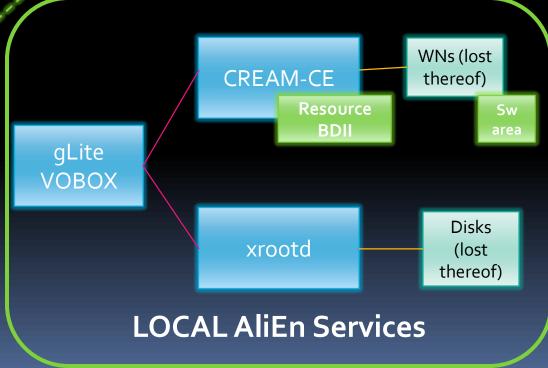
Patricia Méndez Lorenzo (CERN)

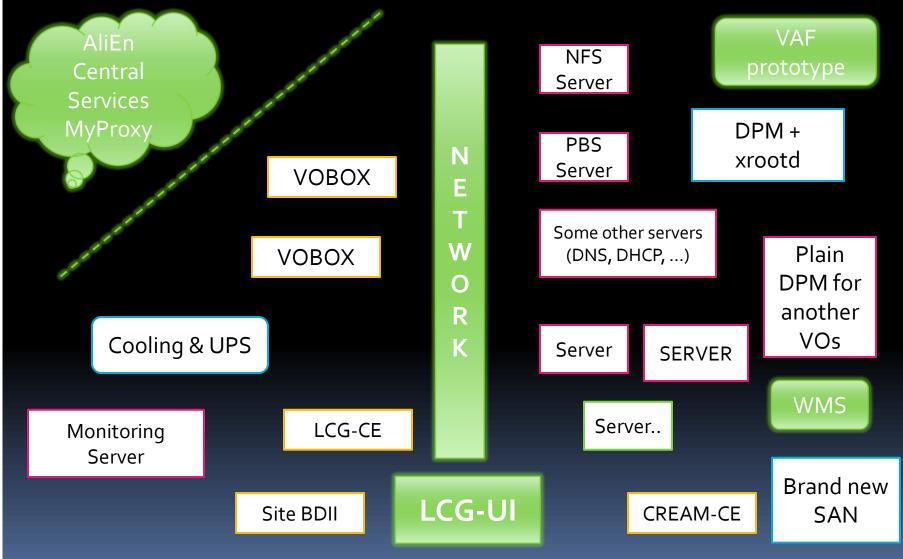
THE ALICE GRID MODEL

Outlook


- Your ALICE site
 - * ALICE Services
 - * Generic Services
- Interoperability
- User Analysis
- Monitoring
- Operations

The ROC_LA

- ALICE clearly supports the creation of a ROC infrastructure and is willing to provide expertise
- The most important aspect to consider: THE NETWORK
- ALICE has established a faithfully communication channel with the Network experts at CERN who are helping the USA and ASIA sites to improve the bandwidth infrastructure with CERN


How I see the ALICE sites

Alien central services (at CERN)

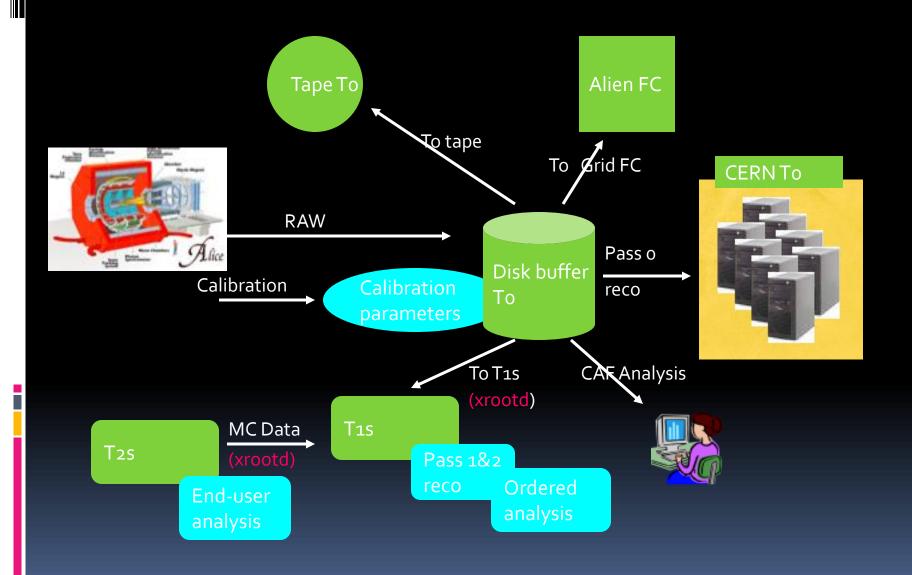
The rest of the talk will concentrate on how I see your site

