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V. Kain with material from the CERN ML Community
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Overview cEe

% Controlling CERN accelerators - the classical approach

% Numerical optimisation

% Reinforcement learning
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Physics models in the control room ()

Nard

Beam dynamics equation of motion in static magnetic and RF fields linearised and solved
— closed form solutions used as models in the control room to control

X mean energy, energy spread, beam size, orbit,...collective motion of particles,...

— global parameters: Bp or p, the tunes Q,, Q,, O, and tune spreads through
additional global parameters e.qg. chromaticity Q)’C,y

— Use high level physics parameters to control accelerators instead of direct hardware
parameters: i.e. normalised magnetic fields instead of currents.

%X e.g. dipole magnet's control parameter: bending angle change Ax’ or Ay'instead of current in
power supply.

% needs hardware to physics parameter translation: e.qg.. transfer function Bl — I for every
magnetic circuit

[1] D. Jacquet et al, LSA- The high level application software of the LHC and its performance during the first 3 years of
operation, ICALEPS 2013
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Nard

Physics models in the control room ()

Build parameter models, store transfer functions in controls DB, pre-
calculate the settings of accelerate according to uploaded “optics”,
Injection/extraction momentum,...

This allows: model-based one-shot correction of imperfections

* E.g. trajectory correction

Corrector dipole

/2

% Calculate response R, with R™! settings for correctors for given

Ax, Ax,, ...AXx
( 1 2 m) (Axi\ (Axl\

R A.Xé — sz

\Ax,’U \Axm)

* Rislinear for our machines (i.e. matrix) = SVD algorithm
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Classical approach is not enough @

Our goal for accelerator operation: maximum efficiency and maximum
flexibility while achieving maximum performance

— physics based deterministic operation of accelerators, no trial and error.

Not always possible:
% need models, and models online available; models can be very complicated
there are drifts = modelling even more complicated

need sufficient beam instrumentation

* X %

need algorithms on top of models; models not always easily invertible

One way out — automated and sample-efficient optimisation algorithms
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The landscape &N

Deep Learning| s i

Learning

e.g. Evolutionary Algorithms,
Swarm Intelligence

e.qg. Simplex, Gradient Descent

-
-

~ Mathematical Optimization

~ -

Courtesy A. Edelen
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Numerical
Optimisation
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Definitions and Basics &)

Nard

The generic optimisation problem:
ci(x) =0

Xt =argmin flx) - subjectto | s

where f(x) is the (scalar) objective function to be minimised or maximised, x is the
vector of unknowns or parameters and c; are constraint functions.

Convexity

Many algorithms work best if f(x) is convex:
local minimum = global minimum
Mathematical definition for x;, x, € X, a convex subset:

forall0 <r<1

Flaxy + (1 = Dxy) < 1f(x) + (1 = )f(xy)
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Convexity

f(x) is convex: if the line segment between any two points f(x,), f(x,) is
either equal or above f(x) forx = tx; + (1 — t)x,

tf(z1) + (1 =) f (22)

f (tl‘l + (1 — t)mg) >

231 try + (1 —t)zo T2

By Eli Osherovich - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=10764763
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Algorithm types

multi-objective, constraints, bounds, model-based, derivative-free,...

Focus here on single-objective, derivative-free.

% derivative-free: as our objective is a black-box function

* E.g.sum of beam losses in the extraction region, injection efficiency,...

% Algorithm types: conjugate direction methods, Nelder-Mead method, model-
based methods, simulated annealing,...

Focus here on model-based algorithms:

Start with algorithms that build local deterministic models over trust
regions.

Later: probabilistic global models with Bayesian Optimisation
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Model-based, derivative free: trust region method C\Efﬂ/

Nard

Some of the most effective algorithms for unconstrained optimisation:
compute steps by minimising over a quadratic model of f(x).

If derivatives of f(x) not available, need to define model m, as quadratic
function that interpolates f(x)

T 1 T
mx,+p)=c+g p+5p Gp

where the scalar ¢, the vector g and the symmetric matrix G are calculated
with the interpolation conditions

m,(y) =f") forl=1.2,..,q

through a linear system of equations.

