
Academic Training Lecture Regular Programme - V.Kain - 2/5/2022

Accelerator control with 
Advanced Algorithms and 

Machine Learning  
 

V. Kain with material from the CERN ML Community 
Forum 



Academic Training Lecture Regular Programme - V.Kain - 2/5/2022

Overview

★ 	Controlling	CERN	accelerators	-	the	classical	approach	

★ 	Numerical	optimisation	

★ 	Reinforcement	learning	
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Physics models in the control room

Beam	dynamics	equation	of	motion	in	static	magnetic	and	RF	fields	linearised	and	solved	
	closed	form	solutions	used	as	models	in	the	control	room	to	control		

★ 	mean	energy,	energy	spread,	beam	size,	orbit,…collective	motion	of	particles,…	

	global	parameters:	 	or	 ,		the	tunes	 ,	 ,	 	and	tune	spreads	through	
additional	global	parameters	e.g.	chromaticity	 	

	Use	high	level	physics	parameters	to	control	accelerators	instead	of	direct	hardware	
parameters:	i.e.	normalised	magnetic	fields	instead	of	currents.	

★ 	e.g.	dipole	magnet’s	control	parameter:	bending	angle	change	 	or	 	instead	of	current	in	
power	supply.	

★ 	needs	hardware	to	physics	parameter	translation:	e.g..	transfer	function	 	for	every	
magnetic	circuit	

[1]	D.	Jacquet	et	al,	LSA-	The	high	level	application	software	of	the	LHC	and	its	performance	during	the	first	3	years	of	
operation	,	ICALEPS	2013		
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Physics models in the control room
Build	parameter	models,	store	transfer	functions	in	controls	DB,	pre-
calculate	the	settings	of	accelerate	according	to	uploaded	“optics”,	
injection/extraction	momentum,…	

This	allows:	model-based	one-shot	correction	of	imperfections	

★ 	E.g.	trajectory	correction	

★ 	Calculate	response	 ,	with	 	settings	for	correctors	for	given	
		

✴ R	is	linear	for	our	machines	(i.e.	matrix)	 	SVD	algorithm

R R−1
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Classical approach is not enough

Our	goal	for	accelerator	operation:	maximum	efficiency	and	maximum	
flexibility	while	achieving	maximum	performance	

		physics	based	deterministic	operation	of	accelerators,	no	trial	and	error.		

Not	always	possible:	

★ 	need	models,	and	models	online	available;	models	can	be	very	complicated		

★ 	there	are	drifts	 	modelling	even	more	complicated	

★ 	need	sufficient	beam	instrumentation	

★ 	need	algorithms	on	top	of	models;	models	not	always	easily	invertible	

One	way	out	 	automated	and	sample-efficient	optimisation	algorithms	

→

→

→
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The landscape
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Numerical 
Optimisation
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Definitions and Basics
The	generic	optimisation	problem:	

						subject	to				 		

where	 	is	the	(scalar)	objective	function	to	be	minimised	or	maximised,	 	is	the	
vector	of	unknowns	or	parameters	and	 	are	constraint	functions.	

Convexity	

Many	algorithms	work	best	if	 	is	convex:		

local	minimum	=	global	minimum	

Mathematical	definition	for	 	 	 ,	a	convex	subset:	

for	all	 		

x* = argmin f(x)
ci(x) = 0
ci(x) ≥ 0

f(x) x
ci

f(x)

x1, x2 ∈ X

0 ≤ t ≤ 1

f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2)



Academic Training Lecture Regular Programme - V.Kain - 2/5/2022

Convexity
	is	convex:	if	the	line	segment	between	any	two	points		 ,	 	is	

either	equal	or	above	 	for	
f(x) f(x1) f(x2)

f(x) x = tx1 + (1 − t)x2

By Eli Osherovich - Own work, CC BY-SA 3.0,  
https://commons.wikimedia.org/w/index.php?curid=10764763
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Algorithm types
multi-objective,	constraints,	bounds,	model-based,	derivative-free,…	

Focus	here	on	single-objective,	derivative-free.			