How you see your site

The ALICE Computing model

From the detector ...

AliEn


- Reconstruction
- Simulation
- Storing data and distribution
- Analysis

... to the physics paper

ALICE submission in 6 points

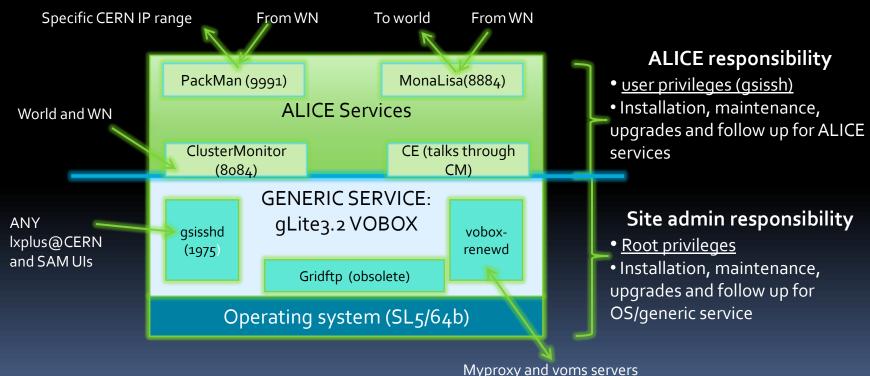
- Job agent infrastructure
 - * Submitted through the Grid infrastructure available at the site
- Real jobs held in a <u>central queue</u> handling priorities and quotas
- Agents submitted to provide a standard environment (job wrapper) across different systems
- Real jobs <u>pulled</u> by the sites
- Automatic operations
- Extensive monitoring

Computing Model - (pp case)

PRINCIPLE OF OPERATION: THE VOBOX

The ALICE VOBOX

ALICE REQUIRES THE GENERIC GLITE 3.2 VOBOX


- Primary service required at every site
 - * Service scope:
 - → Run (local) specific ALICE services
 - + File system access to the experiment software area
 - * Mandatory requirement to enter the production
 - + Independently of the middleware stack available
 - + Same concept valid for gLite, OSG, ARC and generic AliEn sites
- Same setup requirements for all sites
 - * Same behavior for T1 and T2 sites in terms of production
 - ★ Differences between T1 and T2 sites a QoS matter only
 - → Applicable to ALL generic services provided at the sites
- Service related problems should be managed by the site administrators
- Support ensured at CERN for any of the middleware stacks

The gLite3.2 VOBOX

- The gLite-VOBOX is a gLite-UI with 2 added values:
 - 1. Automatic renewal of the user proxy
 - → Needed to ensure a good behavior of the experiment services
 - 2. Direct access to the experiment software area
 - + Access restricted to the voms role: lcgadmin
 - → User mapped to SINGLE local account
 - Unique service not accepting pool accounts
 - * Access to the machine based on a valid voms-aware user proxy

