

Accelerator control with Advanced Algorithms and Machine Learning

V. Kain with material from the CERN ML Community Forum

Overview

★ Controlling CERN accelerators - the classical approach

 \star Numerical optimisation

Physics models in the control room

Beam dynamics equation of motion in static magnetic and RF fields linearised and solved \rightarrow closed form solutions used as models in the control room to control

★ mean energy, energy spread, beam size, orbit,...collective motion of particles,...

 \rightarrow global parameters: $B\rho$ or p_{i} , the tunes $Q_{x'} Q_{y'} Q_{s}$ and tune spreads through additional global parameters e.g. chromaticity $Q_{x,y}^{'}$

 \rightarrow Use **high level physics parameters** to control accelerators instead of direct hardware parameters: i.e. normalised magnetic fields instead of currents.

- ★ e.g. dipole magnet's control parameter: bending angle change $\Delta x'$ or $\Delta y'$ instead of current in power supply.
- ★ needs hardware to physics parameter translation: e.g.. *transfer function* $Bl \rightarrow I$ for every magnetic circuit

[1] D. Jacquet et al, LSA- The high level application software of the LHC and its performance during the first 3 years of operation , ICALEPS 2013

Physics models in the control room

Build parameter models, store transfer functions in controls DB, precalculate the settings of accelerate according to uploaded "optics", injection/extraction momentum,...

This allows: model-based one-shot correction of imperfections

★ Calculate response *R*, with R^{-1} settings for correctors for given $(\Delta x_1, \Delta x_2, \dots \Delta x_m)$ $R \begin{bmatrix} \Delta x'_1 \\ \Delta x'_2 \end{bmatrix} = \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \end{bmatrix}$

$$R \begin{bmatrix} \Delta x_2' \\ \cdots \\ \Delta x_n' \end{bmatrix} = \begin{bmatrix} \Delta x_2 \\ \cdots \\ \Delta x_m \end{bmatrix}$$

* R is linear for our machines (i.e. matrix) \rightarrow SVD algorithm

Classical approach is not enough

Our goal for accelerator operation: maximum efficiency and maximum flexibility while achieving maximum performance

 \rightarrow physics based deterministic operation of accelerators, no trial and error.

Not always possible:

- ★ need models, and models online available; models can be very complicated
- ★ there are drifts \rightarrow modelling even more complicated
- ★ need sufficient beam instrumentation
- ★ need algorithms on top of models; models not always easily invertible

One way out \rightarrow automated and sample-efficient optimisation algorithms

The landscape

Courtesy A. Edelen

Numerical Optimisation

Definitions and Basics

The *generic optimisation problem*:

 $x^* = \operatorname{argmin} f(x)$ subject to $\begin{array}{c} c_i(x) = 0\\ c_i(x) \ge 0 \end{array}$

where f(x) is the (scalar) **objective function** to be minimised or maximised, x is the vector of **unknowns** or **parameters** and c_i are **constraint functions**.

<u>Convexity</u>

Many algorithms work best if f(x) is **convex**:

local minimum = global minimum

Mathematical definition for $x_1, x_2 \in X$, a convex subset:

for all $0 \le t \le 1$

$$f(tx_1 + (1 - t)x_2) \le tf(x_1) + (1 - t)f(x_2)$$

Convexity

f(x) is convex: if the line segment between any two points $f(x_1)$, $f(x_2)$ is either equal or above f(x) for $x = tx_1 + (1 - t)x_2$

By Eli Osherovich - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=10764763

Algorithm types

multi-objective, constraints, bounds, model-based, derivative-free,...

Focus here on single-objective, derivative-free.

- ★ derivative-free: as our objective is a black-box function
 - * E.g. sum of beam losses in the extraction region, injection efficiency,...
- ★ Algorithm types: conjugate direction methods, Nelder-Mead method, modelbased methods, simulated annealing,...

Focus here on **model-based algorithms**:

Start with algorithms that build local deterministic models over **trust regions.**

Later: probabilistic global models with **Bayesian Optimisation**

Model-based, derivative free: trust region method

Some of the most effective algorithms for unconstrained optimisation: compute steps by minimising over a quadratic model of f(x).

