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Outline
= Introduction
-> CNN for beam dump system analysis

¢ Briefintroto CNNs and AE

¢ VAEs for beam dump screen analysis
LSTMs for kicker temperature predictions

¢ Briefintroto LSTMs

¢ Application of LSTMs models to kicker temperature prediction
Physics Informed Neural Networks

¢ Briefintroto PINN
¢ Application of PINN to hysteresis predictions
¢ Simple example of PINN

Summary
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INntroduction

- How do we use Convolutional Neural Networks (CNN)?

CERN Academic Lecture, Applications of computer vision and forecasting to the CERN accelerators, 5th May 2022



INntroduction

- How do we use Convolutional Neural Networks (CNN)? Obviously, to
recognise a cat! [1]
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https://github.com/ReiCHU31/Cat-Dog-Classification-Flask-App

INntroduction

- How do we apply time-series forecasting?

CERN Academic Lecture, Applications of computer vision and forecasting to the CERN accelerators, 5th May 2022



Introduction

- How do we apply time-series forecasting? Obviously, to predict stock
market!
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Introduction (serius now)

- Huge achievements in image analysis

with Convolutional Neural Networks
(CNN)

¢ Cancer tumores diagnostic from images (e.g.

[2], [3]): in use in many institutes

f Skin Cancer detection using ABCD rule and TDS value

Segmentation of Effected Region

+

|

Deep-CNN for feature extraction with GBT

Feature Reduction and Classification

Classification of Skin Cancer using CNN

Fig. 3. Architecture of Shallow-Deep CNN
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https://arxiv.org/pdf/1803.00663.pdf
https://www.microsoft.com/en-us/research/project/medical-image-analysis/

Introduction

- Huge achievements in image analysis
with Convolutional Neural Networks
(CNN)

¢ Cancer tumores diagnostic from images (e.g.

[2], [3]): in use in many institutes
¢ Hereisaguide how to make a style changer

app
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https://arxiv.org/pdf/1803.00663.pdf
https://www.microsoft.com/en-us/research/project/medical-image-analysis/
https://medium.com/apple-developer-academy-federico-ii/machine-learning-image-classification-and-style-transfer-using-createml-and-turicreate-9880f9ad6b0d

INntroduction

- Time-series prediction is another
extremely active research topic

> Weather nowcast is a perfect example
of how the 2 model types can work
together [4]

PySTEPS

Context Deep Generative Nowcast
Past 20mins Model of Rain Next 90mins
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https://www.deepmind.com/blog/nowcasting-the-next-hour-of-rain

cﬁw
\

CNN for beam dump system
analysis
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Example of CNNs @ CERN accelerators

= SPS and LHC beam dump systems:
¢ BTV just before absorber block => image of the dumped beam

=> GOAL: infer the state of the dump system from image and extract
anomalous system

Physical system: C[kw kn, T, ] Imout:)([m7 n] Output: C’) X

= mruex

uuuuuuuuuuuuuuuuuu

Feature extraction Regression

11
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Just a little step back: SBDS &)

= The SPS dump system in a nutshell

ot MKDV

—— design
—— Post-LS2 Nom
-1 —— Post-LS2 1 cell off

- Dump positon monitoring:
—— Post-LS2 Degraded mode
& Old SEM grids will be replaced with BTV in front of the TIDVG
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Just a little step back: LBDS &)

= The LHC beam dump system in a nutshell
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Convolutional NN

-> CNN are neural networks that are mainly used for image processing
- We can see it as a sliding filter on the image

Edge detection Kernel

=i =il =l
k _1 8 _1 _

-1 -1 -1 1,1, 1. REAEe

0><0 1x1 1,‘0 1 0 4
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Convolutional NN

CNN are neural networks that are mainly used for image processing
We can see it as a sliding filter on the image => not a black box but

just a complicated function on many dimensions!

¢ ‘“Looking at the a function’s surroundings to make better/accurate predictions of its
outcome” [Dr Prasad Samarakoon]

e 3
e 2

4 ion —— i id —b Linear :
Edge detection Ll input 7 ROmRE | T Transformation —~ Sigmoid —= Output
=il =il =il Input = X 21=X*f Al =sigmo\d(21) Z2=W".Al+b Output = sigmoid(Z2)
x | -1 8 -1 = |
1 -1 -1 I
Al = 1777
1+ e 41
= ’ = i —in— (*) This can be any other
St G[m,n] = (f+ h)[m,n] ;;h[],k]f[m J.n—K] non-imearity
0O -1 O
* -1 5 -1 =
0O -1 0
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Convolutional NN models

-> CNN models are a sequence of CNN layers, but not only...

pooled Fully-connected 1

feature maps pooled  featuremaps feature maps
feature maps

Outputs
Input Convolutional Pooling 1 Convolutional  pooling2
layer 1 layer 2
+ RelU + RelU
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Convolutional NN models

cﬁw
\

- CNN models are a sequence of CNN layers, but not only...