The gLite-VOBOX layers

 70% of the ALICE VOBOXES are running the gLite middleware

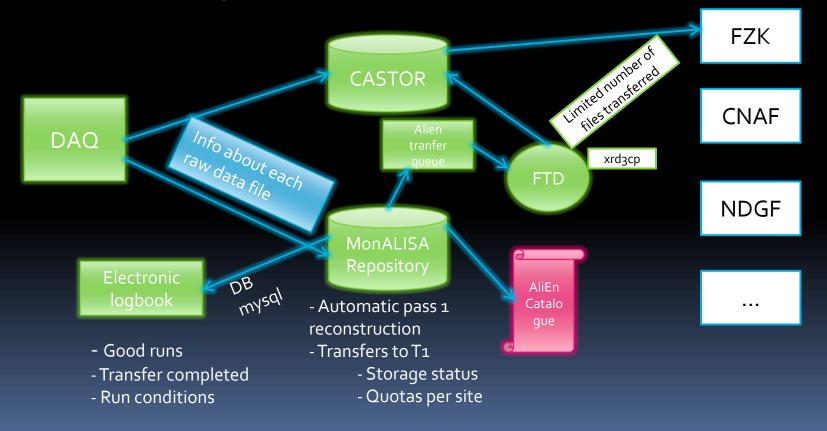
 THE ALICE WORKLOAD MANAGEMENT SYSTEM

ALICE Workload Management System

- The ALICE tendency in the last two years is to minimize the number of services used to submit job agents
 - * Already ensured with ARC, OSG and AliEn native sites
 - * gLite sites can also follow this approach
 - → Through the CREAM-CE system
 - + ALICE is asking for the deployment of this service at all sites since 2008
 - → ALICE has deprecated the gLite₃.X-WMS with the deployment of AliEn v.2.18
 - The WMS submission module still available in AliEn v.2.18
 - ALL ALICE sites have to provide a (at least) CREAM

The CREAM-CE

- 1st experiment to put CREAM-CE in production and provide developers with important feedback
 - ★ 2008 approach: Testing
 - + Testing phase (performance and stability) at FZK
 - * 2009 approach: AliEn implementation and distribution
 - + System available at To, all T1 (but NIKHEF) and several T2 sites
 - Dual submission (LGC-CE and CREAM-CE) at all sites providing CREAM
 - Second VOBOX was required at the sites providing CREAM to ensure the duality approach asked by the WLCG-GDB
 - * 2010 approach: Deprecation of the WMS
 - → At this moment ALL ALICE sites provide at least one CREAM-CE
- ALICE is activelly involved in the operation of the service at all sites together with the site admins and the CREAM-CE developers


 ALICE DATA MANAGEMENT SYSTEM AND RAW DATA TRANSFERS

Data Management system

- Data access and file transfer: via xrootd
 - ★ Data access
 - → To and T1 sites: Interfaced with all supported MSS
 - → T₂ sites: xrootd pure setup (ALICE advice)
 - * File transfer
 - ★ To-T1: raw data transfer for custodial and reconstruction purposes
 - No specific assignments between data and sites
 - ★ T1-T2: reconstructed data and analysis
 (NOTE: T1-T2 assignment not predefined in the ALICE computing model)
- Default behavior: Jobs are sent where data are physically stored
 - External files can be locally copied or remotely access based on the user decision
 - * Outputs of the jobs locally stored and replicated to (in default) two external sites
 - + Choice based on ML status report of the SE and physical proximity

Raw data transfers

- To-T1 transfers performed via xrootd
 - * 3rd party copy (xrd3cp) enabled
 - + Co-existing with xrdcp

10/8/10

Site connection and interoperability

- Sites connection
 - * Only to the data management level
 - * In terms of job submission and services sites are independent with each other
 - + ALICE computing model foresees same service infrastructure at all sites
 - * ALICE assumes the T1-T2 connection established by the ROC infrastructure for site control and issue escalation
- Interoperability between sites
 - * Defined to the AliEn level
 - + Definition of plug-ins for each middleware stack
 - + Same AliEn setup for all sites

USER LAYER: ANALYSIS

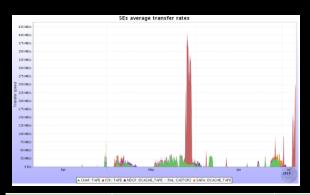
User Analysis (I)