★ derivative-free:	as	our	objective	is	a	black-box	function		

✴ E.g.	sum	of	beam	losses	in	the	extraction	region,	injection	efficiency,…	

★ Algorithm	types:	conjugate	direction	methods,	Nelder-Mead	method,	model-
based	methods,	simulated	annealing,…	

Focus	here	on	model-based	algorithms:	

Start	with	algorithms	that	build	local	deterministic	models	over	trust	
regions.		

Later:	probabilistic	global	models	with	Bayesian	Optimisation
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Model-based, derivative free: trust region method 

Some	of	the	most	effective	algorithms	for	unconstrained	optimisation:	
compute	steps	by	minimising	over	a	quadratic	model	of	 .	

If	derivatives	of	 	not	available,	need	to	define	model	 	as	quadratic	
function	that	interpolates	 		

	

where	the	scalar	 ,	the	vector	 	and	the	symmetric	matrix	 	are	calculated	
with	the	interpolation	conditions		

				for	 	

through	a	linear	system	of	equations.		

Number	of	interpolation	points	needed:	 	for	 	number	of	

degrees	of	freedom	and	the	q	interpolation	points	need	to	be	non-singular.

f(x)

f(x) mk
f(x)

mk(xk + p) = c + gT p +
1
2

pTGp

c g G

mk(yl) = f(yl) l = 1,2,…, q

q =
1
2

(n + 1)(n + 2) n
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Model-based, derivative free: trust region method

Compute	step	 	by	approximately	solving	the	trust	region	subproblem	

							subject	to	 	

	where	 	is	the	trust	region	radius.	

If	 	gives	a	sufficient	reduction,	next	iterate:	 	and	 	is	
updated	according	to		

	

If	 	(some	constant	 ),	increase	 ,	do	the	step,	replace	one	element	
in	 	by	 .	

Else:	check	whether	 	needs	to	be	improved	(geometrical	improvement)	and	start	
again	or	otherwise	just	shrink	 	and	go	to	next	iteration	with	 .	

p

min
p

mk(xk + p) ∥p∥2 ≤ Δ

Δ

f(xk + p) xk+1 = xk + p Δ

ρ =
actual	reduction

predicted	reduction
=

f(xk) − f(x+
k )

mk(xk) − mk(x+
k )

ρ ≥ η ∈ (0,1) Δ
Y x+

k

Y
Δ xk+1 = xk
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Model-based, derivative free: trust region method
Draw	back:		

★ Need	 	function	evaluations	before	algorithm	can	start	

Way	out:		

★ linear	model:	only	need	 	initial	points,	but	model	not	as	fast	convergent	as	cannot	
model	curvature.		

★ 	some	algorithms	start	with	linear	model	and	then	use	quadratic	when	sufficient	
number	points.	

★ Powell’s	algorithm	NEWUOA	and	BOBYQA	use	quadratic	models	with	only	 ,	by	
calculating		

							subject	to			 				for	 	

One	of	our	favourite	algorithms:	BOBYQA	[1]	(quadratic	model	and	bounds)	in	the	
implementation	Py-BOBYQA	[2]	
[2]	M.J.D.	Powell,	The	BOBYQA	algorithm	for	bound	constrained	optimization	without	derivatives,	2009	

[3]	https://numericalalgorithmsgroup.github.io/pybobyqa/build/html/index.html

O(n2)

n + 1

→

2n + 1

min∥Gk − Gk−1∥F mk(yl) = f(yl) l = 1,2,…, q
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BOBYQA for the control room
From	the	py-BOBYQA	package:	

CERN	Generic	Optimization	Framework	Frontend	GeOFF	

★ Common	Optimization	Interface	(COI)	

★ Based	on	OpenAI	Gym	for	RL	

★ extends	Gym’s	metadata	with	CERN	specifics	
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BOBYQA for the control room
Allows	to	combine	different	algorithms	and	different	optimisation	problems	
plug	&	play

packages with algos  

different optimisation problems 

Offer	GUI	to	load	optimisation	problems	solve	them	with	different	
algorithms	

	deals	with	controls	aspects,	hide	complexity	of	algos		

	algos	and	optimisation	problems	are	configurable	

	offers	basic	default	plotting	

	allows	custom	plotting	

	not	only	numerical	optimisation,	but	also	reinforcement	learning

→

→

→

→

→
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Example: Alignment of Electro-static Septum in the SPS
Objective:	loss	minimisation	in	extraction	region,	 	degrees	of	freedom9

2018 
~ 130 iterations. 
~ 45 minutes

2021 
~ 30 iterations. 