1
Number of interpolation points needed: g = E(H + 1)(n + 2) for n number of

degrees of freedom and the q interpolation points need to be non-singular.
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Model-based, derivative free: trust region method C\Ef@/

Nard

Compute step p by approximately solving the trust region subproblem

min m(x, + p) subjectto |[p|[, £ A
p

where A is the trust region radius.

If f(x; + p) gives a sufficient reduction, next iterate: x;, | = x, + pand A is
updated according to

actual reduction fO) =055

predicted reduction B my(x;) — m(h)

If p > 1 (some constant € (0,1)), increase A, do the step, replace one element
in Y by x;".

Else: check whether Y needs to be improved (geometrical improvement) and start
again or otherwise just shrink A and go to next iteration with x| = x;.
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Model-based, derivative free: trust region method C\Efﬂ/

Nard

Draw back:

% Need O(n?) function evaluations before algorithm can start

Way out:

% linear model: only need 7 + 1 initial points, but model not as fast convergent as cannot
model curvature.

% — some algorithms start with linear model and then use quadratic when sufficient
number points.

% Powell’s algorithm NEWUOA and BOBYQA use quadratic models with only 2z + 1, by
calculating

min||G, — G,_||r  subjectto m(y) =f(") forl=12,...,q

One of our favourite algorithms: BOBYQA [1] (quadratic model and bounds) in the
implementation Py-BOBYQA [2]

[2] M.J.D. Powell, The BOBYQA algorithm for bound constrained optimization without derivatives, 2009

[3] https://numericalalgorithmsgroup.github.io/pybobyqa/build/html/index.html

Academic Training Lecture Regular Programme - V.Kain - 2/5/2022



BOBYQA for the control room ()

NS

From the py-BOBYQA package:

pybobyqga.solve(objfun, x@, args=(), bounds=None, npt=None,
rhobeg=None, rhoend=1e-8, maxfun=None, nsamples=None,
user_params=None, objfun_has_noise=False,
seek_global_minimum=False,
scaling_within_bounds=False,
do_logging=True, print_progress=False)

CERN Generic Optimization Framework Frontend GeOFF

‘ Gym Problem
metadata

render()
close()
X Common Optimization Interface (COIl) ' \
SingleOptimizable Env
* Based on OpenAl Gym for RL Z:’:T::tﬁ:lTp_ai::se() 2‘;’2::\1/;;%?_35‘)3“
compute_single_objective() reward_range
. . v reset()
% extends Gym’s metadata with CERN specifics step()
OptEnv
virtual
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BOBYQA for the control room @

Allows to combine different algorithms and different optimisation problems
plug & play

packages with algos [SciPy] [BOBYQA] [Stable Baselinesj
ﬂl

different optimisation problems  (LEIRRL) (SPS zS) (Linac3 LEBT)

i .. Offer GUIto load optimisation problems solve them with different
acrdazes laerrazen - algorithms

— deals with controls aspects, hide complexity of algos

— algos and optimisation problems are configurable

e — offers basic default plotting
S L === o

— allows custom plotting

— not only numerical optimisation, but also reinforcement learning
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Example: Alignment of Electro-static Septum in the SPS C\ERfﬂ/

NS

Objective: loss minimisation in extraction region, 9 degrees of freedom

Circulating (red, £30) and extracted (blue) horizontal beam envelopes
and aperturesin the LSS2 extraction region.

November 2018: algorithm POWELL

% Before numerical optimisation for alignment: ~ 8 h

0.5 B /\ L 2. ]
LI B — 0 IO J ANt esesssessed L L L L 7
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‘ . ‘ , , 2018
~ 130 iterations.

1.2

~ 45 minutes

0.8

—_

Anode position
m

Norm. losses
(1023 Gy/charge)

0.6
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Number of iterations

2021 BOBYQA and generic optimisation framework (based on OpenAi Gym)
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s o . . . . . . 3 5
= ) 3
8 :
£
1
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
o 2 Step - -
- T x ~ Iiterations
E ing-0et E Anode Objective and Constraints. -o [ ]
L un RL A
initial Objective function
N 015 —e— current 0o X
SPS-Z5- ent-Machine-v0 - %
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g / VI
BOBYQA - 05 \‘/
Configure 0.00 04
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Stop Beam loss measuremen! t step
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Bayesian Optimisation - learn global models ()

NS

Machine-learning based, derivative-free, global optimisation method.

