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LHC legacy

presentation of physics searches and measurements are usually condensed in plots or tables
long-standing efforts for reducing the tremendous loss of information,

e.g. efficiency parametrization, HEPData, RECAST, etc.

also various discussions and actions on data preservation, open data, public release of experimental
likelihoods

LHC provided us with exceptional high-quality data, which has been scrutinised in countless ways for
looking for new physics and for measuring SM properties

need to ensure legacy for this treasure
https://opendata.cern.ch/docs/about

CERN Open Data Portal
[oocumsniaton | sbou |

The CERN Open Data portal is the access point to a growing range of data produced through the research performed at CERN. It disseminates the
preserved output from various research activities and includes accompanying software and documentation needed to understand and analyse the
data.

The portal adheres to established global standards in data preservation and Open Science: the products are shared under open licenses; they are
issued with a Digital Object Identifier (DOI) to make them citable objects.


https://opendata.cern.ch/docs/about

Experimental likelihoods

likelihoods capture the experimental information of physics analyses

trade-off between information and compression
the proposal in arXiv 1911.03305 is to encode the experimental likelihood with all the dependence on

elementary nuisance parameters into a deep neural-network function

The approach of the proposal allows to
1. encode both binned and unbinned likelihoods
2. re-sample with different priors
3. ease combination of different likelihoods whenever correlations are known
4. adopt different statistical approaches

5. distribute likelihoods with a platform-independent at-large supported format such as ONNX




The DNNLikelihood




Application

DNNLikelihood from the toy LHC-like likelihood considered in JHEP 04 (2019) 064 consisting of 1 physical parameter
(signal strength), 94 non-gaussian nuisance parameters (90 fully uncorrelated, 2 fully correlated, 2 normalisations)

C1: N=1006.5+435/-54.1 (eff.) +13.5/-26.1 (s.f.) C2: N =256.4 +18.6 /-29.1 (eff.) +31.1/-39.0 (sf.) C3: N=526+74/-10.9 (eff.)-126/-9.9 (sf)
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Figure 2. LHC-like search for new physics (mockup). The search is performed across three event categories, each divided into 30 bins to make a
total of 90 search regions. The nominal expected contribution in each bin from the background and from the new physics signal is shown by the
blue and red lines, respectively. The solid and dashed lines show the +1¢ correlated variation in each bin expected due to an experimental and
theoretical uncertainty while the blue shaded band shows the uncorrelated uncertainty in each bin due to limited MC simulation. The “observed”
number of events in data in each bin is indicated by the black points.


https://link.springer.com/article/10.1007/JHEP04(2019)064

Sampling

Likelihood function needs to be sampled for training the DNN. Allowing frequentist and bayesian inference means
sampling accurately in different regions, i. e. close to maxima and where prior volume is large
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Results of bayesian DNNLikelihood
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Results of full DNNLikelihood
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Nevt: 1E05 - Hid Layers: 2 - Nodes: 5000 - Loss: mse

Results of full DNNLikelihood
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DNN approach for flavour likelihood

Samples: test_true vs test_pred
Ny p] tt _p
Ndim: 83 - Ntrain: 1E06 - NLayers: 4 - NNodes: 1000 - Loss: mean_squared_error

I Sample: test_true (4 x 10° points)
I Sample: test_pred (4 x 10° points)
---- 68.27% HPDI

e Example of complicated experimental
likelihood
a.  Noanalytical formulation, multi-modal
dimensions, complex correlation among
nuisance parameters
b.  Obtained from the Bayesian fit in
arXiv:2011.01212
c. 83 parameters, of which 6 parameters
of interest (SMEFT Wilson coefficients)
e NN able to correctly predict the likelihood,
with a 103 / 10* timing improvement

—— 95.45% HPDI
"""" 99.73% HPDI

0 000



https://arxiv.org/abs/2011.01212

The DNNLikelihood Framework

What is this framework useful for?

Encoding the likelihood function

Sampling the likelihood object with an API to the emcee python package
Encoding the DNN-version of the likelihood function

Storing the data for constructing the DNN-version of the likelihood
Managing ensemble of likelihoods for hyper-parameter optimisation
Interfacing with HistFactory class used by ATLAS to encode likelihoods

A suite of routines for performing statistical analysis and producing plots

Full documentation

e http://rtorre.web.cern.ch/rtorre/DNNLikelihood doc/
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http://rtorre.web.cern.ch/rtorre/DNNLikelihood_doc/

Discussion

Further improvements to the methodology
a.  Supervised vs unsupervised DNN approach
b.  Other comments on the bayesian vs frequentist statistical approaches in relation to the NN representation
of the likelihood?
c. NN representation of the full statistical model
Scaling with complexity
a.  Successfully trained real experimental multi-modal flavour likelihood
b.  More complex yet realistic scenarios?
c. Application to unbinned likelihoods
Implementation
a. Beta-version of a framework and related documentation for constructing ensemble of NN likelihoods and
studying their properties is in place
b.  Can this approach be used within experiments as is? And outside such as fitting groups?
12



You are welcome to contact us in case of curiosities

e andrea.coccaro@ge.infn.it
e riccardo.torre@ge.infn.it

Contacts
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