

Grid Infrastructure Monitoring

James Casey, CERN, IT-GT-TOM

1st ROC LA Workshop, 6th October 2010

Tools for WLCG Monitoring

- WLCG provides a set of tools for operational monitoring and management
- Aim is to
 - Enable sites to operate a reliable infrastructure
 - Report on the reliability and usage to WLCG users
- Many of the tools developed previously within EGEE/OSG
 - Now operated by EGI.eu, OSG, other NGIs

Tools

- GOCDB
 - Configuration management
- SAM/Nagios
 - Checking the operational status of resources
- Gstat
 - Information system monitoring and reporting
- Gridview
 - Availability/reliability calculation and reporting
- Gridmap
 - High level views of the infrastructure

Tools

- I will talk about most of the previous tools
 - SAM/Nagios, GStat, Gridview, Gridmap
- Other exist too
 - Accounting APEL
 - VO Cards CIC Portal
 - 1st line support Operations Dashboard
- And in OSG
 - OIM, MyOSG, Gratia, ...

Open-source at the core – Avoid NIH!

- All these tools depend on common low-level components
 - Nagios an open-source monitoring system
 - Apache ActiveMQ an open source messaging system
- We many other open-source components when developing these tools
 - Python, Django, Jquery, RRD, Google charts
- A short detour on what they are and why we use them

Nagios

- What is Nagios?
 - open source monitoring framework
 - highly flexible with advanced features
 - widely used & actively developed
- Why do we need it?
 - Many tests need to be scheduled for execution
 - avoid development & maintenance of home-grown tools
 - provide solution that site admins are familiar with
 - Nagios is a standard monitoring component at many sites

Nagios Architecture

- Nagios Core
 - Scheduler: Runs checks at a predefined interval
- Plugins
 - Scripts used to check particular pieces of functionality
- Web interface
- Powerful notification system
 - E-mail, SMS, Pager, ...
- All parts are pluggable and extensible

Nagios Web Interface

Site Nagios – CE Tests

Messaging

- What is a messaging system?
 - Method of communication between applications
 - Standardized, asynchronous and scalable communication between distributed entities
 - Reliable network of brokers that provides guaranteed delivery of messages
 - Messaging is for applications what IM is for people

 Mainly acts as an integration framework between many separate applications

JMS messaging models

Why messaging?

- Why do we need it?
 - Interaction between distributed monitoring components
 - Standard interfaces enables easy integration of monitoring software
 - Scalable
 - Main use-cases are in finance for high message rate (> 1M/sec)reliable multicast e.g. trading floor
 - Reliable
 - Distributed

Messaging is pre-existing grid-scale technology

Implementation details

- FUSE Message Broker
 - based on Apache ActiveMQ
- Good performance characteristics
 - 1K 20K messages per second depending on features used
- Distributed network of 4 brokers, hosted by EGI.eu
 - CERN, Croatia, Greece
 - Provides reliability and locality

Vendor tests

From "Optimizing FUSE Message Broker" - http://open.iona.com/resources/collateral/#whitepapers

CERN openlab tests

Messaging is a key technology for WLCG

- WLCG Experiments are buying into messaging
 - ATLAS DDM
 - Moving to a production messaging service
 - Ganga
 - VO Job monitoring
 - Alice data transfers
- dCache can use it for distributed pools
 - Developments by NDGF
- CERN Beams use it for monitoring in the control room

SAM and Nagios

- Service Availability Monitoring (SAM)
 - A distributed monitoring system
 - Based on open-source components
 - Nagios for test execution
 - ActiveMQ for communication via messaging
 - With custom visualization
 - MyEGEE/MyWGI/MyWLCG/...
- Aims to test all resources on the production grid
 - And provides data to other components for availability and reliability calculation

Nagios at a Site

- Simplest model
 - A site wants fabric monitoring for the grid services
- 1. Download 'EGEE-Nagios' meta-package
- 2. Configure it as a site Nagios
 - Point at your site BDII
 - Give it a certificate & email of local administrator
- 3. Nagios now will test all resources in your site
 - Mail admin list on errors
 - Provides web interface for more details
 - Detailed low-level tests for all services

Nagios Web Interface

Site Nagios – CE Tests

Nagios at the region

- A NGI or ROC monitors all it's sites
 - "Simulates users actions via the public interfaces"
 - At a higher level than the site monitoring
- Allows regional operations to help manage the site
- Feeds into availability calculations
- Feeds back into the site monitoring
 - You see the view the ROC has of you
 - And it can trigger local alerts into the operational process

Architecture - Regions

Architecture

Current Status

- 27 national level Nagios servers
 - Should grow out to full WLCG scale in next few months
- Clients distributed across 40 countries
- 315 sites
- 5K services
- 500,000 test results/day
- 5 consumers of full data stream to database for analysis and post processing

