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➔ Introduction
➔ CNN for beam dump system analysis

◆ Brief intro to CNNs and AE
◆ VAEs for beam dump screen analysis

➔ LSTMs for kicker temperature predictions 
◆ Brief intro to LSTMs
◆ Application of LSTMs models to kicker temperature prediction

➔ Physics Informed Neural Networks
◆ Brief intro to PINN
◆ Application of PINN to hysteresis predictions
◆ Simple example of PINN

➔ Summary

Outline
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➔ How do we use Convolutional Neural Networks (CNN)? 

Introduction
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➔ How do we use Convolutional Neural Networks (CNN)? Obviously, to 
recognise a cat! [1] 

Introduction
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https://github.com/ReiCHU31/Cat-Dog-Classification-Flask-App
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➔ How do we apply time-series forecasting? 

Introduction
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➔ How do we apply time-series forecasting? Obviously, to predict stock 
market!

Introduction

6
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Introduction (serius now)

➔ Huge achievements in image analysis 
with Convolutional Neural Networks 
(CNN)

◆ Cancer tumores diagnostic from images (e.g. 
[2], [3]): in use in many institutes 
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https://arxiv.org/pdf/1803.00663.pdf
https://www.microsoft.com/en-us/research/project/medical-image-analysis/


CERN Academic Lecture, Applications of computer vision and forecasting to the CERN accelerators, 5th May 2022

Introduction

➔ Huge achievements in image analysis 
with Convolutional Neural Networks 
(CNN)

◆ Cancer tumores diagnostic from images (e.g. 
[2], [3]): in use in many institutes 

◆ Here is a guide how to make a style changer 
app 

8

https://arxiv.org/pdf/1803.00663.pdf
https://www.microsoft.com/en-us/research/project/medical-image-analysis/
https://medium.com/apple-developer-academy-federico-ii/machine-learning-image-classification-and-style-transfer-using-createml-and-turicreate-9880f9ad6b0d
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Introduction

➔ Time-series prediction is another 
extremely active research topic

➔ Weather nowcast is a perfect example 
of how the 2 model types can work 
together [4] 
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https://www.deepmind.com/blog/nowcasting-the-next-hour-of-rain
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CNN for beam dump system 
analysis
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➔ SPS and LHC beam dump systems:
◆ BTV just before absorber block => image of the dumped beam

➔ GOAL: infer the state of the dump system from image and extract 
anomalous system

Example of CNNs @ CERN accelerators 

Physical system:                                  Input:                     Output:   

Feature extraction Regression

11
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➔ The SPS dump system in a nutshell

Just a little step back: SBDS

BTVDD image
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➔ The LHC beam dump system in a nutshell

Just a little step back: LBDS

BTVDD image
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➔ CNN are neural networks that are mainly used for image processing
➔ We can see it as a sliding filter on the image 

Convolutional NN

14
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➔ CNN are neural networks that are mainly used for image processing
➔ We can see it as a sliding filter on the image => not a black box but 

just a complicated function on many dimensions! 
◆ “Looking at the a function’s surroundings to make better/accurate predictions of its 

outcome” [Dr Prasad Samarakoon]

Convolutional NN

(*) This can be any other 
non-linearity
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➔ CNN models are a sequence of CNN layers, but not only…

Convolutional NN models
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➔ CNN models are a sequence of CNN layers, but not only…
◆ Max pooling

Convolutional NN models
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➔ CNN models are a sequence of CNN layers, but not only…
◆ Max pooling, dropout

Convolutional NN models
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➔ CNN models are a sequence of CNN layers, but not only…
◆ Max pooling, dropout, linear layers…
◆ They can be used for classification or regression

Convolutional NN models

19
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➔ CNN models are a sequence of CNN layers, but not only…
◆ Max pooling, dropout, linear layers…
◆ They can be used for classification or regression
◆ Very clear explanation how CNN work here

Convolutional NN models

20

https://e2eml.school/how_convolutional_neural_networks_work.html
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➔ Auto Encoders are just a type of NN that aims to learn efficient 
encoding of the unlabelled data (unsupervised learning)

◆ This is done regenerating the input parameters (images, vectors, scalars), e.i. 
minimising the reconstruction error of the input 

➔ Usually used for dimensionality reduction (kind of non-linear PCA), 
denoising, generative models, translation…

Auto Encoders and Variational AE

21
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➔ Variational Auto Encoders (VAE) [12] are special type of encoder
◆ Express the latent attributes as probability distribution 

➔ This leads to smooth latent state representation of the input => 
towards generative interpolating models