Basic idea:

% Fit f(x) with Gaussian Process probabilistic model, incorporate new data points
using Bayesian statistics (— posterior probability distribution)

% Use model and uncertainty to define so-called Acquisition Function u(x)
% Minimise/maximise Acquisition Function to define next X,,1; observe f(x, )

% do this for user-defined number of steps n

[4] C.E. Rasmussen, C.K.I. Williams, “Gaussian Processes for Machine Learning”, the MIT press, 2006
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Gaussian Processes (GP) ()

Nard

GP are extension of multivariate Gaussian to
infinite dimension stochastic process.

GP is a distribution over functions completely

deﬁned by \M(Ti‘\‘\/*

% amean function u(x)

Ay
=+
<

p(x)—o(x;)

X a covariance function k(x, x), covariance
matrix K;; = k(x;, x;) % 2

X3

Every Bayesian method needs a prior, an initial assumption for the model, with an initial u(x) (e.g.
zero) and k(x, x').

Bayesianrule P(M | E) o< P(E|M)P(M) to calculate posterior, where M is the model (i.e. the
prior) and E the evidence (i.e. data).

— For inference: calculate the conditional probability P(y,, | f(X), X, 1, X) = N(u(x., ), af(xtﬂ))
with

pix, ) =K' Kf(x) and o67(x, ) =k(x,,,x,) - KKk
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Gaussian Process Regression ()

The covariance function (or kernel) defines how smooth, sparse,...the model
will be.

Many different ones... The art is to use appropriate kernel for given problem.

Popular one: RBF (radial basis function) or squared exponential

1 |:Xp __}quz
eXp(—E 7 ) [...model parameter, length scale

Model parameters are learned from data through the usual max likelyhood
In regression

w* = argmax p(y | x, w)
w
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GP Regression with sklearn ()

from sklearn.gaussian process import GaussianProcessRegressor

from sklearn.gaussian process.kernels import RBF, Matern

X train=x 0

y train =y 0

kernel = 1 * Matern(length scale=1.0, length scale bounds=(le-2, le2))

gaussian process = GaussianProcessRegressor(kernel=kernel, n restarts optimizer=9)
gaussian_process.fit(X train, y train)

kernel=gaussian_process.kernel

y pred,y sigma = gaussian process.predict(x,return std=True)

100
=== True (unknown) Y
0.75 1 == mean prediction [
® measured

0.50 1 95 % confidence interval

77\

0.25
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Acquisition Function u(x) &)

Back to Bayesian Optimisation: The function u(x) based on the posterior that is
actually optimised to propose the next point x,

Popular acquisition function: Expected improvement EI(x) ...x;" best point so
far.

—El(x) = — E[f(x) — f(x")]

0 it 6(x) = 0

where

o(X)
0 it 6(x) = 0

(H(X)—f(x+)—§ it o(x) > 0
Z = and and ®(Z) and ¢(Z) are CDF and PDF of standard normal distribution.

& is hyperparameter to guide exploration/exploitation. Good value of £ = 0.01

Another acquisition function:
Lower confidence bound: LCB(x) = p;p(x) — k65p(x)

K is hyperparameter to guide exploration/exploitation. Default value k = 1.96



Basic Bayesian Optimization with skopt ()

In [37]: from skopt import gp minimize,Optimizer

res = gp minimize(f,
[(-2.0,2.0)1,
acq_func="LCB",
n_calls=15,
kappa=1.96,
n_random_starts=5,

from skopt.plots import plot gaussian_process
# Plot f(x) + contours

print("total n calls = ", len(res.models))

_ = plot_gaussian_process(res, objective=f wo noise,n_calls=10,
noise_level=noise_level,show_acq_ func=True,show_next point=True

)

total n_calls = 11

x* = -0.2894, f(x*) = -0.9094

LCB(x)

fix)
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Reinforcement
Learning
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And Reinforcement Learning (RL)? @

Numerical optimisation needs exploration phase at each deployment.

With RL (after training) exploration phase is reduced to a minimum — one
iteration in the best case.