¢ Max pooling

pooled Fully-connected 1

feature maps pooled  featuremaps feature maps
feature maps °
I r I plylx)

Outputs
Input Convolutional Pooling 1 Convolutional  pooling2
layer 1 layer 2
+ RelU + RelU

Max.PooIiﬁg .
Example

Output
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Convolutional NN models (@)

-> CNN models are a sequence of CNN layers, but not only...
¢ Max pooling, dropout

pooled Fully-connected 1

feature maps pooled  featuremaps feature maps
feature maps

e
L
O}
¢}
L
©}
Outputs
Input Convolutional Pooling 1 Convolutional  pooling 2 .
layer 1 layer 2
+RelU +RelU (a) Standard Neural Net (b) After applying dropout.

18
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Convolutional NN models @)

-> CNN models are a sequence of CNN layers, but not only...
¢ Max pooling, dropout, linear layers...
¢ They can be used for classification or regression

224 x 224 x3 224 x224x 64

pooled Fully-connected 1

feature maps pooled  featuremaps feature maps
feature maps

112 x 128

x 56 x 256

@ convolution+ReL.U

Outputs Lﬂ max pooling

Input Convolutional Pooling 1 Convolutional  pooling2 fully connected+ReLU
layer 1 layer 2 (] softmax
+ RelU + RelU
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Convolutional NN models @)

-> CNN models are a sequence of CNN layers, but not only...
¢ Max pooling, dropout, linear layers...
¢ They can be used for classification or regression
¢ Very clear explanation how CNN work here

224 x 224 x3 224 x224x 64

pooled Fully-connected 1

feature maps pooled  featuremaps feature maps
feature maps

112 x 128

x 56 x 256

@ convolution+ReL.U

Outputs Lﬂ max pooling

Input Convolutional Pooling 1 Convolutional  pooling2 fully connected+ReLU
layer 1 layer 2 (] softmax
+ RelU + RelU

20
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https://e2eml.school/how_convolutional_neural_networks_work.html

Auto Encoders and Variational AE

-> Auto Encoders are just a type of NN that aims to learn efficient

encoding of the unlabelled data (unsupervised learning)

¢ Thisis done regenerating the input parameters (images, vectors, scalars), e.l.
minimising the reconstruction error of the input

- Usually used for dimensionality reduction (kind of non-linear PCA),
denoising, generative models, translation...

14x14x32 14x14x32

1 152 1 52 |
|
7x7x64 \ Tx7x64
3x3x128 10115 3x3¢128
Conv3 Reshape |
Conv2 stride=2 DeConv3
stride=2 y stride=2
Flatten
Conv1 DeConv2
stride =2

stride=2

DeConv1
stride=2 21
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Auto Encoders and Variational AE

-> Variational Auto Encoders (VAE) [12] are special type of encoder
¢ Express the latent attributes as probability distribution

-> This leads to smooth latent state representation of the input =>
towards generative interpolating models

Kullback-Leibler Divergence

N

Dxz(pll)) = Y_p(a:) -mﬁﬁf?

neural network
decoder

neural network

encoder

Only reconstruction loss Only KL divergence Combination

loss = ||x-X]|? + KL N0, DT = || x-d() | + KL ,N(O, 1)1 Source

22
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https://arxiv.org/pdf/1312.6114.pdf
https://www.jeremyjordan.me/variational-autoencoders/

Auto Encoders and Variational AE @

-> Variational Auto Encoders (VAE) [12] are special type of encoder
¢ Express the latent attributes as probability distribution

-> This leads to smooth latent state representation of the input =>
towards generative interpolating models