If derivatives of f(x) not available, need to define model m_k as quadratic function that interpolates f(x)

$$m_k(x_k + p) = c + g^T p + \frac{1}{2} p^T G p$$

where the scalar c, the vector g and the symmetric matrix G are calculated with the **interpolation** conditions

$$m_k(y^l) = f(y^l)$$
 for $l = 1, 2, ..., q$

through a linear system of equations.

Number of interpolation points needed: $q = \frac{1}{2}(n+1)(n+2)$ for *n* number of degrees of freedom and the q interpolation points need to be non-singular.

Model-based, derivative free: trust region method

Compute step p by approximately solving the trust region subproblem

```
\min_{p} m_k(x_k + p) \quad \text{subject to } \|p\|_2 \le \Delta
```

where Δ is the trust region radius.

If $f(x_k + p)$ gives a sufficient reduction, next iterate: $x_{k+1} = x_k + p$ and Δ is updated according to

$$\rho = \frac{\text{actual reduction}}{\text{predicted reduction}} = \frac{f(x_k) - f(x_k^+)}{m_k(x_k) - m_k(x_k^+)}$$

If $\rho \ge \eta$ (some constant $\in (0,1)$), **increase** Δ , do the step, replace one element in Y by x_k^+ .

Else: check whether Y needs to be improved (geometrical improvement) and start again or otherwise just shrink Δ and go to next iteration with $x_{k+1} = x_k$.

Model-based, derivative free: trust region method

Draw back:

★ Need $O(n^2)$ function evaluations before algorithm can start

Way out:

- ★ linear model: only need n + 1 initial points, but model not as fast convergent as cannot model curvature.
- ★ → some algorithms start with linear model and then use quadratic when sufficient number points.
- **★** Powell's algorithm NEWUOA and BOBYQA use quadratic models with only 2n + 1, by calculating

 $min \|G_k - G_{k-1}\|_F$ subject to $m_k(y^l) = f(y^l)$ for l = 1, 2, ..., q

One of our favourite algorithms: BOBYQA [1] (quadratic model and bounds) in the implementation Py-BOBYQA [2]

[2] M.J.D. Powell, The BOBYQA algorithm for bound constrained optimization without derivatives, 2009

[3] https://numericalalgorithmsgroup.github.io/pybobyqa/build/html/index.html

BOBYQA for the control room

From the py-BOBYQA package:

pybobyqa.solve(objfun, x0, args=(), bounds=None, npt=None, rhobeg=None, rhoend=1e-8, maxfun=None, nsamples=None, user_params=None, objfun_has_noise=False, seek_global_minimum=False, scaling_within_bounds=False, do_logging=True, print_progress=False)

CERN Generic Optimization Framework Frontend GeOFF

- ★ Common Optimization Interface (COI)
- ★ Based on OpenAI Gym for RL
- \star extends Gym's metadata with CERN specifics

BOBYQA for the control room

CERN

Allows to combine different algorithms and different optimisation problems plug & play

packages with algos

different optimisation problems

Offer **GUI** to load optimisation problems solve them with different algorithms

- ightarrow deals with controls aspects, hide complexity of algos
- ightarrow algos and optimisation problems are configurable
- \rightarrow offers basic default plotting
- \rightarrow allows custom plotting
- ightarrow not only numerical optimisation, but also reinforcement learning

Example: Alignment of Electro-static Septum in the SPS

Objective: loss minimisation in extraction region, 9 degrees of freedom

November 2018: algorithm POWELL

* Before numerical optimisation for alignment: ~ 8 h

Circulating (red, ±3σ) and extracted (blue) horizontal beam envelopes and apertures in the LSS2 extraction region.

2018 ~ 130 iterations. ~ 45 minutes

2021 BOBYQA and generic optimisation framework (based on OpenAi Gym)

Bayesian Optimisation - learn global models

Machine-learning based, derivative-free, global optimisation method.