The reason:

% it learns underlying dynamics of the problem

% but needs additional input: state information

* Given the state, it applies the action to achieve maximum reward

— Controllers like with model-predictive control.
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Basics of Reinforcement Learning (@

RL: learning how to act given a certain state to maximise cumulative

reward.

Simple example: trajectory steering

State s': (RL AGENT policy (ENVIRONMENT |
* reading of BPMs mo(s,a)
action | [
1 CORRECTORS ]
Action a : v
- dipole corrector settings parameter 0 2N
. J .
observation
s; — state

reward

0; — observation
a; — action

mg(as|oy) — policy

Reward 7 could be:
* intensity on target

- RMS of trajectory X (—1)
- losses X (—1)

mo(a¢|s;) — policy (fully observed)

P(St+1 |S/- a)

Partly from course “Deep Reinforcement Learning”, Sergey Levine

¥ So
N 1)(SI+1|SI~aI)

Markov property
independent of s;_

Academic Training Lecture Regular Programme - V.Kain - 2/5/2022



Basics of Reinforcement Learning (@

Goal of RL = find @ that maximises total reward

Episodic learning — maximise reward during episode along state trajectory s;...57

0* = arg max Ez'Npg(T) |:2 I"(St, at):|

0
t

Concepts to find optimum policy: O and V (value) function

T
Q"(s,, a,) = 2 E, [r(st,, a,)|s, at] : total reward from taking a, in s,

t'=t

T
Vi(s,) = Z E, [r(st,, a,) | St] : total reward from s,

t'=t

VE(SZ) = Eaz"’ﬂ(atlsz) [Qﬂ(st’ at)]
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Algorithm Types O

Goal: 0% =argmax,E,_, Z r(s,a,)

T
4

% Policy gradients: directly differentiate the above objective
% Value-based: estimate value function or Q-function of the optimal policy
* (no explicit policy)

% Actor-critic: estimate value function or Q-function of the current policy, use it
to improve the policy

% Model-based RL: estimate the transition model p(s,, | 5, @,) and then
* Use it for planning (no explicit policy)
* Use it to improve a policy
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Sample efficiency <)

7
How many interactions does RL algorithm need until it has learned the optimal policy/
O-function/...?

off-policy » on-policy
More efficient Less efficient
(fewer samples) (more samples)
model-based model-based off-policy actor-critic on-policy policy evolutionary or
shallow RL deep RL Q-function style gradient gradient-free
learning methods algorithms algorithms

From course “Deep Reinforcement Learning”, Sergey Levine

Machine time is expensive. Some algorithms are excluded on the machine (PPO,...)

— because of algorithm simplicity we started with: Q-learning and Actor-critic
methods

— then moved to model-based RL: albeit only some methods studied so far
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Basic (-learning algorithm o

/S

fit a model/ fit V(s) or Q(s,a)

estimate the return

generate samples

(i.e. run the policy)

IR G set 7m(s) = arg max, Q(s, a)

Partly from course “Deep Reinforcement Learning”, Sergey Levine
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Basic (-learning algorithm G

e
'Qéi* fi?;}ﬁ
s, S
o Qg (s, a)
a e xq()h
N arameters ¢
5«7»-~;§(55? I)
C

Y
A

1. collect dataset {(s;,a;,s;,r;)} using some policy

£ 2. set y; < r(s;,a;) +ymaxy Qu(s;,aj)
X 1

3. set ¢ < argminy % Zz ||Q¢(Sz‘,ai) - }’z'||2

Issue for continuous actions a: max (s, a) in update rule and
n(s) = argmax_(Q(s, a); maximisation might be not be straight forward for

non-trivial O
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Continuous actions - Actor-Critic

The Actor-Critic algorithm (simplest form DDPG)

Critic

u(s|o*) = a Q(s,al69)

o §Q
Policy Gradient: Voun = E,[VouQ (s, u(s|6%)[609)] = E,[V,Q(s,al0?) - Voupu(s|6#)]

Main ingredients

* Actor (= policy network): parameterized policy function,
proposes action to given input state

 Critic (= Q-net): like DQN, estimator for Q(s,a), i.e.
evaluates how good proposed action is to given state

* Policy gradient: critic feeds back to actor on (s, a) pair
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O-learning with NAF N

NS

Various ways to overcome the J maximisation issue with continuous action
space.