Circulating (red, ±3σ) and extracted (blue) horizontal beam envelopes 
and apertures in the LSS2 extraction region.

November 2018: algorithm POWELL 

✴ Before numerical optimisation for alignment: ~ 8 h 

2021 BOBYQA and generic optimisation framework (based on OpenAi Gym)
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Bayesian Optimisation - learn global models

Machine-learning	based,	derivative-free,	global	optimisation	method.	

Basic	idea:	

★ Fit	 	with	Gaussian	Process	probabilistic	model,	incorporate	new	data	points	
using	Bayesian	statistics	( 	posterior	probability	distribution)	

★ Use	model	and	uncertainty	to	define	so-called	Acquisition	Function	 	

★ Minimise/maximise	Acquisition	Function	to	define	next	 ;	observe	 	

★ do	this	for	user-defined	number	of	steps	 	

[4]	C.E.	Rasmussen,	C.K.I.	Williams,	“Gaussian	Processes	for	Machine	Learning”,	the	MIT	press,	2006	

f(x)
→

u(x)

xt+1 f(xt+1)

n
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Gaussian Processes (GP) 
GP	are	extension	of	multivariate	Gaussian	to	
infinite	dimension	stochastic	process.		

GP	is	a	distribution	over	functions	completely	
defined	by:	

★ a	mean	function	 	

★ a	covariance	function	 ,	covariance	
matrix	 			

μ(x)

k(x, x′�)
Kij = k(xi, xj)

Every	Bayesian	method	needs	a	prior,	an	initial	assumption	for	the	model,	with	an	initial	 	(e.g.	
zero)	and	 .			

Bayesian	rule	 	to	calculate	posterior,	where	 	is	the	model	(i.e.	the	
prior)	and	 	the	evidence	(i.e.	data).		

	For	inference:	calculate	the	conditional	probability	 		
with	

				and							 	

μ(x)
k(x, x′�)

P(M |E) ∝ P(E |M)P(M) M
E

→ P(yt+1 | f(x), xt+1, x) = N(μt(xt+1), σ2
t (xt+1))

μt(xt+1) = kTK−1f(x) σ2
t (xt+1) = k(xt+1, xt+1) − kTK−1k
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Gaussian Process Regression
The	covariance	function	(or	kernel)	defines	how	smooth,	sparse,…the	model	
will	be.	

Many	different	ones…	The	art	is	to	use	appropriate	kernel	for	given	problem.	

Popular	one:	RBF	(radial	basis	function)	or	squared	exponential	

									 …model	parameter,	length	scale	

Model	parameters	are	learned	from	data	through	the	usual	max		likelyhood	
in	regression	

exp(−
1
2

|xp − xq |2

l2
) l

w* = argmax
w

p(y |x, w)



GP Regression with sklearn



Acquisition Function u(x)
Back to Bayesian Optimisation: The function  based on the posterior that is 
actually optimised to propose the next point 

Popular acquisition function: Expected improvement  …  best point so 
far.

 where

 and and  and  are CDF and PDF of standard normal distribution.

 is hyperparameter to guide exploration/exploitation. Good value of 

Another acquisition function:

Lower confidence bound: 

 is hyperparameter to guide exploration/exploitation. Default value 

u(x)
xt+1

EI(x) x+
t

−EI(x) = − 𝔼[ f(x) − f(x+
t )]

EI(x) = {(μ(x) − f (x+) − ξ)Φ(Z ) + σ(x)ϕ(z) if σ(x) > 0
0 if σ(x) = 0

Z = ( μ(x) − f(x+) − ξ
σ(x) if σ(x) > 0

0 if σ(x) = 0
Φ(Z ) ϕ(Z )

ξ ξ = 0.01

LCB(x) = μGP(x) − κσGP(x)
κ κ = 1.96



Basic Bayesian Optimization with skopt
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Reinforcement 
Learning
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And Reinforcement Learning (RL)?

Numerical	optimisation	needs	exploration	phase	at	each	deployment.		

