

PON Ricerca e Innovazione 2014-2020 - Azione II.1 PROGETTO PON PIR01_00008 - CUP H27E19000000007 - STAR 2

The research infrastructure STAR at the University of Calabria

UNIVERSITÀ DELLA CALABRIA

STAR 2.0

Southern Europe Thomson Back-scattering source for Applied Reserch

A campus-based research infrastructure in the hearth of the Mediterranean

STAR 2.0

On going upgrade project

EU/National Funding
PON "Ricerca e Competitività" 2007 – 2013
PON "Ricerca e Innovazione" 2014 – 2020
Scientific responsible: Prof. Riccardo Barberi

A Research Infrastructure for Material Science

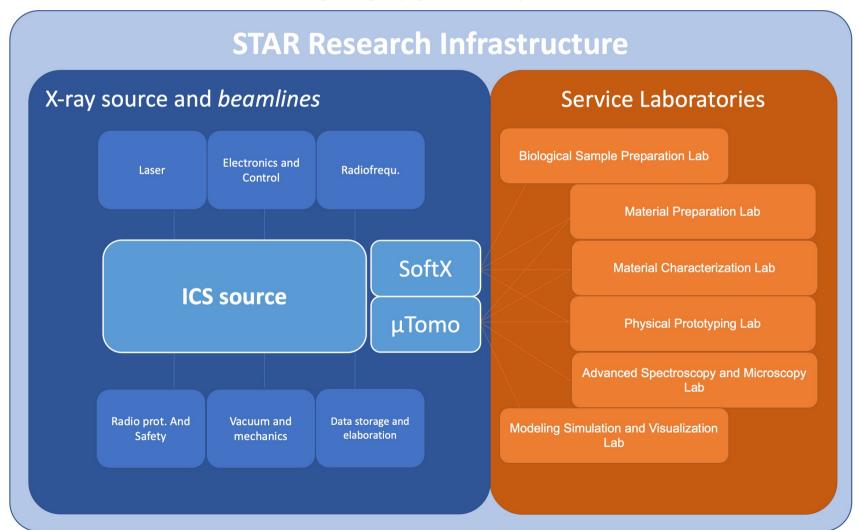
Partners: UniCal, University of Calabria & CNISM, Italian Consortium on Physical Sciences of Matter Involved: National Institute for Nuclear Physics – INFN, Elettra - Sincrotrone Trieste

The highly specialized laboratories that constitute MaTeRiA are organized in three progressive levels

First level. STAR ICS source equipped with the beam-line μTomo and SoftX(*).

Second level laboratories:

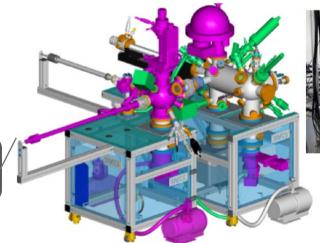
- 1. Preparation and characterization
- 2. Characterization of mechanical and other physical properties
- 3. Modeling and simulation
- 4. Prototyping
- 5. Advanced spectroscopy and microscopy
- Biological samples treatment(*)


Third level. Network of existent departmental laboratories

(*) Phase two upgrades

STAR 2.0

On going upgrade project

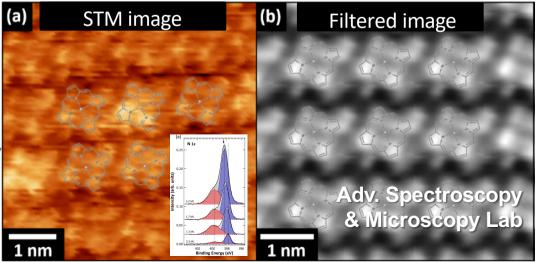

STAR 2.0

On going upgrade project

Second level laboratories:

- Material preparation and characterization (Chemistry, physical chemistry)
- 2. Characterization of mechanical and other physical properties (Mechanical engineering)
- Modeling, simulation and Visualization (Mathematical physics, statistical physics)
- 4. Physical Prototyping Lab (Mechanical engineering)
- 5. Advanced surface spectroscopy and microscopy (Surface Physics)
- **6. Biological samples treatment** (Biology, biophysics)

