
Neutrinos from the LHC: Neutral Current
Measurements and Electromagnetic Properties at

the FPF

Roshan Mammen Abraham 1

Pheno 2022, University of Pittsburgh
May 9-11, 2022

1rmammen@ostatemail.okstate.edu 1 / 29



FPF - Forward Physics Facility 1

Θ ∼ ΛQCD/TeV ∼ mrad , most of the QCD activity is in the
forward direction.

FPF will house experiments that will study neutrinos, long-lived
particles, milli-charged particles, dark matter, dark sector, cosmic
rays and more.
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Collider Neutrinos and Charged Current Events at
FASERν2

The LHC produces many νs in the far forward (low PT ) region from

meson decays in the ∼ [100GeV− few TeV] range.

First LHC neutrino candidate was reported in arXiv:2105.06197!!!

Charged Current (CC) cross-sections were studied in arXiv:1908.02310.
2
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Neutral Current Cross-Section at FASERν 3

▶ Here we present an analysis strategy to identify and reconstruct
Neutral Current (NC) interactions and hence constrain neutral
current ν cross-sections.

ν NC studies face two main obstacles at FASERν:

▶ The missing energy in the final state (carried away by the ν) makes
event energy reconstruction very difficult. This is a problem shared
by all ν NC studies.

▶ The main background for NC events at are

- CC events (one person’s treasure is another’s background). This
is a less severe problem.

- Neutral Hadrons (NH), mainly induced by µ’s.

3
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Events at FASERν
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Observables - Signal vs Background

We use a total of 10 observables to characterize an event.
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∆ϕMET = The azimuthal angle between the reconstructed missing
transverse momentum and the nearest track.
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Neural Network Results

We use two neural n/w’s in our study. The first classifier network
separates events into signal and background. Only the events classified as
signal are passed into the second regression n/w for energy estimation.
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Cross-Section Results

O/p of the NN’s gives us the number of reconstructed events in each
energy bin. This gives us size of statistical uncertainty on ν NC
interaction cross-section. The other source of uncertainty is the one on
incoming flux.
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Constraining NSI
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Neutrino Magnetic Moments

▶ Neutrino mixing parameters have been measured with
incredible precision in recent years.

▶ Electromagnetic properties of neutrinos can also be used to
probe new physics.

▶ SM prediction for neutrino magnetic moment is exactly
0, but non-zero neutrino masses implies non-zero
neutrino magnetic moment.

▶ Minimally-extending the SM with right-handed neutrinos can
give neutrinos a diagonal magnetic moment proportional to
their mass, µD

ν ∼ 10−19(mν
1ev)µB .

▶ Majorana neutrinos have an even smaller predicted value,
∼ 10−23µB .

▶ These predictions are several orders of magnitude smaller
than the present experimental and astrophysical upper
bounds, motivating our study of NMM using LHC neutrinos.
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Neutrino Magentic Moments - Experimental Signature

Ldipole ∼ µif
ν ν̄

iσµννf Fµν

A striking experimental signature of the magnetic moment
operator is an electron recoiling. Incoming active neutrinos
interact with the electrons in the target atom causing the electron
to recoil. We consider two cases:

▶ Initial (νi ) and final state (νf ) neutrinos are active SM
neutrinos.

▶ νf is a Heavy Neutral Lepton (HNL) a.k.a sterile neutrino, NR .
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Neutrino Magnetic Moments - Cross-Section Expression

A characteristic feature of neutrino magnetic moment interaction
is an enhancement in signal cross-section at low recoil
energies, dσ/dErec ∼ 1/Erec

For the scattering ναe
− −→ ναe

− we have,
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So if we have a source of neutrinos and a detector with
sufficiently low energy thresholds then we can study neutrino
magnetic moments. FPF!!!
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Active Neutrino Magnetic Moment4

ναe
− −→ ναe

−

10 2 10 1 100 101 102

Er [GeV]
10 45

10 43

10 41

10 39

10 37

10 35

d
/d

E r
 [c

m
2 /G

eV
]

= 3.9 * 10 7
B (DONUT)

= 10 8
B

= 10 9
B

E  = 1 TeV

FL
Ar

E

FA
SE

R
2

SM- ,
SM- e

SM-total

10 2 10 1 100 101 102 103

Er [GeV]
10 3

10 2

10 1

100

101

Ev
en

ts
 [1

/b
in

]

FL
Ar

E

FLArE10
 = 10 8 B

SM
e+SM
+SM
+SM

Left: The SM background has a flat distribution but the NMM
contribution is enhanced at low recoil energies. Right: Expected
number of SM and µνα + SM events at FLArE10.
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Active Neutrino Magnetic Moment

We employ a simple cut and count analysis with cuts
corresponding to Ethresh < Erec < 1 GeV.

Bounds on µνα :

DONUT5 bounds are at µντ < 3.9× 10−7µB . FLArE-10 can do
order of magnitude better.

5
arXiv:hep-ex/0102026
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Active to Sterile Neutrino Transition Magnetic Moment6
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Qualitatively it is the same as before so we can employ a similar cut
and count analysis. But sterile neutrinos can undergo decays.