Z 21

neural network

4pr 4D

decoder

& G % YN NN NS S s s s

000009 PLPLOHLOOIIIY
Q000DPPLPLLLODLIII
QO0PPPLPLHLOLOIIIY
O0DPPRPIIDLDLOLOIOIY
COPPPWIIRDDLIOOIY
OOPDLEPWWWWOLDYOVIY
PODLDLWWWWOYLOVV9IY
DO LWWWWYQ Q0999
(N W R R I
A Dy ty g QY QY e e
RN YYIIII 9=
) & & &) tn 0y 0 Y Y QY Y N e = =
G & 6 & W 0 Y g N NN e S = =
" R e e e 1 1 . . . e

23

N
N

CERN Academic Lecture, Applications of computer vision and forecasting to the CERN accelerators, 5th May 2022


https://arxiv.org/pdf/1312.6114.pdf

VAE for BTVD image reconstruction

-> Special case of VAE => Supervised [Variational] Auto Encoder (idea
taken from [5])
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https://arxiv.org/pdf/2002.00097.pdf

-> All the snippet prested
developed in Pytorch
Started from the VAE [6]
Many modification to
the model were made
to make it tunable at

need
¢ Our model is available [7]
for the LBDS and very
similar for SBDS
¢ Custom loss function

e 2
e 2
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https://pytorch.org/
https://github.com/AntixK/PyTorch-VAE
https://gitlab.cern.ch/fvelotti/lbds_btv_vae

BTVDD image reconstruction in SPS

0.004 4

0.003 A

-> Very accurate prediction from
simulations
-> Batch spacing reconstruction not R W

Losses

. . . Training nMKDV deltaT batchLength numBatches baEchSpacing energy beam_type
obvious (very difficult to see) / TATATATATA

. E0.5 1 0.5 0.5 0.5 A'// 0.5 _./l/ . / .5 4 .5 /
-> Reconstructed images almost B e T S e S i I S B S =

deltaT batchLength numBatches batchSpacing energy beam_type
1.0 4 1.0 4 1.0 4 10:1 1.0 4
/ B /
// {
4 B 0.5 . 0.5 &
05 0.5 // 0.5 J/ /
/ /
0.0 _' 0.0 —' oo§ * 00§ 0.0
T T
0

T T
1 0 1 0 1 0 1 0 1 0 1
Ground truth Ground truth Ground truth

Indistinguishable

Prediction

Ground Truth 1image 100 image 200 image 300 image 400 image 500 image 600 image 700 image 800 image 900
0 0 0 0 0 0 0 0 0 0
0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100

Reconstruction

0 0 0 0 0 0 0 0 0 0
0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100
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BTVDD image reconstruction in LHC @
Training nMKBV deltaT batchLength numBatches  batchSpacing energy
. . 1.0 1.0 1.0 /. 1.0 A g 7 10
- Similar results for LHC ol Al
8 051 0.5 S 0.5:1 05
= Here the most complicated partis ./ |l oy |wyf |
0 1 0 1 0 1 0 1 1] 1 0 1 1] 1
to Si m u | a te d iffe re n t fi | | i n g Test nMKBV deltaT batchLength 5 {mmBatches i energy
1.0 4 4 10 10 8 10 At AT
pa tte s g 0.5 - 0.5 0.5 1 // 0.5 - /j’ o o5 -':/?’f;/“ 05
L . o L4 [Pl
¢ Number for batches very difficult for o Joodf W Joodt  Joo  Jood ool
m a ny Si n g |e b u n C h eS Ground truth Ground truth Ground truth Ground truth Ground truth Ground truth Ground truth
¢ Dbatch spacing very difficult for single
bunches
%round Truth Oimage 100 0image 200 0'mmge 300 0image 400 0image 500 0image 600 Oimage 700 0image 800 0image 900¢
100 - 100 . 100 - 100 - 100 - 100 - 100 - 100 - 100 100
0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100
Reconstruction
0 0 0 0 0 0 0 0 0 0
100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 100
0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100
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Latent space scan

- With this architecture, we can
generate BTVDD images from
generative parameters (number
of Kickers...) using the decoder
by itself

-> Orthogonal scan possible

0 100

0 100

0 100
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Latent space scan

- With this architecture, we can
generate BTVDD images from
generative parameters (number
of Kickers...) using the decoder
by itself

-> Orthogonal scan possible

29
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Deploy on real data

e 3

Of course the final goal is to predict s ..

real images... e . il

Using both generative parameters Z 00 ] —a %o g’s 800 Shge
0 PO S P RN

and image reconstruction score, =

15.0
anomalous case found! PSNR = ~10log;y ST
10.0 v y . . : : i : .
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Other examples