Adv. Spectroscopy & Microscopy Lab


STAR 2.0

On going upgrade project

Second level laboratories:

- Material preparation and characterization (Chemistry, physical chemistry)
- Characterization of mechanical and other physical properties (Mechanical engineering)
- Modeling, simulation and Visualization (Mathematical physics, statistical physics)
- 4. Physical Prototyping Lab (Mechanical engineering)
- 5. Advanced surface spectroscopy and microscopy (Surface Physics)
- **6.** Biological samples treatment (Biology, biophysics)

ZnTPP self-assembly on Au(111)

STAR 1: A HARD X-RAY BEAM SOURCE

STAR 1: A HARD X-RAY BEAM SOURCE

Design of STAR 1 source operating modes:

- high-flux / moderate-monochromaticity → Medical imaging;
- moderate-flux / monochromatic mode → Better detection/dose performance;
- short-and-monochromatic → Pump-and-probe experiments.

(Pseudo-)coherence →

Phase-contrast imaging and diffraction-enhanced imaging.

$$L_s = \frac{\lambda l}{2S} = \frac{\lambda}{2\alpha}$$

Operating modes	High-flux	Small-BW	Short-pulse
Photon energy (keV)	20-85	20-85	40-85
Photons/s (@100 Hz)	3*10 ⁹	3*10 ⁸	3*10 ⁶
Bandwidth (rms)	10%	1%	1%
Rms Pulse lenght (ps)	1-5	1-5	<0.2

- X-ray energy **tuneable** on a wide range up to hard X-rays
- Controlled Band Width
- mrad divergence (controlled)
- Time structure on the ps-scale
- Circular **µm-sized x-ray source**
- Linear polarization up to 99% pulse-to-pulse switchable
- Simple evolution to higher energies and fluxes

> A. Bacci et al., The Star project, Proceedings of IPAC2014, Dresden, Germany

> A. Bacci et al., Status of the Star project, Proceedings of IPAC2016, Busan, Korea

> A. Bacci et al., Photoinjector Emittance Measurement at STAR", Proceedings of IPAC2017, Copenhagen, Denmark

The upgrade will be developed on three main lines:

1. Increase in flux N_{ph} , from 10^9 up to 10^{11} photons/sec with the same relative bandwidth $\Delta E_{ph}/E_{ph}$ equal to 5%

$$N_{ph} \propto \frac{U_L Q_b}{h \nu_L \sigma_0^2} f$$

- increase in energy of the laser pulse U_L = 150 mJ → U_L = 1 J
- increase in charge per bunch $Q_b = 200 \text{ pC} \rightarrow 500 \text{ pC}$ (best effort 2nC)
- Better focussing $\sigma_0 \rightarrow 25 \,\mu\text{m}$

STAR HE-Linac Complete Detailed Design Report

A. Bacci¹, L. Faillace², L. Pellegrino², D. Alesini², S. Bini², F. Cardelli², G. Catuscelli², F. Chiarelli², I. Drebot¹, A. Esposito², A. Gallo², A. Ghigo², D. Giannotti¹, V. Petrillo^{1,3}, L. Piersanti², E. Puppin^{1,4}, M. Rossetti Conti¹, L. Serafini¹, A. Stella², A. Vannozzi², S. Vescovi²

1 - INFN, Sezione di Milano e LASA 2 - INFN, Laboratori Nazionali di Frascati 3 - Università degli Studi di Milano 4 - Politecnico di Milano

Other beam parameter	Value	
Max Beam energy [MeV]	140.05	
Beam charge [pC]	500	
σx, σy [μm]	25.0, 23.7	
σz [μm]	667	
εx, εy [μm]	1.2, 1.3	
relative energy spread [%]	0.2	

The upgrade will be developed on three main lines:

- Increase in flux N_{ph}, from 10⁹ up to 10¹¹ photons/sec with the same relative bandwidth $\Delta E_{ph}/E_{ph}$ equal to 5%;
- Increasing the energy of E_{ph} photons from 85 keV up to about 350 keV

$$v_{T} = v_{0} \frac{1 - \beta \cos \alpha_{L}}{1 - \beta \cos \theta} \approx v_{0} \frac{4\gamma^{2}}{1 + \theta^{2}\gamma^{2}} \approx 4\gamma^{2}v_{0}$$

$$for \ \alpha_{L} = \pi \ (scatt. \ angle) \qquad and$$

$$\theta <<1 \quad or \ \theta = 0 \ (obs. \ angle)$$

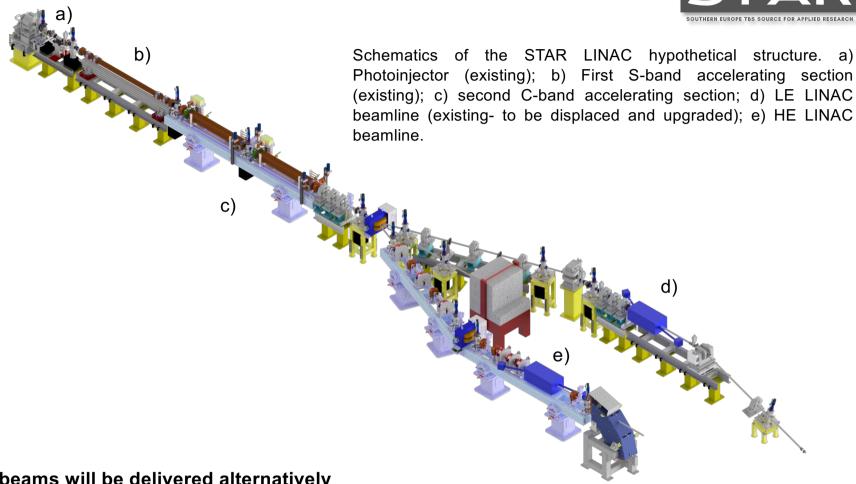
The upgrade will be developed on three main lines:

- 1. Increase in flux N_{ph} , from 10^9 up to 10^{11} photons/sec with the same relative bandwidth $\Delta E_{ph}/E_{ph}$ equal to 5%;
- 2. Increasing the energy of E_{ph} photons from 85 keV up to about 350 keV
- 3. A second beamline (HE LINAC) added to the present one (LE LINAC)

	HE-LINAC	LE-LINAC	
Energy Range	40÷135 MeV	23÷65 MeV	
Repetition rate	100 Hz		
RF technology	S-band & C-band		
RMS norm. transverse emittance	2 mm·mrad (best effort 1 mm mrad)		
Energy spread	smaller than 0.5% (best effort 0.2%)		
Bunch charge	Min 100 – Max 500 pC (best effort 2 nC)		
Bunch length	shorter than 5 psec		
Accelerating sections	S-band symmetrized fed TW + 2 C-band TW		
RF power stations	S-band (2.856 GHz), 55 MW, 2 μs pulse, Solid state HV		
	2x C-band (5712 MHz), 40 M	W, 1 μs pulse, Solid state HV	
Spot size at the interaction points	40 μm (best effort 20 μm)		

Schematics of the STAR LINAC hypothetical structure. a) Photoinjector (existing); b) First S-band accelerating section (existing); c) second C-band accelerating section; d) LE LINAC beamline (existing- to be displaced and upgraded); e) HE LINAC beamline.

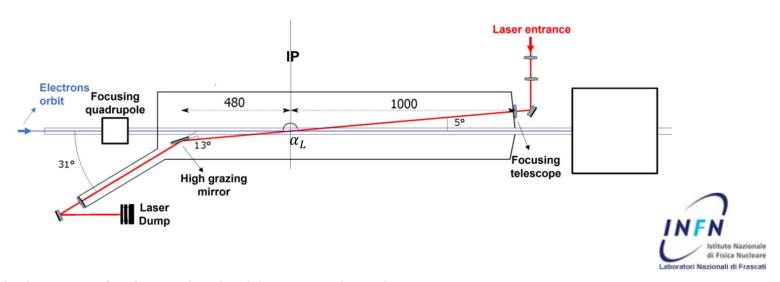
X-ray Beam characteristics


		HE-LINAC	LE-LINAC
Energy Range	keV	32÷350	17÷85
Band Width	%	2÷5	<1÷5
Divergence	mrad	2÷10	1÷10
Maximum Flux	ph/s /10mrad	10^11	10^11
Source dimensions	μm	<20÷40	<20÷40
Source-exp. station distance	m	<12	<12
Beam size at sample	mm x mm	100x100	70x70**

Beamlines distance: > 4 m

^{*} Laser second harmonic

- two beams will be delivered alternatively
- interaction points located as close as possible to the bunker walls.
- front ends placed on the wall provided with the beam stop systems.
- focusing optics placed on the beam-transport line
- distance between the HE_LINAC and LE_LINAC Beamlines is 4 m.