6
Ahmed Ismail, Sudip Jana, Roshan Mammen Abraham, Neutrino up-scattering via the dipole portal at

forward LHC detectors, Phys.Rev.D 105 (2021).
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Active to Sterile Neutrino Transition Magnetic Moment

The decay length of NR in the lab frame is given by

ldecay = 16π
µ2
νM

4
N

√
E 2
N −M2

N , where EN = energy of the outgoing NR .

lprompt = minimum decay length for the decay vertex to appear
displaced, and hence distinguishable from the production vertex.

▶ ldecay > ldetector : NR decays outside the detector and the
decay vertex is not observable.

▶ lprompt < ldecay < ldetector : The decay vertex is sufficiently
displaced from the production vertex and results in
“double-bang” events.

▶ ldecay < lprompt : The decay occurs promptly, leading to an
electron and photon appearing to be produced at the same
point.
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Active to Sterile Neutrino Transition Magnetic Moment

Of the possible signatures above, we focus on those with a single
electron track emerging from the production vertex, with no
other nearby activity in the detector.

We discard events where the NR decays promptly, which could
have different backgrounds than the ones we consider.

We take lprompt to be the mean free path λ for pair production by
the photon in the detector material: λ = 4.5 mm (18 cm) for
FASERν2 (FLArE).

Loose (strong) cuts correspond to Ethresh < Erec < 10 (1) GeV.
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Active to Sterile Neutrino Transition Magnetic Moment
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The colored dotted lines show ldecay = ldetector for various detectors
assuming EN = 100 GeV, and the black dotted lines show ldecay = λ in
various detector materials. The red dashed line is from considering only
double bang events at FLArE-10.
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Neutrino Milli-charge

▶ Suppose SM neutrinos had a non-zero electric charge.

▶ It can couple to electrons via the photon, L ∼ Qαν̄αγµναA
µ.

▶ This results in a differential cross section given by
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Neutrino Milli-charge
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Neutrino Charge Radius

▶ Neutrinos have non-zero charge radii in the SM from radiative
corrections9.

〈
r2να

〉
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=
Gf

4
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2π2

[
3− 2 log
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m2
W

]
〈
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≃ 4.1× 10−33, 2.4× 10−33, 1.5× 10−33 cm2

▶ A BSM contribution to neutrino charge radius will modify the
weak interaction as10
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2
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Neutrino Charge Radius
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Summary

▶ There is much physics to be studied in the forward region at
LHC which the FPF aims to probe.

▶ We present here a strategy to overcome the usual difficulties
with NC studies using machine learning.

▶ The existence of nonzero neutrino magnetic moments is
implied by neutrino masses.

▶ The intense beam of ν’s, and detectors with low energy
thresholds and timing capabilities make FPF suited for such
searches.

▶ FPF also lends itself to the study of other electromagnetic
properties of neutrinos like milli-charge, and charge radius.
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Backup Slides - Event Generation and NN training

▶ Event Generation: We use Pythia to simulate ν-W and NH-W
collision. Other generators were compared with Pythia and were in
agreement.

▶ Event Selection: We select events with ≥ 5 charged tracks, each
charged track has energy ≥ 1 GeV, and θ < π/4.

▶ Detector Simulation:

- Track momentum and energy smearing.

- Identifies each visible track as electron, photon or a normal
track.

- Determines if the track interacts within the detector.

▶ NN training: We use 2 NN’s:

- Classifier N/W: Distinguishes signal(NC) and background(NH)
events.

- Regression N/W: Estimates the incoming particle energy. Only
on identified signal events.
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Backup Slides - Observables for NN training

▶ nch ∼ log Ehad

▶ nγ ∼ nπ0 ∼ log Ehad

▶
∑

Ech +
∑

Eγ ∼ Ehad

▶ phard ∼ Ehad

▶
∑

|1/θhad| ∼ Ehad

▶ tan θScone = (
∑

pT ,i )/(
∑

pi ) ∼ HT/Ehad

▶ tan θVcone = (
∑

p⃗T ,i )/(
∑

pi ) ∼ p⃗T/Ehad

▶ Largest Azimuthal Gap: The largest difference in azimuthal angle
between two neighbouring tracks, ∆ϕmax.

▶ Track-MET-Angle: The azimuthal angle between the reconstructed
missing transverse momentum, p⃗T and the nearest track, ∆ϕMET .
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Backup Slides - Detectors at FPF

At the FPF we focus on the following detectors:

▶ FASERν2 : 0.5 m x 0.5 m x 2 m tungsten detector with a
mass of 10 tonnes, and Eth = 300MeV.

▶ FLArE : Liquid argon detector with Eth = 30MeV and
dimensions
▶ 1 m x 1 m x 7 m with a mass of 10 tonnes.
▶ 1.6 m x 1.6 m x 30 m with a mass of 100 tonnes.

With a lower energy threshold we expect FLArE to be more
sensitive.
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Backup slides - Backgrounds at FPF

Before we study the prospects at FPF we have to reduce the
backgrounds.

▶ Muon-induced backgrounds: Muons can emit photons through
bremsstrahlung which subsequently undergo pair conversion.
If one of the resulting e± is missed, the event would mimic
our neutrino-electron scattering process. With timing,
however, these events could be associated with the
accompanying muon and vetoed.

▶ ν-induce backgrounds: The dominant background is ν
interactions where only an e recoils. This is both NC
interactions for all flavors, and CC interaction for νe only. We
use differences in kinematic distributions to reduce this
background.
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Backup slides - µνe
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Backup slides - µνµ
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