- Neural Longitudinal tomography in the

LHC (e :
¢ Classically limited to single bunch => with ML ' §
no limits!
- Unsupervised stated encoding for RL
applied on AWAKE transfer line matching %zoo- %200-
¢ Use of the encoded information of BTV image ° X,gm ° Sy,mom °

to match beam size to requested one

Ep O T prof Ep 0 PS @ 0.0 Ep 0 PREDICTION @ 0.0
Network Implementation v3 Loss B : MSE px/px
(Extended Convolutional Encoder Decoder) v
Time Profiles | |
Lossi MSE dim/dim = o 100 100 100
( R 120 120 120
9, | Bunch intensity | P Tlme Projection Energy Projection
%, Bunch length &
_________ — Target ~ — Target
l\‘ ,;.0 Sine prediction %0 \ Prediction
| -‘\o“ ~105 0 [
Latent | : o\o \
Dimension i & 110 oo
AN _ ] [ -11s [\
! — ' 10 [\
Separate training for . 1 Separate training for -120 \
| -120 \
the Encoder branch ‘" ’ the Encoder branch 125 \
fEimezieetemeay Surssaccao - o —
(minimizing Loss A) o (minimizing Loss B) -13
Latent Space 0 75 100 125 0 25 s 75 100 125

G. Trad and T. Argyropoulos 34
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LSTMs for kicker temperature
predictions
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Introduction to the problem

- The MKP-L is one of the main limiting element for high intensity

¢ Beam induced heating is directly related to the beam power loss through the real
part of the longitudinal impedance

= Temperature observed to be much higher than normal operation also
during 2018’s HI MDs

2018 thermal behavior of MKPL,MKPS and MKE

MKE
—MKPL

; .
—MKPS|
50
45
40 -
g
S35

307 ,«MWV\/\% W |

C. Zannini

ay Jun Jul Aug Sep Nov
2018

Reached high temperatures even without dedicated scrubbing, just
from nominal operation and high intensity studies on Thursdays
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Model for the MKP-L heating evolution

= Neural networks to estimate the
temperature evolution of the MKP
as a function of the intensity and

v
3 o
° . . \ .
s . 5
©
hﬁ“’y\f’mﬁj’vﬁvﬁj’j ”7’5’5”:")”)”)")’5’5
00000000 """ oao"eoooooce

¢ Should be able to suggest the best ST

strategy to optimise scrubbing N @
¢ Keep MKP temperature below limits
¢ Reduceidle time

=>» This is a time series!! T Pt T TR
¢ LSTMs are a very good choice for these \:Z /*\/ 4 7\’ : // ,:. i
kind of problems ?:Z / /
- Input data: Intensity integrated over B Rl i 5 Do il

5 min, bunch length, peak intensity
and temperature history
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Recurrent Neural Networks

-> DNN (as seen in one of the first lectures) cannot “remember” previous
estimations as they deal with instantaneous data
=> Recurrent NN (RNN) address this issue (source [6])

¢ Theinputis passed to the same NN and the output is then recursively injected in the
following prediction

@—>—®

® ® ® ®
; b1
A A A A
6 ® © . ©
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent Neural Networks

-> DNN (as seen in one of the first lectures) cannot “remember” previous
estimations as they deal with instantaneous data
=> Recurrent NN (RNN) address this issue (source [6])

¢ Theinputis passed to the same NN and the output is then recursively injected in the
following prediction

- |t works great for “recent” predictions

v
v
v
v

R A
§ 8
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent Neural Networks

-> DNN (as seen in one of the first lectures) cannot “remember” previous
estimations as they deal with instantaneous data
=> Recurrent NN (RNN) address this issue (source [6])

¢ Theinputis passed to the same NN and the output is then recursively injected in the
following prediction

It works great for “recent” predictions
But it struggles for information further back in time [7]

-
bd & &b 4
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://ieeexplore.ieee.org/document/279181

Long Short Term Memory NN

= In rescue of the RNN and their exploding/vanishing gradient issues
(see [7] for more details) come the LSTMs

-> Capable of “remembering” information for long sequences

9

Intuition:
¢ Select important part of sequence to remember

@ ® ) ® ® ()
f f f i I !
A T A o [ A
| | | ) /'\l
© ® & &) ® &
[source] S e

Layer Operation Transfer
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https://ieeexplore.ieee.org/document/279181
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short Term Memory NN