- Analysis trains
 - * Grouping many analysis tasks in a common data set
 - → Allows for better CPU/Wall and reduces load on the storage servers
 - → Pass 1 reconstruction is automatically followed by specific Pilot trains
 - Assess the quality of the run (detector by detector, global tracking and vertex position and stability)
 - → Specific analysis activities required by the physics groups

113.	#!pass1.sh /alice/cern.ch/user/a/alidaq/	/ · · · · · · · · · · · · · · · · · · ·	100 %	alidaq
203.	/alice/cern.ch/user/a/akisiel/PDC09/TAGS/MergeOfficial/analysisMerge.jdl (edit) #OUTPUTDIR#	99%	100 %	alidaq
180.	#.alien.lpm.RawQA 9 /alice/cern.ch/user/a/alidaq/	99%	100 %	alidaq
181.	#.alien.lpm.RawQAMerge	99%	100 %	alidaq
182.	#.alien.lpm.CleanupAfterMerge	100%	100 %	alidaq

- Reconstruction is started as soon as data is registered in CASTOR
- Analysis trains automatically triggered at the end of the reconstruction activities
- •At the end of the analysis, merge and cleanup procedures are executed

User Analysis (II)


- Chaotic analysis
 - * User analysis on the Grid
 - * Internal ALICE prioritization within the common task queue works well
 - + Production user is demoted in favor of users in the queue
 - + Generic pilot jobs assure fast execution of user jobs at the sites

User Analysis (III)

- Fast and interactive analysis in PROOF clusters
 - * Processing of reconstructed data, calibration and alignment
 - → Set of pre-stage files already available at the WNs of the PROOF clusters
 - → Possibility to pre-stage any kind of file required by the users and registered in the AliEn file catalogue
 - + Limitations:
 - Available space in WNs
 - Memory consumption affecting the proof master
 - Very popular system for the users
 - CAF@CERN
 - ★ For the moment unique stable system
 - + 1 proof master and 26 nodes distributed in two sets (3 and 4 disk nodes)
 - GSIAF@GSI, SAF@Subatech, LAF@CCIN2P3
 - Status and development weekly followed during the TF&AF meeting

MONITORING

Examples of MonALISA monitoring information

Raw data transfers

	Transfer requests (man rement)											
ID	Path	Target SE	Status	Progress	Files	Total size	Started	Ended				
325.	alice/data/2010/LHC10b/000115393/collection	ALICE::LBL::SE	Error		366	963.8 GB	07 May 2010 16:23	today 06:22				
324. /	alice/data/2010/OCDB	ALICE::LEGNARO::SE	Running		77074	10.36 GB	03 May 2010 18:24					
323. /	alice/data/2010/LHC10b/000115399/collection	ALICE::RAL::CASTOR2	Done		133	333 GB	30 Apr 2010 09:59	06 May 2010 02:58				
322.	alice/data/2010/LHC10b/000114930/collection	ALICE::NDGF::DCACHE_TAPE	Running		19	35.51 GB	30 Apr 2010 09:01					
321. /	alice/data/2010/LHC10b/000114931/collection	ALICE::FZK::TAPE	Done		95	248.1 GB	30 Apr 2010 09:01	07 May 2010 05:24				
320. /	alice/data/2010/LHC10b/000115056/collection	ALICE::NDGF::DCACHE_TAPE	Running		2	86.03 MB	30 Apr 2010 09:01					
319. /	alice/data/2010/LHC10b/000115165/collection	ALICE::SARA::DCACHE_TAPE	Done		10	1.237 GB	30 Apr 2010 09:01	09 May 2010 19:47				
318. /	alice/data/2010/LHC10b/000115173/collection	ALICE::RAL::CASTOR2	Done		10	1.071 GB	30 Apr 2010 09:01	06 May 2010 02:33				
317. /	alice/data/2010/LHC10b/000115186/collection	ALICE::NDGF::DCACHE_TAPE	Running		40	107.1 GB	30 Apr 2010 09:01					
316. /	alice/data/2010/LHC10b/000115193/collection	ALICE::NDGF::DCACHE_TAPE	Running		90	236 GB	30 Apr 2010 09:01					