With	RL	(after	training)	exploration	phase	is	reduced	to	a	minimum	 	one	
iteration	in	the	best	case.	

The	reason:		

★ 	it	learns	underlying	dynamics	of	the	problem	

★ 	but	needs	additional	input:	state	information	

✴ Given	the	state,	it	applies	the	action	to	achieve	maximum	reward		

	Controllers	like	with	model-predictive	control.	

→

→
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Basics of Reinforcement Learning
RL:	learning	how	to	act	given	a	certain	state	to	maximise	cumulative	
reward.	

Simple	example:	trajectory	steering	

Reward  could be:  
• intensity on target

• RMS of trajectory 

• losses 

r

× (−1)
× (−1)

State  :  
• reading of BPMs

s

Action  :  
• dipole corrector settings

a

Partly from course “Deep Reinforcement Learning”, Sergey Levine
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Basics of Reinforcement Learning
Goal	of	RL	=	find	 	that	maximises	total	reward	

Episodic	learning	 	maximise	reward	during	episode	along	state	trajectory	 																	

	

Concepts	to	find	optimum	policy:	 	and	 	(value)	function	

:	total	reward	from	taking	 	in	 	

:	total	reward	from	 		

θ

→ s1…sT

θ* = arg max
θ

Eτ∼pθ(τ) [∑
t

r(st, at)]

Q V

Qπ(st, at) =
T

∑
t′ �=t

Eπθ [r(st′ �, at′�) |st, at] at st

Vπ(st) =
T

∑
t′�=t

Eπθ [r(st′�, at′ �) |st] st

Vπ(st) = Eat∼π(at|st) [Qπ(st, at)]
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Algorithm Types

Goal:	 	

★ 	Policy	gradients:	directly	differentiate	the	above	objective	

★ 	Value-based:	estimate	value	function	or	 -function	of	the	optimal	policy	

✴ (no	explicit	policy)	

★ 	Actor-critic:	estimate	value	function	or	 -function	of	the	current	policy,	use	it	
to	improve	the	policy	

★ 	Model-based	RL:	estimate	the	transition	model	 	and	then		

✴ Use	it	for	planning	(no	explicit	policy)	

✴ Use	it	to	improve	a	policy	

✴ …

θ* = arg maxθEτ∼pθ(τ) [∑
t

r(st, at)]

Q

Q

p(st+1 |st, at)



Academic Training Lecture Regular Programme - V.Kain - 2/5/2022

Sample efficiency

How	many	interactions	does	RL	algorithm	need	until	it	has	learned	the	optimal	policy/
-function/…?	

Machine	time	is	expensive.	Some	algorithms	are	excluded	on	the	machine	(PPO,…)	

	because	of	algorithm	simplicity	we	started	with:	 -learning	and	Actor-critic		
methods	

	then	moved	to	model-based	RL:	albeit	only	some	methods	studied	so	far	

Q

→ Q

→

From course “Deep Reinforcement Learning”, Sergey Levine
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Basic -learning algorithmQ

Partly from course “Deep Reinforcement Learning”, Sergey Levine
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Basic -learning algorithmQ

Issue	for	continuous	actions	 :	 	in	update	rule	and		
;	maximisation	might	be	not	be	straight	forward	for	

non-trivial	

a maxaQ(s, a)
π(s) = arg maxaQ(s, a)

Q
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Continuous actions - Actor-Critic 
The	Actor-Critic	algorithm	(simplest	form	DDPG)	

Main ingredients
• Actor (= policy network): parameterized policy function, 

proposes action to given input state
• Critic (= Q-net): like DQN, estimator for !(#, %), i.e. 

evaluates how good proposed action is to given state
• Policy gradient: critic feeds back to actor on (s, a) pair
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-learning with NAFQ
Various	ways	to	overcome	the	 	maximisation	issue	with	continuous	action	
space.	

If	convex	problem,	can	use	a	trick:	

★ 	Q	function	is	assumed	to	belong	to	function	class	that	is	easy	to	optimise.	E.g.	
NAF	(Normalised	Advantage	Function)	algorithm

Q
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Model-free RL test bed 2019 
CERN	accelerators	in	shutdown	2019	and	most	of	2020.	