-> Information flows via cell state from one
time stamp to another (with some linear
interaction with other gates)

39
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Long Short Term Memory NN

-> Information flows via cell state from one
time stamp to another (with some linear
interaction with other gates)

- The "forget gate” decides how much of
the cell state C_, we keep

fi

hi—1

Tt
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ft = O’(Wf'[ht_l,l't] + bf)
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Long Short Term Memory NN

-> Information flows via cell state from one
time stamp to another (with some linear
interaction with other gates)

- The "forget gate” decides how much of
the cell state C_, we keep | )= o (Wil v + b)

- The input gate processes the input and : Gy = tanh(Wo-[he_1,3,) + be)
proposes a new C,

fi fe =0 Wy-lhi—1,2:] + by)

Q
l
va

ftT 'T‘%% Cy = fi* Cror +1iy % Cy

41
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Long Short Term Memory NN

-> Information flows via cell state from one
time stamp to another (with some linear
interaction with other gates)

- The "forget gate” decides how much of
the cell state C_, we keep | )= o (W lh oz 4 b)

- The input gate processes the input and ” Gy = tanh(Wer-[hu_y, ] + be)
proposes a new C,

> Finally, we output h_for the next cell or o

fi fe =0 Wy-lhi—1,2:] + by)

vo

to be used as it is 18 o o Cos b iy G
hi
Cizy % T
X & L
‘agl‘ oo =0 (W, [hi—1, 4] + bo)
- o] . ht = oy * tanh (Cy)
42
[ Source
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM model for MKP temperature

class LSTM_FB(nn Module

. N . def __init__
= Very simple architecture: basically one LSTM cof
. rnn_num_layers=1
layer and a dropout layer before a linear one input feature_len=2
. . . sequence_len=35
- Add known future input (main difference wrt ridden_dim=100
. . . . . max_output_size=30
classic time-series prediction models) doioo=cp
ropout=0.
t paSt | fUture z:::es;q;i:;jen=sequence_len

self hidden_dim = hidden_dim

self.input_feature_len = input_feature_len

T self.num_layers = rnn_num_layers
o L L LT Pl

e L L PP bttty s
12 2 input_size=input_feature_len
o LU LT LU0ttt

batch_first=True

@ dropout=dropout
| | | | | | | | | | T self. max_output_size = max_output_size

self.out_layer = nn Linear(self hidden_dim, 1

self.device = device
43
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Model training

-> Our idea: iterative prediction => teacher forcing for all samples

¢ Losses calculated on a fixed sequence length and not value by value

-> Advantages:
¢ NN already exposed to its noise in the training phase already
¢ The output sequence is obtained in one call of the NN (see later for the

implementation)
¢ Arbitrary output length

Ty
I% VA
IO 12

L

[ ] T
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Model training

- Our idea: iterative prediction => teacher forcing for all samples
Losses calculated on a fixed sequence length and not value by value

.
-> Advantages:

¢ NN already exposed to its noise in the training phase already

¢ The output sequence is obtained in one call of the NN (see later for the

implementation)
¢ Arbitrary output length

Ty
I% v
I 12

~~
I I O O e
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Model training

-> Our idea: iterative prediction => teacher forcing for all samples

¢ Losses calculated on a fixed sequence length and not value by value

-> Advantages:
¢ NN already exposed to its noise in the training phase already
¢ The output sequence is obtained in one call of the NN (see later for the

implementation)
¢ Arbitrary output length

Ty
I% VA
IO 12
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Model training

-> Our idea: iterative prediction => teacher forcing for all samples

¢ Losses calculated on a fixed sequence length and not value by value

-> Advantages:
¢ NN already exposed to its noise in the training phase already
¢ The output sequence is obtained in one call of the NN (see later for the

implementation)
¢ Arbitrary output length
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Model training

-> Our idea: iterative prediction => teacher forcing for all samples

¢ Losses calculated on a fixed sequence length and not value by value

-> Advantages:
¢ NN already exposed to its noise in the training phase already

¢ The output sequence is obtained in one call of the NN (see later for the

implementation)
¢ Arbitrary output length

Then backpropagation step using this predicted sequence
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LST

M model for MKP: results
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Summary and prediction

-> Testing prediction on different scenarios

=  Summary:

*
*

*

Model results very promising
Model ready and used in CCC to
make estimation of time left for Hi

beams

Model not capable to extrapolate
-=> Need to include physics in the

model...