				Raw data			Reconstructed				
Production	Description	Status	Run Range	Runs	Runs Chunks Size		Chun	Chunks Size		e	Events
LHC10c(PHOS+EMCAL)	LHC period LHC10c - PHOS+EMCAL calibration	Running	118506 - 121040	56	26,140	68.6 TB	25,938	99%	534.7 GB	0%	109,837,709
LHC10c(3-900GeV)	LHC period LHC10c - Pass 3 (900GeV)	Completed	118503 - 121040	13	2,169	5.55 TB	2,144	98%	367.7 GB	6%	13,424,606
LHC10f	LHC period LHC10f - Pass1	Running	133004 - 133111	11	7,666	19.55 TB	7,335	95%	1.148 TB	6.0%	17,878,423
LHC10e(TPC)	LHC period LHC10e - TPC gain calibration	Completed	127712 - 130621	14	9,143	23.83 TB	9,071	99%	15.91 TB	6.7%	29,100,674
LHC10e	LHC period LHC10e - Pass1	Completed	127102 - 130850	258	114,808	298 TB	113,094	98%	30.81 TB	100%	334,280,328
			<u> </u>	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$		'		

Production status

IN from										
No.	ID	Site	Speed (Mbps)	Hops	RTT (ms)	Streams				
1.	562448	CERN-CREAM	940.23	1	0.18	1				
2.	562443	CERN_LSF	806.47	4	1.34	1				
3.	569063	csc	587.58	5	38.83	1				
4.	566971	DCSC_KU	544.19			1				
5.	561601	CNAF_glexec	319.95	8	20	1				
6.	561085	FZK_CREAM	284.70			1				
7.	567177	CNAF-CREAM	117.68	8	10	1				

001 10									
No.	ID	Site	Speed (Mbps)	Hops	RTT (ms)	Streams			
1.	562475	SARA	947.30			1			
2.	562462	CERN-CREAM	946.22	1	0.20	1			
3.	568258	GRIF_IPNO	934.24			1			
4.	567276	CNAF-CREAM	900.04	8	11.31	1			
5.	564781	NIKHEF	835.28	15	16.81	1			
6.	561287	CERN_LSF	692.56	4	1.64	1			
7.	567943	Kosice	673.30			1			

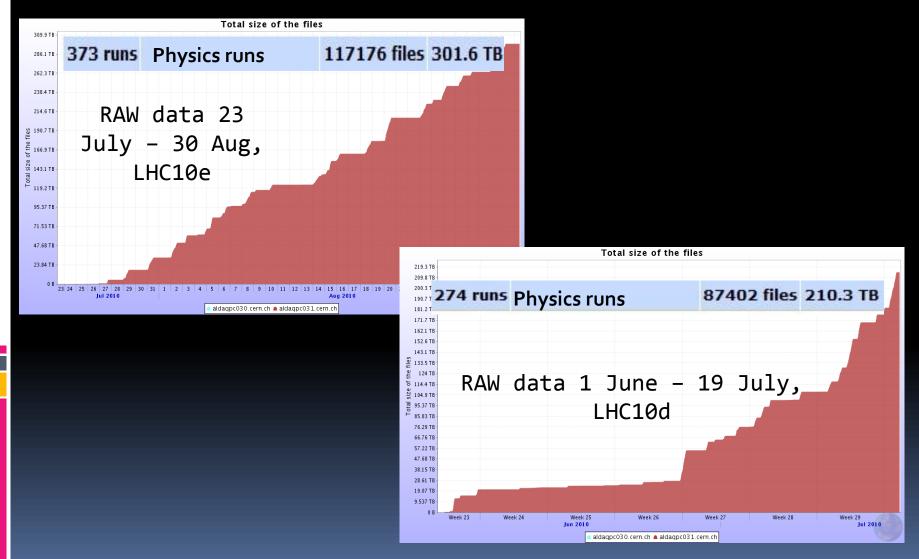
OUT to

Bandwidth per site

MonALISA

- ALICE Grid computing infrastructure is monitored through **MonALISA**
 - Services status (central and site VO-boxes)
 - * Jobs (status, resources consumptions)
 - SEs (status, occupancy)
 - * RAW data transfers (status, rates)
 - WLCG services (through SAM/Nagios)
 - Production status and control
 - * Network
 - * Access to administrative tasks
- More than a monitoring infrastructure
 - * Alarms, services restarts and actions