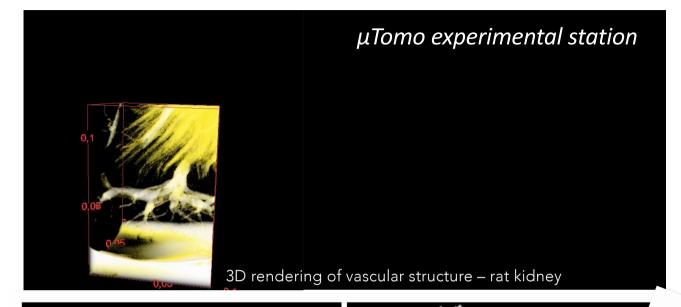
Laser upgrade:

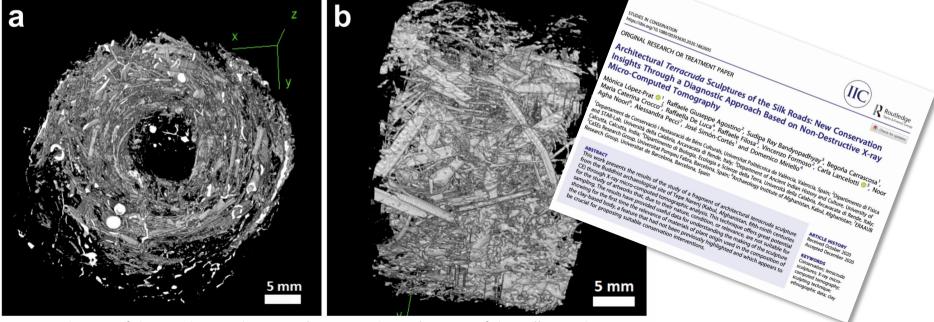
Parameter	1 st phase	2 nd phase	2 nd phase
	Impact laser	Impact laser	Branch line for
			photoinjector
Repetition rate (Hz)	100	100	100
Output Energy (mJ)	150 (IR)	1000 (IR)	3 (UV)
Short Term Energy Stability (rms)	5 %	5 %	
Long Term Energy Stability (P2P)	< 8 %	< 8 %	
Wavelength (nm)	1000 < I <1050	1000 < I <1050	<265 nm
Jitter (rms) 10 Hz – 10 KHz	< 1 ps	< 1 ps	250fs
Bandwidth	< 1 nm	< 1 nm	
Pulse duration (ps FWHM)	5	5	5
Strehl Ratio	0.8	0.8	
M^2	1.4	1.4	

Impact chambers

Schematic layout of a hypothetical impact chamber.

Laser (Red line) and electron (blue line) are depicted as well as the motorized mirrors.


The impact chambers are designed to control both the **focusing** and the **impact angle** α_L of the laser beam on the electron trajectory.


The control of the impact angle through a motorized mirrors system will permit a **fine tuning** of the generated X-ray energy.

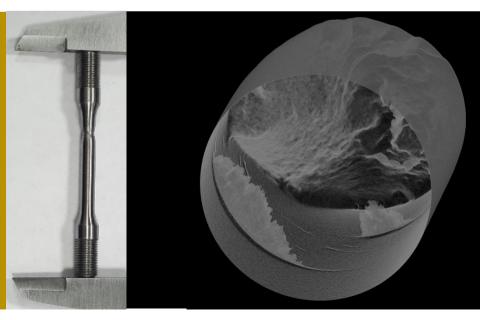
STAR 1: MICROTOMOGRAPHY BEAMLINE

3D rendering of the voids – Architectural terracruda sculptures of the Silk Roads