Temperature / °C

Case 4

5 le5
- eaer e» o> e e o
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Physics Informed Neural Networks
(PINN)
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Physics Informed Neural Networks

-
e 4

Embedding physics knowledge in NN is becoming very common
Very complete summary of applications [11] (figure taken from [11])

NSE+HE
Veu =0
U + (usV)u =-Vp + (Re)*V?u + (Ri)9
9,9 + (u*V)9 = (Pe)1V?8 ~1300 papers

NSE
Veu=0
U + (ueV)u = -Vp + (Re)V?u

du + Bou =0

SE
igh + 0.59,,h + [h|2h = 0 E
~30 papers
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Physics Informed Neural Networks

First proposed to solve nonlinear PDE [10] (all plots from [10])
Basically using boundary and initial conditions values, NN can
interpolate the whole system dynamics “knowing” the PDE that

describe the system

¢ Atthe same time though, one can just use a physics loss term...it doesn't have to be a
PDE system (IMO)

e 2
e 2
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Physics Informed Neural Networks

Training a
neural network

=> DNN cannot extrapolate beyond the
training domain..which is exactly

what we would expect from
Interpolation function

min(Loss) => Loss = Mean (datd - prediction)?

output

Compare to
training data
Source: [8]

Training step: 10

/\ /\ - Exact solution

= Neural network prediction
Training data
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Physics Informed Neural Networks

Training a
neural network

=> DNN cannot extrapolate beyond the
training domain..which is exactly
what we would expect from
Interpolation function

output

Compare to
training data

N
L= (ule) — la;,0))
Source: [&1

Training step: 10

/\ /\ - Exact solution

= Neural network prediction
Training data
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Physics Informed Neural Networks

=> DNN cannot extrapolate beyond the
training domain..which is exactly
what we would expect from

Interpolation function
N
L= (ul;) — i(x;,0))

- Go beyond data domain => more
iInformation needed:

min(Loss) => Loss = Mean(datd - prediction)?
+ Additional_info(prediction)
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Physics Informed Neural Networks

=> DNN cannot extrapolate beyond the
training domain..which is exactly
what we would expect from

=
o~ A
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P
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' /l\ -4
(L RPOXT D :
| NI Ve

neural network
Ty

'_ilx"‘,‘z‘
EENCKTN S\ A

Training a

AV il
o SRk

Interpolation function
"""""" & VIS

N
L= (ula) = (i, )

Go beyond data domain => more
iInformation needed:

N
min(Loss) =& LOSSV:EK@B@X-i -(prediction)?

= _:Compare to

M a A
ot

La=1/MD (5~ 5 )

L3 =u(z,t =0) — f(z)
£4 = ’&(.r = 0, t) — Up

+ Additional_info(prediction) \ /\ e
v \/ N

Ltot = aLy +BLy +7YL3 + MLy
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training data

Source: [§1

Training step: 150

~——— Exact solution

== Neural network prediction
Training data
Physics loss training locations
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Hysteresis prediction for slow extraction

-> Hysteresis on the main SPS quadrupoles responsible for extracted
beam quality degradation [9]

¢ Beam based measurements highlighted tune variation
¢ Magnetic measurements on spare quadrupole showed field variation comypatible
with beam observations

0.015 5

= . B —
0.010 | == H 21 August 4 ;i —e— SFT+MD+LHC (1800)
.—V 21 August 3
= H 07 August o]
0005 s o7 Avnie | < ®  0.0005
5 —= Ay = 0.007 / 3 X ~
q 0.000 > n
= — 0.0000
2§ i}
—0.005 < QO
g < —0.0005
—0.010
—0.001C
—0.015 0
o 1 5 3 2 0 50 100' 150 200 250
time / s time / s 58
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Hysteresis prediction for slow extraction

-> Hysteresis on the main SPS quadrupoles responsible for extracted
beam quality degradation [9]

¢ Beam based measurements highlighted tune variation
¢ Magnetic measurements on spare quadrupole showed field variation comypatible
with beam observations

=> Classic model possible but complicated, simple NN not enough! We
need more information!

—— Ground truth
o 2 Prediction 0.86600
& 0.86575 -
n g 2 =
% 10-? E ~ 0.86550
2 g =
s _S 1 1 i 0.86525
©
= 0 - 086500 —— Ground truth
102 0.86475 A —— Prediction
& T T T T T T T T T T T T T T T
0 50 100 150 200 250 300 -0.5 0.0 0.5 1.0 1.5 2.0 200 220 240
Epochs Current normilised Time / s
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Hysteresis modelling

-> Hysteresis is rather common in physics and many other fields
(chemistry, biology, economics...)