Except:	AWAKE	 	line	and	commissioning	run	of	 	LINAC4	

Initial	test	cases	on	AWAKE	and	later	for	LINAC4:	trajectory	correction	

★ 	ideal	test	case		

★ 	well	defined	state	 	

★ 	high	dimensional	action	and	state	space	

★ 	can	compare	with	existing	algorithms	and	can	solve	the	problem	analytically.	

Goal:	train	controller	that	corrects	as	well	as	SVD	 	similar	RMS	and	ideally	within	1	
iteration.	

Implemented	NAF	with	Prioritised	Experience	Replay:		arXiv:1511.05952	

Also	used	DDPG	variant	TD3	from	package	stable-baselines for	AWAKE	optics	
matching.	

e− H−

s

→



Academic Training Lecture Regular Programme - V.Kain - 2/5/2022

OpenAI Gym

CERN	has	python	interface	to	accelerator	control	system:	pyjapc	

Key	component	for	algorithm	development	and	comparing	algorithms:	
decision	to	implement	all	our	problems	as	OpenAI	Gym	environments

From OpenAI Gym GitHub: https://github.com/openai/gym/tree/master/gym
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AWAKE
AWAKE:	proton-driven	plasma	wakefield	test	facility.	

	line:	20	MeV	RF	station,	~	15	m	transport	to	plasma	cell	

2	Gym	environments:		

✴ trajectory	steering:	10	BPMs,	10	correctors	

✴ auto-matching@	plasma	entrance:	BTV	354,	2	solenoids	+	3	quadrupoles	

e−

Courtesy A. Scheinker
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Model-free online learning for AWAKE 
trajectory steering

Proof-of-principle:	learn	how	to	steer	AWAKE	 	-	line	in	H		

Q-learning	with	very	sample-efficient	NAF	algorithm	

e−

After some training the agent corrects any 
initial steering to below target RMS  within 

1 or 2 iterations

Problem with 
10 DOF
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Training evolution
What	does	the	training	of	the	NAF	networks	look	like?

After ~ 90 iterations the agent starts correcting well  continues to 
improve for another ~100 iterations and converges at . 

V(s)
V(s) ∼ − 0.05
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Comparison with other algorithms

Policy-gradient	algorithm	PPO	versus	
NAF	for	AWAKE	steering	problem	in	
simulation:

TD3 versus NAF for AWAKE steering 
problem in simulation: similar 
performance

  - learning much more sample efficient than policy gradient algorithms→ Q
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Other example with NAF: agent for LINAC4 steering
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Other example with NAF: agent for LINAC4 steering 

Inexpensive	way	of	learning	any	(also	non-linear)	response	and	solve	control	
problem.	

16 DOF
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Train on simulation and apply on machine?
2	ways	to	circumvent	the	sample	efficiency	issue	even	further	

	Model-based	RL:	learn	explicitly	the	model	and	train	agent	at	the	same	time;	see	
talk	@	OWLE…add	link	

	Train	on	simulation,	apply	on	machine	(transfer	learning):	typically	relies	on	
high	level	parameter	control	system	and	sufficiently	good	modelling

→

→

AWAKE training on simulation for trajectory steering;  
validation of trained agent on machine

If simulation and 
machine not perfect 
match, 
could use “residual 
physics” 



Deepmind and Tokamak control

https://doi.org/10.1038/s41586-021-04301-9 Time-varying, non-linear, multi-variate control  
problem solved with actor-critic agent 
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Example with TD3: Auto-matching at  AWAKE

Problem:	optimise	spot	size	at	plasma	entrance.	

	computer	vision	for	state	definition	

	automated		how	to	establish	reward	threshold	

→

→
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Deep Fake AWAKE

TD3 results:

The Data

F. Velotti, B. Goddard
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Quantum Actor-Critic
Use	Free	Energy		of	Clamped	Quantum	Boltzmann	Machine	(QBM)	to	model	
Q(s, a)
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Quantum Actor-Critic @ AWAKE
Training	with	Quantum	Critic	

Successful	evaluation	no	real	 	AWAKE	line:	only	actor	networke−

Broken beam position monitor
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The end

CERN	control	room	towards:
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Extra
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SVD on AWAKE


