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X-ray Photo-electron Spectroscopy (XPS)
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XPS from the historical Swedish perspective

* Nobel Prize 1924, Manne Siegbahn "for his discoveries and
research in the field of X-ray spectroscopy."

“Siegbahn has in the course of ten years’ assiduous and systematic
labour devised a series of improvements and new designs dealing with
almost every detail of the various apparatus and so constantly
Increased the exactitude of his measurements”

* Nobel Prize 1981, Kal M. Siegbahn "for his contribution to the
development of high-resolution electron spectroscopy."

“The decisive step at that time was taken when Kai Siegbahn together

with his co-workers began to analyse photo-electrons with the aid of a
high-resolution, double-focusing spectrometer.”
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XPS nowadays

S.Neppl at all, J. of Electron SXR instrument at the LCLS
Spectroscopy, vol. 200, April

2015, Pages 64
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Probing Transition States in Surface Reactions

reactant

amount

presented by A.Nilsson
at the SXL workshop
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Transition state region in catalytic CO oxidation on Ru
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H. Ostrom, et al., Science 347, 978 (2015)
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Technological revolution
In X-ray generation
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Some historical remarks: 1944-1945

On the Maximal Energy Attainable in a Betatron On Radiation by Blectfos
EHLV:.H S:\:kgs?g% E)OPnL]EIriir;ZZurJune 1944 in a Betatron
B (dE/dX) - 2/ 3 (32/?%62) 2(EH/ mcg) % J. Schwinger
1945
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The most striking thing about this result is the absence of any marked dependence on energy, at least
for small n, while the total power contains the very large factor (E/mc?)*. The conclusion is irresistible
that an enormous number of harmonics must contribute to the total radiation for E/mc? > 1. To verify
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Synchrotrons worldwide
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From W. Xu, Y. Liu, A. Marcelli, P.P. Shang, W.S. Liu, in Materials Today Physics, Volume 6, 2018
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Technological revolution in X-ray generation

electron lasers / EuXFEL
2017
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Valerio Cerantola et al 2021 J. Phys.: Condens. Matter 33 274003
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Synchrotrons & FELs vs X-ray tubes
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X-Ray Beam

X-ray tube

15 Nobel Prizes...

* wide availability

e ease of use

* capability to test new ideas
without the barriers of
schedule, travel and expenses

Synchrotrons & FELs are a fantastic
tool but a high access price...

Having science without barriers calls for

a femtosecond laboratory X-ray source
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[1: Can we bring the power
of synchrotrons and FELSs to
a university lab?
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Inverse Compton scattering source
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Commercial compact synchrotron: Lyncean Tech.

Stored electron energy (max)  ~100 MeV 100 Meters
Optical cavity wavelength [2] 2um

X-ray energy range (keV) ~30-90

?lrllf I:rtnpaejimm2 0.1%BW) ~4 X107 @90 keV

Aperture [P] Smaller  Larger

Divergence (mrad) 1 4

Bandwidth (FWHM) 15-25% 6-15%

Flux @ max energy (ph/s) ~4x 1011 ~4x1012

Advanced
O pe rated at Photon Source
Munich
university

Lyncean Compact
Light Source

1 Meter

X-ray pulse length ~50 ps
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Compact synchrotron technology

RF photocathode gun

UV laser .
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Project at Arizona State University
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Can we make a step further to a develop
a high-repetition-rate fs X-ray laser?
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Enabling technologies for a compact X-ray laser
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Enabling technologies for a compact X-ray laser
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Towards Angstrém Laser @ FREIA

e N 4
oW The research and development that we are
ianjficance for Swedish scientific research

Angstrom Laser:
1-4 keV

10-100 fs

1-100 kHz

> 10° ph/s

. Superconducting
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Enabling technologies for a compact X-ray laser
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From gravitational collapse to high-brightness beams

= 05(2)\/1 — 12 /R?

\/ ql

325 MHz
CW ~ 25 kW
420 keV

laser ellipsoidal
bunch
cathode A. Opanasenko et al.
O.J. Luiten, PRL 094802 (2004) arXiv:2105.07923
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Blow-out generation of high-brightness beams
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Superconducting RF technology
m) 30 billion electron x volts

E field at time ¢,

Beam
> 7 direction of
propagation

E field at time t,+7;/2
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FREIA: Facility for Research Instrumentation & Accelerator Development

State-of-the-art EQuipment

control room
- equipment controls
- data acquisition

cryogenics
- liquid helium
- liquid nitrogen

Competent and motivated staff

collaboration of physics (IFA)
and engineering (Teknikum).