Modelling is rather challenging: main models Preisach and Bouc-Wen
In [11], PINN applied to hysteresis modelling of behaviour of structures

under seismic excitation
¢ Thiswas our inspiration => very similar problem but different system

-> Hereisthe model used in [11]:

e 2
e 2

ation of s
+ Motion Modeling l—f ' Z3 =T Hysteretic Parameter
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PINN for SPS quadrupole hysteresis

=> A generic hysteretic model can
be written as [11]:

ay(t) + b(y,y) +r(y,y, y(1)) = I'x(t) y+g9g=r_x

- Using input x ={l, dl/dt} and
output y = {B, dB/dt}, we wrote
our model and loss:

L1 = MSE(z1(01) — y1) + MSE(22(01) — ¥2)

Lo = MSE(z1(01) — z2(01))

L3 = MSE(22(61) + MLP(9(1.,62), X1))

Ly = MSE(r(61,63) —2z3(61));r = f(®); ® = {Azp, r}

=

Ltot =Ly +BLy +YL3 + MLy

{212, 23}
®d LSTM3 7

HE 5 f\
o Ll\

MLP g+rx \ -

z=4{B, B r}

y ={B, B}

LSTM2 9
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PINN for SPS quadrupole hysteresis

- After many attempts, we managed to train

successfully one PINN for hysteresis prediction

4
4

Not fully optimised yet

Not enough data to make a proper general model for
SPS quadrupoles

Hyperparameters not tuned yet

PhyLSTMS3

(relu): LeakyRelLU(negative-slope=0.01)

(Lstm0): LSTM(1, 350, num-Llayers=3, batch-first=True, dropout=0.2)
(fcO): Linear(in-features=350, out-features=175, bias=True)

(fc01): Linear(in-features=175, out-features=3, bias=True)

(gradient): GradientTorch()

(Lstm): LSTM(3, 350, num-layers=3, batch-first=True, dropout=0.2)
(fcl): Linear(in-features=350, out-features=175, bias=True)

(fc11): Linear(in-features=175, out-features=1, bias=True)

(lstm3): LSTM(2, 350, num-Llayers=3, batch-first=True, dropout=0.2)
(fc2): Linear(in-features=350, out-features=175, bias=True)

(fc21): Linear(in-features=175, out-features=1, bias=True)

(g-plus-x): Sequential(

(0): Linear(in-features=2, out-features=350, bias=True)

(1): ReLU()

(2): Linear(in-features=350, out-features=1, bias=True))

Losses

105
10
103
102 :' T T T T T
0 500 1000 1500 2000
Epochs
v
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PINN for SPS quadrupole hysteresis

. i —— sft+md NN
- After many attempts, we managed to train | 0000 —e sftemd+the NN
. .. S 0.0005 - o sftmd
successfully one PINN for hysteresis prediction % y\,\ it
o 5 0.0000 -
¢ Not fully optimised yet 9 -\‘\
-0.0005 A
¢ Not enough data to make a proper general model for
-0.0010 T T
SPS quadrupoles 100 200
¢ Hyperparameters not tuned yet il
g
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PINN simple example

- Let's see a simple example we can quickly solve
- Problem example:

Uy — Kz, =0;0< < Lt >0
=  With initial and boundary conditions (Dirichlet):
u(z,t =0) = f(z) = x(x* —3Lx +2L°),0< < L
u(z =0,t) =u(zx = L,t) =0.0,t >0

=> We can see in two ways:
¢ Solve a IVP => PINN as PDE solver
¢ U(x, t=0) = f(x) are data (it could also be x(x=0, t)) => PINN with data
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PINN simple example

2

v ol

Code example on indico: here
NN definition (see Andreas’ slides and
tutorial)

PDE problem definition (with derivatives)
Training loop
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PINN simple example

2

v ol

Code example on indico: here class ModelNN(nn.Module):

NN definition (see Andreas’ slides and de;lE;?(')t—(ii‘;'f’ '8yers=4’ neurons=5):
tutorial) seIf.nn_Et = E