Auto Encoders and Variational AE

Kullback-Leibler Divergence

Source

22

https://arxiv.org/pdf/1312.6114.pdf
https://www.jeremyjordan.me/variational-autoencoders/
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➔ Variational Auto Encoders (VAE) [12] are special type of encoder
◆ Express the latent attributes as probability distribution 

➔ This leads to smooth latent state representation of the input => 
towards generative interpolating models

Auto Encoders and Variational AE

1
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https://arxiv.org/pdf/1312.6114.pdf
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➔ Special case of VAE => Supervised [Variational] Auto Encoder (idea 
taken from [5])

VAE for BTVD image reconstruction

Li (θ,ϕ)=−Ez∼qθ(z∣xi)[logϕ(xi∣z)]+ wKL KL(qθ(z∣xi), p(z)) + wg MSE(c, Z) 

[c] Simulations [X] [Z]E D [X’]

Generative parameters BTVDD image

SAE

=0

!=0
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https://arxiv.org/pdf/2002.00097.pdf
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➔ All the snippet prested  
developed in Pytorch 

➔ Started from the VAE [6]
➔ Many modification to 

the model were made 
to make it tunable at 
need

◆ Our model is available [7] 
for the LBDS and very 
similar for SBDS

◆ Custom loss function 

VAE for BTVD image reconstruction

25

https://pytorch.org/
https://github.com/AntixK/PyTorch-VAE
https://gitlab.cern.ch/fvelotti/lbds_btv_vae
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➔ Very accurate prediction from 
simulations 

➔ Batch spacing reconstruction not 
obvious (very difficult to see)

➔ Reconstructed images almost 
indistinguishable 

BTVDD image reconstruction in SPS

26
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➔ Similar results for LHC 
➔ Here the most complicated part is 

to simulate different filling 
patterns 

◆ Number for batches very difficult for 
many single bunches

◆ batch spacing very difficult for single 
bunches 

BTVDD image reconstruction in LHC
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➔ With this architecture, we can 
generate BTVDD images from 
generative parameters (number 
of kickers…) using the decoder 
by itself

➔ Orthogonal scan possible 

Latent space scan

MKBH

MKBV

deltaT

Zi,j

28
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➔ With this architecture, we can 
generate BTVDD images from 
generative parameters (number 
of kickers…) using the decoder 
by itself

➔ Orthogonal scan possible 

Latent space scan

MKBH

MKBV

deltaT

Zi,j
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➔ Of course the final goal is to predict 
real images…

➔ Using both generative parameters 
and image reconstruction score, 
anomalous case found!

Deploy on real data

30
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➔ Neural Longitudinal tomography in the 
LHC

◆ Classically limited to single bunch => with ML 
no limits!

➔ Unsupervised stated encoding for RL 
applied on AWAKE transfer line matching 
agent

◆ Use of the encoded information of BTV image 
to match beam size to requested one

Other examples

G. Trad and T. Argyropoulos

Before After

31
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LSTMs for kicker temperature 
predictions 

32
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➔ The MKP-L is one of the main limiting element for high intensity 
◆ Beam induced heating is directly related to the beam power loss through the real 

part of the longitudinal impedance

➔ Temperature observed to be much higher than normal operation also 
during 2018’s HI MDs

Introduction to the problem

C. Zannini

33
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➔ Neural networks to estimate the 
temperature evolution of the MKP 
as a function of the intensity and 
history

◆ Should be able to suggest  the best 
strategy to optimise scrubbing

◆ Keep MKP temperature below limits 
◆ Reduce idle time

➔ This is a time series!! 
◆ LSTMs are a very good choice for these 

kind of problems

➔ Input data: Intensity integrated over 
5 min, bunch length, peak intensity 
and temperature history 

Model for the MKP-L heating evolution

…...

34
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➔ DNN (as seen in one of the first lectures) cannot “remember” previous 
estimations as they deal with instantaneous data

➔ Recurrent NN (RNN) address this issue (source [6])
◆ The input is passed to the same NN and the output is then recursively injected in the 

following prediction 

Recurrent Neural Networks

35

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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➔ DNN (as seen in one of the first lectures) cannot “remember” previous 
estimations as they deal with instantaneous data

➔ Recurrent NN (RNN) address this issue (source [6])
◆ The input is passed to the same NN and the output is then recursively injected in the 

following prediction 

➔ It works great for “recent” predictions 

Recurrent Neural Networks
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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➔ DNN (as seen in one of the first lectures) cannot “remember” previous 
estimations as they deal with instantaneous data