Basic idea:

- **Fit** f(x) with **Gaussian Process** probabilistic model, incorporate new data points using Bayesian statistics (\rightarrow posterior probability distribution)
- **★** Use model and uncertainty to define so-called **Acquisition Function** u(x)
- **★** Minimise/maximise Acquisition Function to define next x_{t+1} ; observe $f(x_{t+1})$
- \star do this for user-defined number of steps n

[4] C.E. Rasmussen, C.K.I. Williams, "Gaussian Processes for Machine Learning", the MIT press, 2006

Gaussian Processes (GP)

GP are extension of multivariate Gaussian to infinite dimension stochastic process.

GP is a distribution over functions completely defined by:

★ a mean function $\mu(x)$

★ a covariance function k(x, x'), covariance matrix $K_{ij} = k(x_i, x_j)$

Every Bayesian method needs a prior, an initial assumption for the model, with an initial $\mu(x)$ (e.g. zero) and k(x, x').

Bayesian rule $P(M | E) \propto P(E | M)P(M)$ to calculate posterior, where M is the model (i.e. the prior) and E the evidence (i.e. data).

→ For inference: calculate the conditional probability $P(y_{t+1} | f(\mathbf{x}), x_{t+1}, \mathbf{x}) = N(\mu_t(x_{t+1}), \sigma_t^2(x_{t+1}))$ with

$$\mu_t(x_{t+1}) = \mathbf{k}^T \mathbf{K}^{-1} f(\mathbf{x})$$
 and $\sigma_t^2(x_{t+1}) = k(x_{t+1}, x_{t+1}) - \mathbf{k}^T \mathbf{K}^{-1} \mathbf{k}$

Gaussian Process Regression

The covariance function (or kernel) defines how smooth, sparse,...the model will be.

Many different ones... The art is to use appropriate kernel for given problem.

Popular one: RBF (radial basis function) or squared exponential

$$\exp(-\frac{1}{2}\frac{|\mathbf{x_p} - \mathbf{x_q}|^2}{l^2})$$
 l...model parameter, length scale

Model parameters are learned from data through the usual *max likelyhood* in regression

$$w^* = \arg \max_{w} p(\mathbf{y} \mid \mathbf{x}, w)$$

GP Regression with sklearn


```
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF, Matern
X_train=x_0
y_train = y_0
kernel = 1 * Matern(length_scale=1.0, length_scale_bounds=(1e-2, 1e2))
gaussian_process = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=9)
gaussian_process.fit(X_train, y_train)
kernel=gaussian_process.kernel_
```

y_pred,y_sigma = gaussian_process.predict(x,return_std=True)

Acquisition Function u(x)

Back to Bayesian Optimisation: The function u(x) based on the posterior that is actually optimised to propose the next point x_{t+1}

Popular acquisition function: **Expected improvement** $EI(x) \dots x_t^+$ best point so far.

$$-EI(\mathbf{x}) = -\mathbb{E}[f(\mathbf{x}) - f(\mathbf{x}_{t}^{+})]$$

$$EI(\mathbf{x}) = \begin{cases} (\mu(\mathbf{x}) - f(\mathbf{x}^{+}) - \xi)\Phi(Z) + \sigma(\mathbf{x})\phi(z) & \text{if } \sigma(\mathbf{x}) > 0\\ 0 & \text{if } \sigma(\mathbf{x}) = 0 \end{cases}$$
where
$$I = \begin{cases} (\frac{\mu(\mathbf{x}) - f(\mathbf{x}^{+}) - \xi}{\sigma(\mathbf{x})} & \text{if } \sigma(\mathbf{x}) > 0\\ 0 & \text{if } \sigma(\mathbf{x}) = 0 \end{cases}$$
and and $\Phi(Z)$ and $\phi(Z)$ are CDF and PDF of standard normal distribution.

 ξ is hyperparameter to guide exploration/exploitation. Good value of $\xi=0.01$

Another acquisition function:

Lower confidence bound: $LCB(x) = \mu_{GP}(x) - \kappa \sigma_{GP}(x)$

 κ is hyperparameter to guide exploration/exploitation. Default value $\kappa = 1.96$

Basic Bayesian Optimization with skopt


```
total n_calls = 11
```


Reinforcement Learning

And Reinforcement Learning (RL)?

Numerical optimisation needs exploration phase at each deployment.

With RL (after training) exploration phase is reduced to a minimum \rightarrow one iteration in the best case.