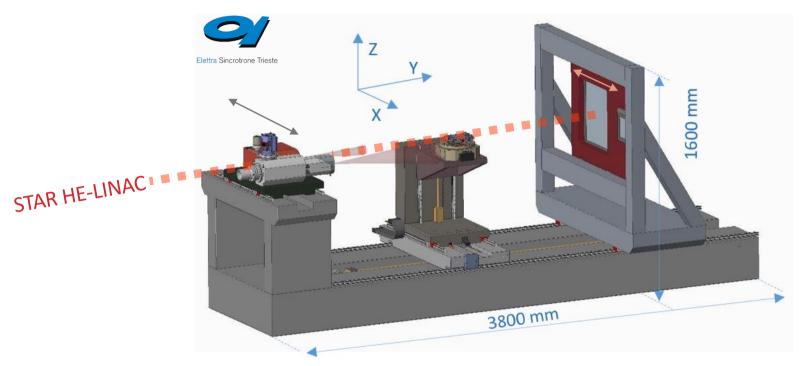
STAR 1: MICROTOMOGRAPHY BEAMLINE

μTomo 1

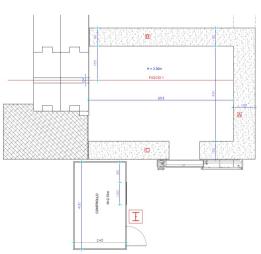
- Microfocus X-ray source (150 kV)
- Sample-holder (2 translations + 2 rotations)
- 2D Detector for high/low energy X-rays
- Detector stage (1 translation + 1 tilt)
- Data acquisition system

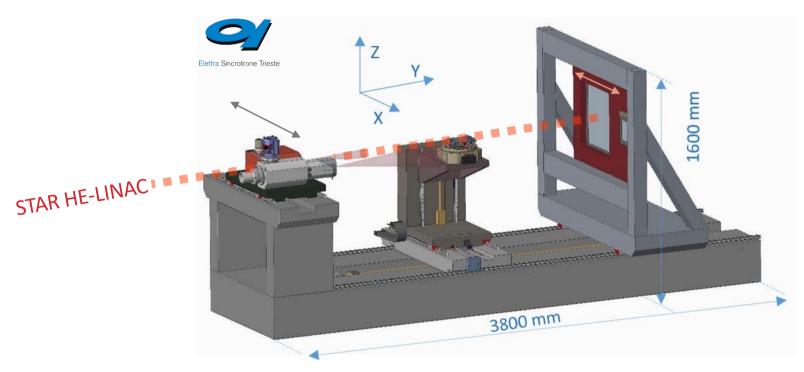


Case 3: Hydrogen embrittlement in steel


Field: *Metallurgy*

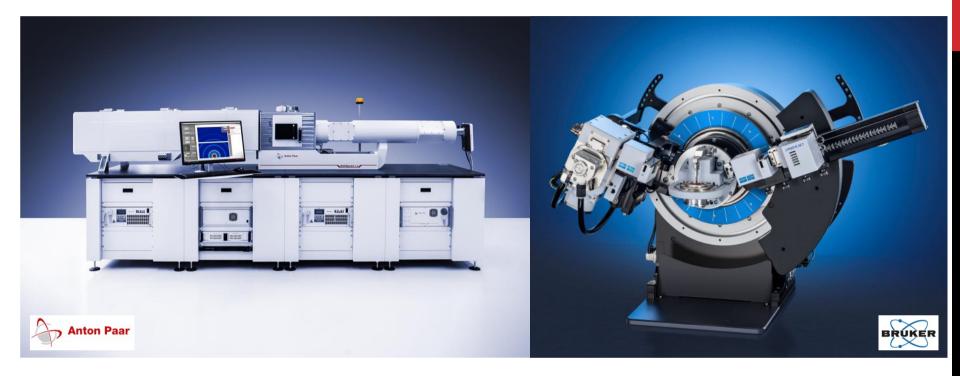
User: Rina Consulting SpA


STAR 2: High Energy μTOMO 2 BEAMLINE


X-RAY MICROTOMOGRAPHY UPGRADE

- Designed for the 80-350 keV range
- New x-ray transport system
- **Double X-ray 2D detection system** for high energy X-rays (15-70µm pixel size).
- Heavy load 6-degree of freedom sample stage
- High power 190 keV microfocus source (alternative to the STAR HE-LINAC beam)
- New safety system
- New data acquisition ad treatment **software and hardware**