MyEGEE – Resource summary

MyEGEE – Status history

MyEGEE portal & iGoogle

Computation of Availability Metrics

- Gridview computes Service Availability Metrics per VO using SAM test results
- Computed Metrics include
 - Service Status, Availability, Reliability
- All Metrics are computed
 - per Service Instance, per Service (eg. CE) for a site
 - per Site, Aggregate of all Tier-1/0 sites
- Various periodicities like Hourly, Daily, Weekly and Monthly
- Also shows:
 - statistics of data transfers, FTS file transfers, jobs running

Metric Computation Example

- Consider Status for a day as
 - UP 12 Hrs
 - Scheduled Down 6 Hrs
 - Unknown 6 Hrs
- Availability Graphs (1st bar in Graph) would show
 - Availability (Green) 50 %
 - Sch. Down (Yellow) 25 %
 - Unknown (Grey) 25 %
- Reliability Graph (1st bar in Graph) would show 100%
- Reliability = Availability(Green) / (Availability(Green)+ Unscheduled Downtime(Red))
- Reliability not affected by Scheduled Downtime or Unknown Interval

Sample Availability Graph

Sample Reliability Graph

Service & Site Service Status Calculation

https://twiki.cern.ch/twiki/pub/LCG/GridView/Gridview_Service_Availability_Computation.pdf

Gridview – Site availability details

Gridview – ROC report

EGI Availability and Reliability Report for VO OPS

Region Summary - Sorted by Name

September 2010

Data from Nagios and Gridview

https://twiki.cern.ch/twiki/pub/LCG/GridVlew/Gridvlew_Service_Availability_Computation.pdf

Availability = Uptime / (Total time - Time_status_was_UNKNOWN)

Reliability = Uptime / (Total time - Scheduled Downtime - Time_status_was_UNKNOWN)

HS06: Installed capacity of the site measured in HEPSPEC06 (HS06)

Reliability and Availability for Region - Weighted average of sites in the Region (supporting this VO) based on installed capacity

Colour coding:

Avail-

< 50% < Target >= Target

Reli-

EGI SLA Availability Target is 70 % and Reliability Target is 75 %

Region	ability	ability
AsiaPacific	78 %	78 %
CERN	96 %	96 %
Italy	91 %	93 %
NGI_AEGIS	99 %	99 %
NGI_BY	86 %	86 %
NGI_CH	37 %	39 %
NGI_CYGRID	99 %	99 %
NGI_CZ	99 %	99 %
NGI_DE	87 %	87 %
NGI_FRANCE	85 %	88 %
NGI_GRNET	94 %	96 %
NGI_HR	100 %	100 %
NGI_HU	99 %	99 %
NGI_IBERGRID	96 %	97 %
NGI_NDGF	96 %	97 %
NGI_NL	95 %	95 %
NGI_PL	84 %	84 %

Region	Avail- ability	Reli- ability		
SouthEasternEurope	87 %	90 %		
UKI	88 %	89 %		

Gridview – ROC Drilldown

Region	Site	Phy.	Log. CPU H		Availa	la Relia y bility		Availability History		
		CPU		HS06				Jun-10	Jul-10	Aug-10
ROC_LA (ROC_LA)									
	CBPF	84	312	N/A	83 %	90 %	1 %	76 %	84 %	86 %
	EELA-UTFSM	22	44	299	85 %	85 %	2 %	94 %	89 %	98 %
	ICN-UNAM	19	58	N/A	57 %	75 %	9 %	94 %	72 %	85 %
	SAMPA	30	120	1,440	53 %	91 %	1 %	0.%	68 %	99 %
	UNIANDES	42	168	1,512	86 %	86 %	1 %	82 %	81 %	99 %
Russia (R	tussia)									
	ITEP	136	240	N/A	97 %	97 %	0 %	98 %	99 %	75 %
	JINR-LCG2	350	1,132	10,692	98 %	98 %		99 %	100 %	100 %
	Kharkov-KIPT-LCG2	33	66	420	99 %	99 %	1 %	92 %	97 %	93 %
	RRC-KI	1,784	1,784	N/A	99 %	99 %	1 %	46 %	72 %	83 %
	RU-ISA-CGTDC	4	16	N/A	98 %	98 %	2 %	0.96	69 %	97 %
	RU-Protvino-IHEP	120	400	N/A	99 %	99 %	0 %	95 %	95 %	100 %
	RU-SP6SU	12	48	N/A	79 %	79 %	0 %	71 %	80 %	72 %
	Ru-Troitsk-INR-LCG2	41	162	N/A	80 %	80 %	0 %	85 %	95 %	89 %
	ru-IMPB-LCG2	18	36	281	93 %	93 %	0 %	72 %	62 %	58 %
	ru-Moscow-FIAN-LCG2	30	52	N/A	95 %	95 %	1 %	46 %	77 %	99 %
	ru-Moscow-GCRAS-LCG2	2	4	N/A	100 %	100 %	1 %	85 %	69 %	98 %
	ru-Moscow-SINP-LCG2	108	216	N/A	96 %	96 %	1 %	97 %	81 %	91 %
	ru-PNPI	152	304	3,264	98 %	98 %	0 %	90 %	85 %	99 %