The reason:

- ★ it learns underlying **dynamics of the problem**
- **★** but needs additional input: **state** information
 - * Given the *state*, it applies the *action* to achieve maximum *reward*

 \rightarrow Controllers like with model-predictive control.

Basics of Reinforcement Learning

RL: learning how to **act** given a certain state to maximise cumulative reward.

Simple example: trajectory steering

Partly from course "Deep Reinforcement Learning", Sergey Levine

Basics of Reinforcement Learning

Goal of RL = find θ that maximises total reward

Episodic learning \rightarrow maximise reward during episode along state trajectory $s_1 \dots s_T$

$$\theta^* = \arg \max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(s_t, a_t) \right]$$

Concepts to find optimum policy: Q and V(value) function

$$Q^{\pi}(s_t, a_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(s_{t'}, a_{t'}) \mid s_t, a_t \right]: \text{ total reward from taking } a_t \text{ in } s_t$$
$$V^{\pi}(s_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(s_{t'}, a_{t'}) \mid s_t \right]: \text{ total reward from } s_t$$
$$V^{\pi}(s_t) = E_{a_t \sim \pi(a_t \mid s_t)} \left[Q^{\pi}(s_t, a_t) \right]$$

Algorithm Types

Goal:
$$\theta^* = \arg \max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(s_t, a_t) \right]$$

- ★ Policy gradients: directly differentiate the above objective
- \star Value-based: estimate value function or Q-function of the optimal policy
 - * (no explicit policy)
- Actor-critic: estimate value function or Q-function of the current policy, use it to improve the policy
- **★** Model-based RL: estimate the transition model $p(s_{t+1} | s_t, a_t)$ and then
 - * Use it for planning (no explicit policy)
 - * Use it to improve a policy
 - * ...

Sample efficiency

How many interactions does RL algorithm need until it has learned the optimal policy/ Q-function/...?

From course "Deep Reinforcement Learning", Sergey Levine

Machine time is expensive. Some algorithms are excluded on the machine (PPO,...)

 \rightarrow because of algorithm simplicity we started with: Q -learning and Actor-critic methods

 \rightarrow then moved to model-based RL: albeit only some methods studied so far

Basic Q-learning algorithm

Partly from course "Deep Reinforcement Learning", Sergey Levine

Basic Q-learning algorithm

1. collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy 2. set $\mathbf{y}_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'_i} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$ 3. set $\phi \leftarrow \arg \min_{\phi} \frac{1}{2} \sum_i \|Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i\|^2$

Issue for continuous actions $a: \max_a Q(s, a)$ in update rule and $\pi(s) = \arg \max_a Q(s, a)$; maximisation might be not be straight forward for non-trivial Q

Continuous actions - Actor-Critic

The Actor-Critic algorithm (simplest form DDPG)

Policy Gradient: $\nabla_{\theta^{\mu}}\mu = \mathbb{E}_{\mu}[\nabla_{\theta^{\mu}}Q(s,\mu(s|\theta^{\mu})|\theta^{Q})] = \mathbb{E}_{\mu}[\nabla_{a}Q(s,a|\theta^{Q})\cdot\nabla_{\theta^{\mu}}\mu(s|\theta^{\mu})]$

Main ingredients

- Actor (= policy network): parameterized policy function, proposes action to given input state
- **Critic** (= *Q*-*net*): like DQN, estimator for *Q*(*s*, *a*), i.e. evaluates how good proposed action is to given state
- Policy gradient: critic feeds back to actor on (s, a) pair

$\ensuremath{\mathcal{Q}}\xspace$ -learning with NAF

Various ways to overcome the ${\cal Q}$ maximisation issue with continuous action space.

If convex problem, can use a trick:

★ Q function is assumed to belong to function class that is easy to optimise. E.g.
 NAF (Normalised Advantage Function) algorithm

$$Q_{\phi}(\mathbf{s}, \mathbf{a}) = -\frac{1}{2} (\mathbf{a} - \mu_{\phi}(\mathbf{s}))^{T} P_{\phi}(\mathbf{s}) (\mathbf{a} - \mu_{\phi}(\mathbf{s})) + V_{\phi}(\mathbf{s})$$

$$s \rightarrow P_{P} \qquad P \qquad P \qquad V$$

$$NAF Architecture.$$

$$\arg \max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a}) = \mu_{\phi}(\mathbf{s}) \qquad \max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a}) = V_{\phi}(\mathbf{s})$$

Gu, Lillicrap, Sutskever, L., ICML 2016

Model-free RL test bed 2019

CERN accelerators in shutdown 2019 and most of 2020.