If convex problem, can use a trick:

% Q function is assumed to belong to function class that is easy to optimise. E.g.
NAF (Normalised Advantage Function) algorithm

1 ,
Qp(s,a) = —5(a— Ha(8)" Py(s)(a — po(s)) + Va(s)
=
—> |/
arg max (s, a) = pg(s) max Q4 (s,a) = Vi (s)
a a

Gu, Lillicrap, Sutskever, L., ICML 2016
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Model-free RL test bed 2019

CERN accelerators in shutdown 2019 and most of 2020.

Except: AWAKE e~ line and commissioning run of H™~ LINAC4

Initial test cases on AWAKE and later for LINACy: trajectory correction
X ideal test case
% well defined state s
* high dimensional action and state space

X can compare with existing algorithms and can solve the problem analytically.

Goal: train controller that corrects as well as SVD — similar RMS and ideally within 1
iteration.

Implemented NAF with Prioritised Experience Replay: arXiv:1511.05952

Also used DDPG variant TD3 from package stable-baselines for AWAKE optics
matching.
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OpenAl Gym G openal C\@

NS

CERN has python interface to accelerator control system: pyjapc

Key component for algorithm development and comparing algorithms:
decision to implement all our problems as OpenAl Gym environments

class Env(object):
"""The main OpenAI Gym class. It encapsulates an environment with
arbitrary behind-the-scenes dynamics. An environment can be
partially or fully observed.

The main API methods that users of this class need to know are:
step
reset
render
close
seed
And set the following attributes:
action_space: The Space object corresponding to valid actions
observation_space: The Space object corresponding to valid observations
reward_range: A tuple corresponding to the min and max possible rewards

Note: a default reward range set to [-inf,+inf] already exists. Set it if you want a narrower range.

The methods are accessed publicly as "step", "reset", etc...

From OpenAl Gym GitHub: https://github.com/openai/gym/tree/master/gym
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AWAKE O
AWAKE: proton-driven plasma wakefield test facility.

e~ line: 20 MeV RF station, ~ 15 m transport to plasma cell

2 Gym environments:

* trajectory steering: 10 BPMs, 10 correctors

* auto-matching@ plasma entrance: BTV 354, 2 solenoids + 3 quadrupoles

‘ < --» data pickup — target
Q) <— feedback A, —— measurement
o f

e

N BTV 350

BPM 103 —{|}—=

N BTV 353

“I>/BTV 354

-
N
VN

Si

\

v N
~—_\

--» data pickup
<— feedback

\

BEM 3

A
i
PM 343
/
BPM 349
1\

electron - proton
overlap region

Courtesy A. Scheinker
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Model-free online learning for AWAKE (@)

trajectory steering

Proof-of-principle: learn how to steer AWAKE ¢~ - linein H

Q-learning with very sample-efficient NAF algorithm

N
o

no. iterations

- M

After some training the agent corrects any
initial steering to below target RMS within
1 or 2 iterations

0 25 50 75 100 125 150 175 200
.01 i DTN TV AT VMOV AN i W
€ 0.5 {
S
£ 1.0 ” — final
cc initial
-1.5 ---- target
0 25 50 75 100 125 150 175 200

no. episode
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Training evolution O

What does the training of the NAF networks look like?

0.6

100 0.5

0.4
' 0.3

0.2

0.1

10724 4 WMM‘NM WW*MW“” T

-—0.1

0 50 100 150 200 350
no. iteration

After ~ 90 iterations the agent starts correcting well V(s) continues to
improve for another ~100 iterations and converges at V(s) ~ — 0.05.
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Comparison with other algorithms @

Policy-gradient algorithm PPO versus ~ TD3 versus NAF for AWAKE steering

NAF for AWAKE steering problem in problem in simulation: similar
simulation: performance
-0.1
—0.21 -0.2
4 4 -03
5 04 s —04
% é—&s
2 2
2 0.6 g
€ = -0.6
) ) -0.7
_08_
—— ppo —0.81 — a3
naf per-naf
-0.9 1
(I) 10I00 20I00 30I00 40I00 50I00 1(IJO 2(I)0 3(I)0 4(I)0 5(IJO
no. episode no. episode