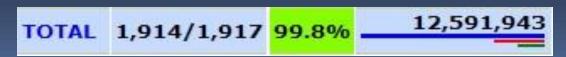
SAM/NAGIOS

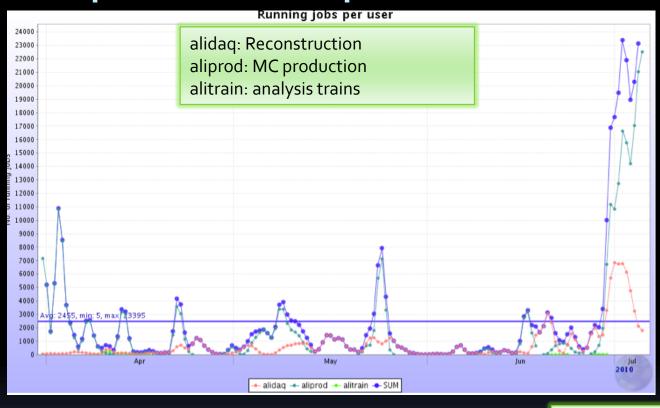

- WLCG generic services monitoring
 - * Critical for site availability/reliability reports
 - * The results are published in MonALISA (in addition to the standard portal)
- The monitoring includes:
 - * Monitoring of the gLite3.2 VOBOXES
 - → Specific ALICE test suite created for SAM and now migrated to Nagios
 - Monitoring of CEs
 - + Standard "ops" test suite
 - Monitoring fully migrated to Nagios (production status)

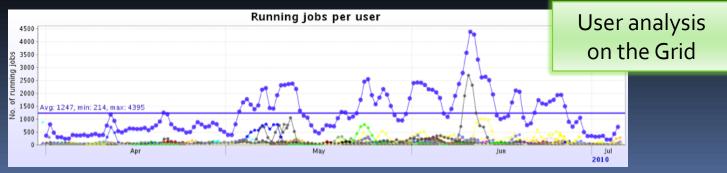
Experiment Dashboard

- Currently used for the monitoring of the raw data transfers
 - Complementary information (in addition to MonALISA rates)
 - In some cases the error messages are cryptic to be improved
- It can also be used to monitor the status of the ALICE real jobs (not the JobAgents)
 - * Jobs need to be instrumented with message infrastructure to talk to Dashboard

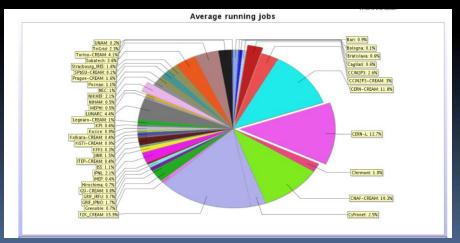
STATUS OF THE OPERATIONS


Status of the operations


Pass1 and Pass2 Processes


- Pass 1 reconstruction
 - Quasi-online, follows the registration of RAW in CASTOR@CERN
 - The data is reconstructed fully ~24 hours after data taking
 - Typical reconstruction efficiency

- Pass2 reconstruction
 - ~1 month after data taking @T1s
 - Updated software, updated conditions
 - Improved detectors calibration from Pass1 reconstruction ESDs (calibration trains)
 - Typical reconstruction efficiency


Job profiles per users

Job profiles per site

More than 50% of the work in ALICE is done by T2

Not really clear what is the difference between T1 and T2 apart from data custodial and better network

Summary

- Two words...
 - * AliEn & MonALISA
- Three mayor services...
 - * VOBOX, CREAM, xrootd
- Your challenge
 - * Bandwidth
- Support and expertise ensured by the ALICE core team
- ALICE always welcome new T2 sites in production
- Current Status
 - * Grid operation is now fairly routine
 - * This has not been easy. This has been a long time effort