Funded by
KAWS,
Government,
Uppsala Univ. 3 bunkers
with test stands

radio-frequency (RF) horizontal
power sources cryostat

Total budget
~200 MSEK
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FREIA — a unique accelerator laboratory

High Power RF Amplifiers
Solid-state & Vacuum Tube

linearcollider.org/M.Grecki
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kW-class IR laser: thin-disk Yb:YAG technology

Thin-disk Yb:YAG lasers from
TRUMPF at 1 um:

o Off-the-shelf: 0.75 kW, 20-100
kHz, up to 150 mJ, < 1 ps

 Demonstrated: 1.9 kW, 20 kHz,
upto 95 mJ, <1 ps

* On special order: 5 kW, 100
kHz, 50 mJ, <1 ps
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Detection of photo-electrons
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Nature Mat. 16, 615 (2017)
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https://doi.org/10.1038/nmat4875

Key parts of the accelerator

(1) RF gun (2) nanopatterning: ASU concept (3) booster

Uniform distribution

of electrons .
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ASU nanopatterning concept
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Target parameters of our incoherent X-ray source

electron bunch charge Qp 16 pC
= number of electrons N, 108
5 E bunch energy Uy 7.6 MeV
-2 5 relative energy spread 0y 1073
o E rms bunch duration T 12.5 fs
E i bunch emittance €n 0.08 mm mrad
5 rms bunch size o 3.5 um
geometrical beta-function By 2.3 mm
laser wavelength Ap 1.0 um
= v rms laser pulse duration Ty 1 ps
B % rms laser beam size oy, 4.9 um
; E 1Ray1e1gh length Zp 0.3 mm
o i aser pulse energy Er 50 m]
= a, undulator parameter K 0.14
laser rep. rate f1 100 kHz
radiation wavelength Ay 1 nm
= rms X-ray pulse duration Ty 12.5 fs
T rms X-ray beam size Ox 2.9 um
: rms X-ray beam divergence Oy 0.5 mrad
& Full bandwidth BW 0.7%
> X-ray photons/shot Ny 5.9 104
X-ray photons/second/0.1%BW Fo 19 109
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Angstrom Laser

=3

electron bunch charge Q, 0.8 pC
g number of electrons N, 5106
E 5 bunch energy U, 7.53 MeV
o O relative energy spread d, 10~*
g E rms bunch duration T 50 fs
o 8 bunch emittance €, 0.03 mm mrad
- rms bunch size oy, 2 um
geometrical beta-function By 2 mm
laser wavelength Ar 1.0 um
s v rms laser pulse duration 77 1000 fs
E % rms laser beam size oy 49 um
s g Rayleigh length Zp 0.3 mm
A o laser pulse energy Er 50 m]
= & undulator parameter K 0.14
laser rep. rate 11 100 kHz
radiation wavelength A, 1 nm
% X-ray pulse duration Ty 50 fs
= rms X-ray beam size Oy 1.5 um
E rms X-ray beam divergence Oy 75 urad
> X-ray photons/shot/0.01%BW Nyno.01% 3104
X-ray photons/second/0.01%BW Foo1% 310°
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[11: a taste of fs X-ray science
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UPPSALA
UNIVERSITET

Workshop on
Science Opportunities with

Table-Top Coherent X-Ray Sources

Invited speakers:

Franz Kartner, CFEL, Hamburg

Jom Luiten, TU Eindhoven

Fulvio Parmigiani, Trieste University

o e ; . [ ) -
Kristina Edstrom, Uppsala University . pu
. o . . . . -
Laszlo Veisz, Umea University . . .. P - . ‘0
Photon Science Center, Uppsala University
photonscience.uu.se . . . . v

Workshop program and talks are available at:

https://indico.uu.se/event/688/

Vitaliy Goryashko


https://indico.uu.se/event/688/

Science opportunities

B drop photoemission

: provides access to
bulk properties,
e.g. in batteries

W»alyzer
ont cone Li

J. Maibach, et al., Nature Comm. 10, 3080 (2019)

Allows to discover novel complex
functional materials

“Materials Genome”
exploration of new
materials

Adopted from H. Durr talk
Vitaliy Goryashko
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Light absorption — -
Charge separation

Enables probing the charge separation across
X-ray buried interfaces in solar cell materials

Exploring chemical reactions and
catalysis at ambient conditions

t<0fs 300 fs 500 fs 800 fs

H. Ostrém, et al., Science 347, 978 (2015)

> 1ps
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Science opportunities (continued)

Core levels are sensitive probes of
electron correlations
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Access new non-thermal metastable
states in quantum materials
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Site-specific structural dynamics
probed by photoelectron diffraction

Theo.

Exp.

@ | Eg,a=5190 eV

Fedchenko et al. NJP 22, 103002 (2020)

OnA.



Expected science impact of a fs lab X-ray source

Impact
Topological electronics

Sustainable energy
production

Material discovery
acceleration
Understanding surface
contamination

Control of energy flows

How?
ARPES identification of the band topology of
surface states of a sample right after its synthesis

without breaking the ultrahigh vacuum.
Charge-carrier in nanostructures for solar fuels.
Angle resolved core-level spectroscopy of

organic photocells (damage-sensitive samples).
Examining samples without leaving the

ultrahigh vacuum environment.
Measuring the chemical states of surface species

via time-resolved ARPES.
Photodriven semiconductor-to-metal phase

transitions in surface layers.



The Uppsala-Stockholm research environment

ERC KAW |

Synergy UU Magnetism
Photovoltaics Batteries

KAW Materials Synthesis & Characterisation EU Battery

Scholars Flagship

Theory of Driven Systems

Structural Dynamics of Biological Systems

Catalysis Quantum Materials

Femtochemistry Correlated Electron Systems

SU KTH
KAW KAW
Catalysis Correlated
Electrons

Adopted from H. Durr talk



The Angstrom Laser project

- Builds on the strengths of UU’s instrumentation
tradition

- Provides the UU and national science community
with a complementary world-class research facilitly

- Enables novel discovery science by close
Integration with campus activities

- Aims to be a hub for education and innovation
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