— () - learning much more sample efficient than policy gradient algorithms

Academic Training Lecture Regular Programme - V.Kain - 2/5/2022



Other example with NAF: agent for LINAC4 steering C\E/RW

N/ S

Linac 2

2
“K Vertical step to connect to LT, LTB and Bl lines
a2\ in Linac2/PS tunnel

Linac 4 .
Pre-injector
3 MeV
Cell-Coupled Source(s) @ 45 kV
LaT [T-mode Drift Tube Drift Tube Linac || 2 solenoids
Structure Linac 50 MeV RFQ (1 Klystron)
160 MeV 100 MeV 3 Tanks 11 EMQ
12 Modules 7 Modules 3 Klystrons 3 Buncher Cavities
6 Klystrons 6 Klystrons 1 EMQ 2 Chopper units
12 EMQ 7EMQ 2 steerers +dump
12 steerers 7 steerers 114 PMQ
23m 14PMQ 19m
25m Source

Dump

extracted from: ST0055254_01
JP.Corso le 10.01.2019
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Other example with NAF: agent for LINAC4 steering C\ER/W

NS

Inexpensive way of learning any (also non-linear) response and solve control
problem.

151 f\
(V)]
S
10+
3 16 DOF
-
2 _J U
0 20 40 60 80
_1 -———n ————— ’-——— y
c
£ _2
wn —— final
> o
< _3] initial
---- target
0 20 40 60 80

no. episode
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Train on simulation and apply on machine? @)

Nard

2 ways to circumvent the sample efficiency issue even further

— Model-based RL: learn explicitly the model and train agent at the same time; see
talk @ OWLE...add link

— Train on simulation, apply on machine (transfer learning): typically relies on
high level parameter control system and sufficiently good modelling

AWAKE training on simulation for trajectory steering;
validation of trained agent on machine

N
o

If simulation and
machine not perfect
match,

could use “residual
physics”

# iterations
|_I
ul

=
o

|
o©
(N)

— final
initial
-- target

RMS [cm]

|
o°
I

# episode
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Deepmind and Tokamak control @

Magnetic control of tokamak plasmas
through deep reinforcementlearning

https://doi.org/10.1038/s41586-021-04301-9  Time-varying, non-linear, multi-variate control
problem solved with actor-critic agent

a Learning loo M
9 P Actor Measurements M b ) . ¢
- Simulated environment a Control policy
v
Control Oy Ul
Learner | ——  policy —| |Environment Corl1't iz m Sensor Physical Power , DN
parameters policy model parameters supply m 7 -
A, T A& I 1 R
Voltage commands Terminate et ;/ 7 N
t | S Forward NNV
&L { S
Replay @mtn — l 38—  Grad-Shafranov O—0)
buffer Targets UE) @ solver (FGE) Inputs: m =92, t <132
r Reward | . Neural net: MLP = 3 x 256
[ [ _‘ Outputs: a = 19
[
d Deployment g TCV h Vessel cross section
e Our architecture i
m »
X N\ )
m i L7 ) Isoflux line
Control : v
d in vacuum
Real-time |~ Plasma
control boundary
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Example with TD3: Auto-matching at AWAKE C\ER/W

N,
Problem: optimise spot size at plasma entrance.
— computer vision for state definition
TD3 results:
— automated how to establish reward threshold 0.0
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Quantum Actor-Critic Q)

N/ S

Use Free Energy of Clamped Quantum Boltzmann Machine (QBM) to model
(s, a) Clamped QBM

state
0)

action

u(s|lo#*) = a

Q(s,al6?)

Policy Gradient: Voupn = E,[VouQ (s, u(s|6#)169)] = Ef[V,Q (s, al6?))- Vouu(s|6#)]
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Quantum Actor-Critic @ AWAKE @

Training with Quantum Critic

Training in sim env Evaluation in sim env
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The end

CERN control room towards:

Autopilot

Autopilot Autopilot
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SVD on AWAKE O

81 — distorted rms = 3.96 mm
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