tool for pyhf models

Unbinned models: can defined a binned approximation, for a given fine binning:

● Integrate unbinned distribution in each bin.

● Compute linearized impact of each NP on the integral

For bin width  experimental resolution, should provide a good approximation.≲

Same number of POIs and NPs as the unbinned model.

Many numbers! Need to define (n
bins

 × n
samples

 × n
NPs

) impacts.
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X→γγ Search

Unbinned search for narrow γγ resonances

over a wide mass range.

Asymptotic approximation not valid in the tail

 Need to use toys for limit computations⇒

(not only expected, but also observed!)

Use binned approximation to the likelihood:

250 bins in log(m
γγ

), 11 NPs, 1 POI

Need O(100k) toys for each signal mass point

 ⇒ Tested 500 mass points to get the observed limit, compute limits in toy datasets at O(10-100 Hz)

→ Good agreement with asymptotics at low masses, expected deviations at higher mass.

Same approach seems promising for simplified description of the unbinned H→γγ analysis, but model 

is very large ( O(10000) bins × O(100) NPs × O(100) samples  10⇒ 8 impact values) 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-27/
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X→γγ Search

Unbinned search for narrow γγ resonances

over a wide mass range.

Asymptotic approximation not valid in the tail

 Need to use toys for limit computations⇒

(not only expected, but also observed!)

Use binned approximation to the likelihood:

250 bins in log(m
γγ

), 11 NPs, 1 POI

Need O(100k) toys for each signal mass point

 ⇒ Tested 500 mass points to get the observed limit, compute limits in toy datasets at O(10-100 Hz)

→ Good agreement with asymptotics at low masses, expected deviations at higher mass.

Same approach seems promising for simplified description of the unbinned H→γγ analysis, but model 

is very large ( O(10000) bins × O(100) NPs × O(100) samples  10⇒ 8 impact values) 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-27/
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Outlook

• Fast linear profiling can provide very large speedups (× 10000) compared to non-linear minimization

• Linear NP impacts can provide a good approximation to full likelihoods, especially for small systematics (searches)

• Linear models can be created from HistFactory models (pyhf)  in straightforward way

• Implements arbitrary number of POIs and POI dependence, can reparameterize to other POI sets (e.g. EFT ci)

• Can also be used for “brute-force” (small-bin) description of unbinned PDF, in spite of large n
bins

.

• Complementary to other approaches (different simplified (or not) models can suite different needs…)

Full

PDF

Covariance

Matrix
Simplified Models

More accurate Simpler, faster

You are here

Code available on github (or gitlab for CERN-based users)

To install:  pip install fastprof

Steps to reproduce the trilepton analysis shown here

are available here

https://github.com/fastprof-hep/fastprof
https://gitlab.cern.ch/nberger/fastprof
https://github.com/fastprof-hep/fastprof/blob/master/examples/trileptons.sh
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