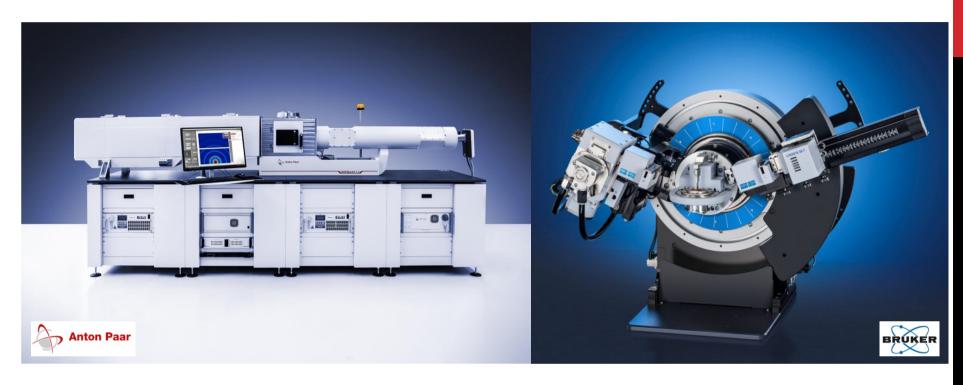
STAR 2: High Energy μTOMO 2 BEAMLINE


μTomo 2 targets

- Cultural Heritage studies
- Mechanics and metallurgy
- Microelectronics
- In-situ and operando devices
- Palaeontology
- Earth science

- > Public and providing stransfer details and the contract of t
- ► **Alterino diagraphica diver**eceptura di tiyosheck
- > **Bajidsoigsauckaripits**d materials

STAR 2: SOFTX - X-RAY MICROGRAPHY/SAXS BEAMLINE

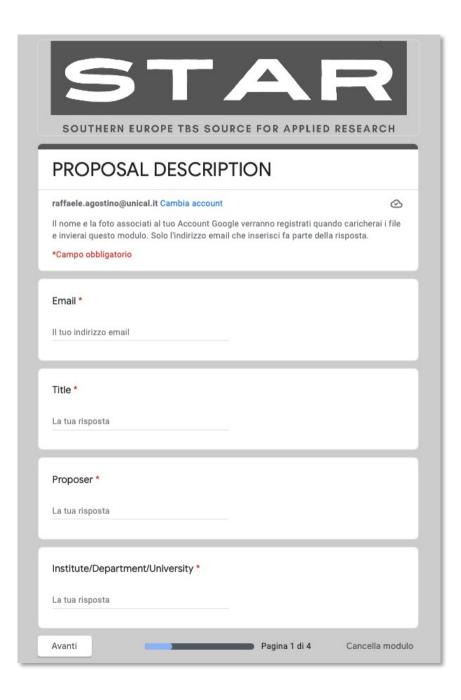

NEW X-RAY MICROGRAPHY AND SAXS END-STATION

- Designed for the 17-80 keV range
- New x-ray transport system
- Fully equipped **SAXS** experimental beamline (with conventional source alternative to STAR LE-LINAC beam)
- μgraphy and μCT station for low density materials (Polimers, Biomaterial, ...)
- High power 120 keV microfocus source (alternative to the STAR LE-LINAC beam)
- New safety system
- New data acquisition ad treatment software and hardware

STAR 2: SOFTX - X-RAY MICROGRAPHY/SAXS BEAMLINE

X-RAY MICROGRAPHY AND SAXS TARGETS

Where molecules and their aggregates matters


- Materials science
- production of nanoparticles
- catalysis
- separation technology
- Life sciences
- drug/DNA delivery systems
- pharmaceutical applications
- food

- Physics/chemistry
- liquid crystals
- soft matter

STAR 2: USER OFFICE

Virtual User Office

(under construction)

- Beamtime request
- Long-term proposals
- Multi-lab access
- Fast track & preliminary tests
- Industrial and academic users
- Institutional collaboration