Except: AWAKE e^- line and commissioning run of H^- LINAC4

Initial test cases on AWAKE and later for LINAC4: trajectory correction

★ ideal test case

- \star well defined state s
- ★ high dimensional action and state space
- ★ can compare with existing algorithms and can solve the problem analytically.

Goal: train controller that corrects as well as SVD \rightarrow similar RMS and ideally within 1 iteration.

Implemented NAF with *Prioritised Experience Replay: arXiv:1511.05952*

Also used DDPG variant TD₃ from package stable-baselines for AWAKE optics matching.

OpenAl Gym

CERN has python interface to accelerator control system: pyjapc

Key component for algorithm development and comparing algorithms: decision to implement all our problems as *OpenAl Gym environments*

<pre>class Env(object): """The main OpenAI Gym class. It encapsulates an environment with arbitrary behind-the-scenes dynamics. An environment can be partially or fully observed.</pre>
The main API methods that users of this class need to know are:
step reset render close seed
And set the following attributes:
action_space: The Space object corresponding to valid actions observation_space: The Space object corresponding to valid observations reward_range: A tuple corresponding to the min and max possible rewards
Note: a default reward range set to [-inf,+inf] already exists. Set it if you want a narrower range.
The methods are accessed publicly as "step", "reset", etc

From OpenAI Gym GitHub: https://github.com/openai/gym/tree/master/gym

AWAKE

AWAKE: proton-driven plasma wakefield test facility.

 e^- line: 20 MeV RF station, ~ 15 m transport to plasma cell

2 Gym environments:

- * trajectory steering: 10 BPMs, 10 correctors
- * auto-matching@ plasma entrance: BTV 354, 2 solenoids + 3 quadrupoles

Model-free online learning for AWAKE trajectory steering

Proof-of-principle: learn how to steer AWAKE e^- - line in H

Q-learning with very sample-efficient NAF algorithm

Training evolution

What does the training of the NAF networks look like?

After ~ 90 iterations the agent starts correcting well V(s) continues to improve for another ~100 iterations and converges at $V(s) \sim -0.05$.

Comparison with other algorithms

Policy-gradient algorithm PPO versus NAF for AWAKE steering problem in simulation: TD3 versus NAF for AWAKE steering problem in simulation: similar performance

 $\rightarrow Q$ - learning much more sample efficient than policy gradient algorithms

Other example with NAF: agent for LINAC4 steering

Other example with NAF: agent for LINAC4 steering

Inexpensive way of learning any (also non-linear) response and solve control problem.

Train on simulation and apply on machine?

2 ways to circumvent the *sample efficiency* issue even further

→ Model-based RL: learn explicitly the model and train agent at the same time; see talk @ OWLE...add link

 \rightarrow Train on simulation, apply on machine (transfer learning): typically relies on high level parameter control system and sufficiently good modelling

AWAKE training on simulation for trajectory steering; validation of trained agent on machine

If simulation and machine not perfect match, could use "residual physics"

Deepmind and Tokamak control

Magnetic control of tokamak plasmas through deep reinforcement learning

Example with TD3: Auto-matching at AWAKE

Problem: optimise spot size at plasma entrance.

- \rightarrow computer vision for state definition
- \rightarrow automated how to establish reward threshold

TD3 results:

Quantum Actor-Critic

Use Free Energy of Clamped Quantum Boltzmann Machine (QBM) to model Q(s, a) Clamped QBM

Quantum Actor-Critic @ AWAKE

Training with Quantum Critic

Successful evaluation no real e^- AWAKE line: only actor network **Broken beam position monitor Evaluation in real env**

Academic Training Lecture Regular Programme - V

The end

CERN control room towards:

Extra

SVD on AWAKE