➔ Recurrent NN (RNN) address this issue (source [6])
◆ The input is passed to the same NN and the output is then recursively injected in the 

following prediction 

➔ It works great for “recent” predictions 
➔ But it struggles for information further back in time [7]

Recurrent Neural Networks

37

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://ieeexplore.ieee.org/document/279181
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➔ In rescue of the RNN and their exploding/vanishing gradient issues 
(see [7] for more details) come the LSTMs

➔ Capable of “remembering” information for long sequences
➔ Intuition: 

◆ Select important part of sequence to remember 

Long Short Term Memory NN

[source]
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https://ieeexplore.ieee.org/document/279181
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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➔ Information flows via cell state from one 
time stamp to another (with some linear 
interaction with other gates)

Long Short Term Memory NN

39
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➔ Information flows via cell state from one 
time stamp to another (with some linear 
interaction with other gates)

➔ The “forget gate” decides how much of 
the cell state Ct-1 we keep

Long Short Term Memory NN

40
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➔ Information flows via cell state from one 
time stamp to another (with some linear 
interaction with other gates)

➔ The “forget gate” decides how much of 
the cell state Ct-1 we keep

➔ The input gate processes the input and 
proposes a new Ct

Long Short Term Memory NN

41
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➔ Information flows via cell state from one 
time stamp to another (with some linear 
interaction with other gates)

➔ The “forget gate” decides how much of 
the cell state Ct-1 we keep

➔ The input gate processes the input and 
proposes a new Ct

➔ Finally, we output ht for the next cell or 
to be used as it is

Long Short Term Memory NN

Source 42

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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➔ Very simple architecture: basically one LSTM 
layer and a dropout layer before a linear one

➔ Add known future input (main difference wrt 
classic time-series prediction models)

LSTM model for MKP temperature
class LSTM_FB(nn.Module):
   def __init__(
       self,
       rnn_num_layers=1,
       input_feature_len=2,
       sequence_len=35,
       hidden_dim=100,
       max_output_size=30,
       device="cpu",
       dropout=0.2,
   ):
       super().__init__()
       self.sequence_len = sequence_len
       self.hidden_dim = hidden_dim
       self.input_feature_len = input_feature_len
       self.num_layers = rnn_num_layers
       self.lstm = nn.LSTM(
           num_layers=rnn_num_layers,
           input_size=input_feature_len,
           hidden_size=hidden_dim,
           batch_first=True,
           dropout=dropout,
       )

       self.max_output_size = max_output_size
       self.out_layer = nn.Linear(self.hidden_dim, 1)
       self.device = device

t                                                   past |  future

43
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➔ Our idea: iterative prediction => teacher forcing for all samples
◆ Losses calculated on a fixed sequence length and not value by value

➔ Advantages:
◆ NN already exposed to its noise in the training phase already 
◆ The output sequence is obtained in one call of the NN (see later for the 

implementation)
◆ Arbitrary output length

Model training

44
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Model training

➔ Our idea: iterative prediction => teacher forcing for all samples
◆ Losses calculated on a fixed sequence length and not value by value

➔ Advantages:
◆ NN already exposed to its noise in the training phase already 
◆ The output sequence is obtained in one call of the NN (see later for the 

implementation)
◆ Arbitrary output length
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Model training

➔ Our idea: iterative prediction => teacher forcing for all samples
◆ Losses calculated on a fixed sequence length and not value by value

➔ Advantages:
◆ NN already exposed to its noise in the training phase already 
◆ The output sequence is obtained in one call of the NN (see later for the 

implementation)
◆ Arbitrary output length
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Model training

➔ Our idea: iterative prediction => teacher forcing for all samples
◆ Losses calculated on a fixed sequence length and not value by value

➔ Advantages:
◆ NN already exposed to its noise in the training phase already 
◆ The output sequence is obtained in one call of the NN (see later for the 

implementation)
◆ Arbitrary output length
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Model training

Then backpropagation step using this predicted sequence

➔ Our idea: iterative prediction => teacher forcing for all samples
◆ Losses calculated on a fixed sequence length and not value by value

➔ Advantages:
◆ NN already exposed to its noise in the training phase already 
◆ The output sequence is obtained in one call of the NN (see later for the 

implementation)
◆ Arbitrary output length

48
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➔ Trained model repreduced training 
and validation data set almost 
perfectly

◆ Error in the order of a couple of degrees on 
test dataset

➔ Bayesian version looking also 
promising

LSTM model for MKP: results

49
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Summary and prediction
➔ Testing prediction on different scenarios 
➔ Summary:

◆ Model results very promising 
◆ Model ready and used in CCC to 

make estimation of time left for HI 
beams

◆ Model not capable to extrapolate
➔ Need to include physics in the 

model…

Case 4

K. Li
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Physics Informed Neural Networks 
(PINN)

51



CERN Academic Lecture, Applications of computer vision and forecasting to the CERN accelerators, 5th May 2022

➔ Embedding physics knowledge in NN is becoming very common
➔ Very complete summary of applications [11] (figure taken from [11])

Physics Informed Neural Networks

52

https://arxiv.org/pdf/2201.05624.pdf
https://arxiv.org/pdf/2201.05624.pdf
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➔ First proposed to solve nonlinear PDE [10] (all plots from [10])
➔ Basically using boundary and initial conditions values, NN can 

interpolate the whole system dynamics “knowing” the PDE that 
describe the system

◆ At the same time though, one can just use a physics loss term…it doesn’t have to be a 
PDE system (IMO)

Physics Informed Neural Networks

53

https://www-sciencedirect-com.ezproxy.cern.ch/science/article/pii/S0021999118307125
https://www-sciencedirect-com.ezproxy.cern.ch/science/article/pii/S0021999118307125
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Physics Informed Neural Networks

Source: [8]

➔ DNN cannot extrapolate beyond the 
training domain…which is exactly 
what we would expect from 
interpolation function

min(Loss) => Loss = Mean(data - prediction)2

54

https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/
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Physics Informed Neural Networks

Source: [8]

➔ DNN cannot extrapolate beyond the 
training domain…which is exactly 
what we would expect from 
interpolation function

55

https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/
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➔ DNN cannot extrapolate beyond the 
training domain…which is exactly 
what we would expect from 
interpolation function

➔ Go beyond data domain => more 
information needed:

Physics Informed Neural Networks

Source: [8]

min(Loss) => Loss = Mean(data - prediction)2 
+ Additional_info(prediction)

56

https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/
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➔ DNN cannot extrapolate beyond the 
training domain…which is exactly 
what we would expect from 
interpolation function

➔ Go beyond data domain => more 
information needed:

Physics Informed Neural Networks

Source: [8]

min(Loss) => Loss = Mean(data - prediction)2 
+ Additional_info(prediction)
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➔ Hysteresis on the main SPS quadrupoles responsible for extracted 
beam quality degradation [9]

◆ Beam based measurements highlighted tune variation 
◆ Magnetic measurements on spare quadrupole showed field variation compatible 

with beam observations

Hysteresis prediction for slow extraction

58

https://accelconf.web.cern.ch/ipac2018/papers/tupaf035.pdf
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➔ Hysteresis on the main SPS quadrupoles responsible for extracted 
beam quality degradation [9]

◆ Beam based measurements highlighted tune variation 
◆ Magnetic measurements on spare quadrupole showed field variation compatible 

with beam observations

➔ Classic model possible but complicated, simple NN not enough! We 
need more information!

Hysteresis prediction for slow extraction

59

https://accelconf.web.cern.ch/ipac2018/papers/tupaf035.pdf
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➔ Hysteresis is rather common in physics and many other fields 
(chemistry, biology, economics…)

➔ Modelling is rather challenging: main models Preisach and Bouc-Wen
➔ In [11], PINN applied to hysteresis modelling of behaviour of structures 

under seismic excitation 
◆ This was our inspiration => very similar problem but different system

➔ Here is the model used in [11]:

Hysteresis modelling

60

https://arxiv.org/pdf/2002.10253.pdf
https://arxiv.org/pdf/2002.10253.pdf
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➔ A generic hysteretic model can 
be written as [11]:

➔ Using input x = {I, dI/dt} and 
output y = {B, dB/dt}, we wrote 
our model and loss:

PINN for SPS quadrupole hysteresis 

61

https://arxiv.org/pdf/2002.10253.pdf
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➔ After many attempts, we managed to train 
successfully one PINN for hysteresis prediction 

◆ Not fully optimised yet
◆ Not enough data to make a proper general model for 

SPS quadrupoles
◆ Hyperparameters not tuned yet

PINN for SPS quadrupole hysteresis 

62
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➔ After many attempts, we managed to train 
successfully one PINN for hysteresis prediction 

◆ Not fully optimised yet
◆ Not enough data to make a proper general model for 

SPS quadrupoles
◆ Hyperparameters not tuned yet

PINN for SPS quadrupole hysteresis 

63
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➔ Let’s see a simple example we can quickly solve
➔ Problem example:

➔  With initial and boundary conditions (Dirichlet):

➔ We can see in two ways:
◆ Solve a IVP => PINN as PDE solver
◆ u(x, t=0) = f(x) are data (it could also be x(x=0, t)) => PINN with data