PDE problem definition (with derivatives) for i in range(layers):

self.nn_list.append(nn.Linear(neurons, neurons))
self.nn_list.append(nn.Sigmoid())
self.dnn = nn.Sequential(
nn.Linear(2, neurons),
nn.Sigmoid(),
*self.nn_list,
nn.Linear(neurons, 1),

)

def forward(self, x, t):
u_hat = self.dnn(torch.cat([x, t], dim=-1))
return u_hat

Training loop
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PINN simple example

def diff(y, x, require_graph=True):

> Code example on indico: here :
. .. ones = torch.ones_like(y)
= NN definition (see Andreas’ slides and (der,) = torch.autograd.grad(
tutorial) y, X, create_graph=True, grad_outputs=ones, allow_unused=True
- PDE problem definition (with derivatives) )
. | if require_graph:
= Training loop der.requires_grad_()
return der
K=0.3
L=2

def pde(x, t, model):
u_hat = model(x, t)
u_x = diff(u_hat, x)
u_xx = diff(u_x, x)
u_t = diff(u_hat, t)
return u_t- K* u_xx

def u_ic_f(x):
return x * (x**2-3 *L*x+2 *L**2)

67

CERN Academic Lecture, Applications of computer vision and forecasting to the CERN accelerators, 5th May 2022


https://indico.cern.ch/event/1088377/attachments/2437685/4175253/example_simple.py

PINN simple example

2

vl

Code example on indico: here

NN definition (see Andreas’ slides and
tutorial)

PDE problem definition (with derivatives)
Training loop

pde_target = torch.zeros((500, 1)).to(dev)

X_ic = torch.rand((500, 1)).to(dev) * L
t_ic = torch.zeros((500, 1)).to(dev)

u_ic = u_ic_f(x_ic)

x_bc = torch.zeros((500, 1)).to(dev) + L
X_bc_2 =torch.zeros((500, 1)).to(dev)
t_bc = torch.rand((500, 1)).to(dev)
ubc=0.0"t bc

ubc 2=0.0"t bc

epochs = 20000

losses =[]
progress_bar = trange(epochs, unit="epoch")
for epoch in progress_bar:

optimiser.zero_grad()
u_bc_hat = model_nn(x_bc, t_bc)
|_bc =mse_loss(u_bc_hat, u_bc)

u_bc_2 hat=model_nn(x_bc_2,t bc)
|_bc_2=mse_loss(u_bc 2 hat, u_bc_2)

u_ic_hat = model_nn(x_ic, t_ic)
|_ic = mse_loss(u_ic_hat, u_ic)

t = torch.rand((500, 1)).to(dev)
t.requires_grad = True

x = torch.rand((500, 1)).to(dev) * L
x.requires_grad = True

pde_hat = pde(x, t, model_nn)

|_pde = mse_loss(pde_hat, pde_target)

loss=1_ic+I| pde+ 1| bc+I| bc 2

loss.backward()

optimiser.step()

losses.append(loss.item())

progress_bar.set_postfix(loss=loss.item())
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PINN simple example &)

100 4

-> Results as compared with analytical solution

8 10
¢ Indistinguishable! -
10_2'5
= Caveats: 1 ————
. . . . . . 0.0 0.5 1.0 1.5 2.0
¢ Training takes quite some time (well, not in this particular case!) - 1ed
¢ \With data, need to balance properly the different loss function
components
-> Easily possible to extend to inhomogeneous cases
PINN Analytical solution
1.00 32 1.00 3.2
%’i 2.8
_ 0.75 2 - 0.75 gzg _
= 050 ¥ % 5050 16 2
= o8 ° = 12 3
0.25 0.4 0.25 0.8
0.0 0.4
0.00 0.4 0.00 0.0
00 05 10 15 20 00 05 10 15 20
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Summary (@)

-> CNNs can be used quite effectively in the accelerator complex
& First results very promising

= LSTM-based models used for kicker heating predictions and hysteresis

modelling
¢ Physics loss fundamental for low data

- PINN introducing a new way to train NN
¢ Include more information via problem definition and a priori knowledge
¢ Great for "extrapolation”
¢ Still quite a lot to explore, for example Maxwell equations solved with NN [12]
- What's coming next?
¢ Transformer (or attention) based NN are destroying the competition in NLP, time
series forecasting, image classification... => we should look into this ASAP!
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https://github.com/qingsongedu/time-series-transformers-review
https://github.com/qingsongedu/time-series-transformers-review
https://viso.ai/deep-learning/vision-transformer-vit/

CERN
\

hank you very much!
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