Gridview – Data Transfers

Gstat – Information System visualization

- Information system contains the middleware view of the infrastructure
- Main usage:
 - Service Discovery what is there?
 - Installed Capacity how much is there ?
 - VO Views what can a VO use ?
- Gstat provides visual representation of this
 - Management tool for NGI/WLCG managers
 - Debugging tool for site admins

Gstat – LDAP Browser

Gstat – ROC Summary

Gstat - Site View drilldown

WLCG Topology view

GridMap Visualization

- Idea
 - visualize the Grid by using *Treemaps*(Grid + Treemap = *GridMap*)

GridMap Visualization

- Idea
 - visualize the Grid by using *Treemaps*(Grid + Treemap = *GridMap*)
- Example GridMap

Colour of rectangle is e.g.

- SAM status of site / service
- Availability of site / service

_

Multiple Views

 GridMaps can be used for top-level, geographical and VO views

Trends

Trends can be understood by looking at a sequence of *GridMaps*

Site Availability over time:

More Views

Correlations of metrics can be discovered by switching between different views

Status of different Site Services:

MyEGEE...EGI...WLCG – The future

- An integration of the existing visualization tools
 - Gridmap
 - MyEGEE
 - Gridview
- Being developed for EGI right now
 - To satisfy the NGI and site manager requirements
- A single portal for operational information

MyEGI homepage

Home | Gridmap | Services | Metric Status | History

Views list

Gridmap view

Show a gridmap-style graph of the current status for all the services in all the sites of a concrete region.

-				
				215 #
- 12	in the same			-
_		100000		-
	100		4	-
-	the contract of	1000000	4	-
	and a	- market	4	in.
	-			

Service view

Show all services with its current status.

Metric Status view

Show the status of all tests per service and flavour.

History view

Show a graph of the current status of a service over time.

Latest news

August (update 04) release of SAM/Nagios Date: Wed, 01 Sep 2010 15:09:09 GMT

Author: jamesc

July (Update-03) release of SAM/Nagios/Messaging

Date: Tue, 03 Aug 2010 12:30:46 GMT

Author: jamesc

New Nagios/ATP/Messaging release Date: Tue, 29 Jun 2010 13:55:34 GMT

Author: jamesc

MyEGI service status drilldown

my_{CGI}

Home | Gridmap | Services | Metric Status | History

Services

Show/hide filters

		Search hostname column:			
Site	Service Flavour	r Hostname	♦ Status	Actions	
AU-PPS (SSEE	SRMv2	cgh15.collab.unimelb.edu.au	✓	3 (B)	
AU-PPS (SSTATE	Site-BDII LUAD	cgh1.collab.unimelb.edu.au	✓	2 (1)	
Australia-ATLAS 65531	SRMv2	agh3.atlas.unimelb.edu.au	✓	3 (1)	
Australia-ATLAS GSTat	Site-BDII [DAP	agh6.atlas.unimelb.edu.au	✓	3 (9)	
Australia-ATLAS 65531	CE	agh2.atlas.unimelb.edu.au	✓	3 (1)	
CERN-PROD (SSEE)	CE	ce128.cern.ch	4	3 (1)	
CERN-PROD (SSEE)	SRMv2	samdpm002.cern.ch	4	3 (9)	
CERN-PROD (SSEE)	CE	ce111.cern.ch	4	2 (1)	
CERN-PROD (STATE	SRMv2	srm-lhcb.cern.ch	4	3 (1)	
CERN-PROD (SSEE)	CE	ce130.cern.ch	4	2 •••	
Show 10 ‡ entries	Sh	owing 1 to 10 of 158 entries	First Previous 1 2 3 4	5 Next Last	

Status Summary I XML I CSV I JSON

Legend: So Critical ♣ Downtime ➤ Missing ✓ OK ♣ Removed I Unknown ▲ Warning

History graph for this service

This status has been updated more than 24 hours ago (hover on the icon to see what was the exact update time)

Summary

- Wide range of tools available for you
- Aim is to help you to manage your site
- Integrates well with the Glite middleware and WLCG operational processes

- The future leads towards better integrated portals for complete monitoring of your systems
 - All open source
 - Contributions always welcome !!!

Links

- Nagios
 - https://nagios.roc-la.org/nagios/
- MyEGEE
 - https://nagios.roc-la.org/myegee/
- Gstat
 - https://gstat-prod.cern.ch/
 - https://gstat-wlcg.cern.ch/apps/topology/
- Gridview Availability
 - http://gridview.cern.ch/GRIDVIEW/same_index.php
 - https://twiki.cern.ch/twiki/pub/LCG/GridView/Gridview_Service_Availability_Computation.pdf
- Gridmap
 - http://gridmap.cern.ch/gm/

SAM Demo

- Watch our demo:
 - http://tinyurl.com/EgeeSAM (YouTube)
 - http://www.youtube.com/watch?v=PADq2x8q0kw

Questions?