PINN simple example

64
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➔ Code example on indico: here
➔ NN definition (see Andreas’ slides and 

tutorial)
➔ PDE problem definition (with derivatives)
➔ Training loop

PINN simple example

65

https://indico.cern.ch/event/1088377/attachments/2437685/4175253/example_simple.py
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➔ Code example on indico: here
➔ NN definition (see Andreas’ slides and 

tutorial)
➔ PDE problem definition (with derivatives)
➔ Training loop

PINN simple example

class ModelNN(nn.Module):
    def __init__(self, layers=4, neurons=5):
        super().__init__()
        self.nn_list = []
        for i in range(layers):
            self.nn_list.append(nn.Linear(neurons, neurons))
            self.nn_list.append(nn.Sigmoid())
        self.dnn = nn.Sequential(
            nn.Linear(2, neurons),
            nn.Sigmoid(),
            *self.nn_list,
            nn.Linear(neurons, 1),
        )

    def forward(self, x, t):
        u_hat = self.dnn(torch.cat([x, t], dim=-1))
        return u_hat

66

https://indico.cern.ch/event/1088377/attachments/2437685/4175253/example_simple.py
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PINN simple example
def diff(y, x, require_graph=True):
    ones = torch.ones_like(y)
    (der,) = torch.autograd.grad(
        y, x, create_graph=True, grad_outputs=ones, allow_unused=True
    )
    if require_graph:
        der.requires_grad_()
    return der

K = 0.3
L = 2

def pde(x, t, model):
    u_hat = model(x, t)
    u_x = diff(u_hat, x)
    u_xx = diff(u_x, x)
    u_t = diff(u_hat, t)
    return u_t - K * u_xx

def u_ic_f(x):
    return x * (x**2 - 3 * L * x + 2 * L**2)

➔ Code example on indico: here
➔ NN definition (see Andreas’ slides and 

tutorial)
➔ PDE problem definition (with derivatives)
➔ Training loop
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PINN simple example
losses = []
progress_bar = trange(epochs, unit="epoch")
for epoch in progress_bar:
    optimiser.zero_grad()
    u_bc_hat = model_nn(x_bc, t_bc)
    l_bc = mse_loss(u_bc_hat, u_bc)

    u_bc_2_hat = model_nn(x_bc_2, t_bc)
    l_bc_2 = mse_loss(u_bc_2_hat, u_bc_2)

    u_ic_hat = model_nn(x_ic, t_ic)
    l_ic = mse_loss(u_ic_hat, u_ic)

    t = torch.rand((500, 1)).to(dev)
    t.requires_grad = True
    x = torch.rand((500, 1)).to(dev) * L
    x.requires_grad = True
    pde_hat = pde(x, t, model_nn)
    l_pde = mse_loss(pde_hat, pde_target)

    loss = l_ic + l_pde + l_bc + l_bc_2
    loss.backward()
    optimiser.step()
    losses.append(loss.item())
    progress_bar.set_postfix(loss=loss.item())

pde_target = torch.zeros((500, 1)).to(dev)

x_ic = torch.rand((500, 1)).to(dev) * L
t_ic = torch.zeros((500, 1)).to(dev)

u_ic = u_ic_f(x_ic)

x_bc = torch.zeros((500, 1)).to(dev) + L
x_bc_2 = torch.zeros((500, 1)).to(dev)
t_bc = torch.rand((500, 1)).to(dev)
u_bc = 0.0 * t_bc
u_bc_2 = 0.0 * t_bc

epochs = 20000

➔ Code example on indico: here
➔ NN definition (see Andreas’ slides and 

tutorial)
➔ PDE problem definition (with derivatives)
➔ Training loop
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➔ Results as compared with analytical solution
◆ Indistinguishable!

➔ Caveats:
◆ Training takes quite some time (well, not in this particular case!)
◆ With data, need to balance properly the different loss function 

components 

➔ Easily possible to extend to inhomogeneous cases

PINN simple example
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➔ CNNs can be used quite effectively in the accelerator complex
◆ First results very promising 

➔ LSTM-based models used for kicker heating predictions and hysteresis 
modelling 

◆ Physics loss fundamental for low data 

➔ PINN introducing a new way to train NN
◆ Include more information via problem definition and a priori knowledge
◆ Great for “extrapolation”
◆ Still quite a lot to explore, for example Maxwell equations solved with NN [12]

➔ What’s coming next? 
◆ Transformer (or attention) based NN are destroying the competition in NLP, time 

series forecasting, image classification… => we should look into this ASAP!

Summary 
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Thank you very much!
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