Related to: 22XX.XXXX, in ten days and 2205.03392

Pheno 2022 University of Pittsburgh

Graphs of dark motier helps from cosmological simulation and preferential attachment

Daneng Yang (UCR)

in collaboration with:

Hai-bo Yu (UCR)

May 10th, 2022

22

8 -(E)

28

Power-law networks from complex systems

Power-law network from dark matter halos

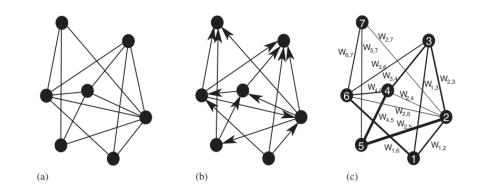
A modified Barabasi-Albert model for the hierarchical halo distribution.

Application and outreach

Power-law networks from

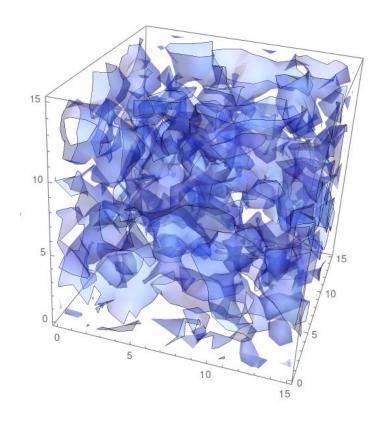
complex systems

complex systems



Network	Ν	γ	10 ⁰
		a a a	• 0 1997
AS2001	11,174	2.38	
Routers	228, 263	2.18	◆ 1999
Gnutella	709	2.19	$\Im_{\pi} 10^{-2}$
WWW	$\sim 2 \times 10^8$	2.1/2.7	(3) 10 ⁻²
Protein	2,115	2.4	10-3
Metabolic	778	2.2/2.1	
Math1999	57, 516	2.47	10^{-4} 10^{0} 10^{1} 10^{2} 10^{3}
Actors	225,226	2.3	Cumulative degree distributions of the
e-mail	59,812	1.5/2.0	Internet graphs for three different years.

Sources: S. Boccaletti et al. / Physics Reports 424 (2006) 175–308



Hierarchical substructure

- A subhalo has also a number of subhalos
- Zoom-in one host to resolve more subhalos

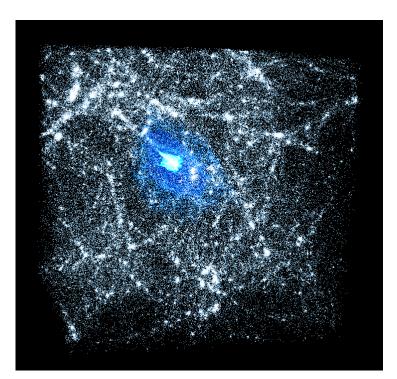
Cosmological simulations

Scale invariant initial power spectrum ($P_R \sim k^{-3}$)

- $\langle \varphi(x)\varphi(x')\rangle = \langle \varphi(\lambda x)\varphi(\lambda x')\rangle$
- Different scales evolve independently

Structure formation

- Cosmic web of halos
- Density peaks where collapsed DM acquires kinetic energy and re-establishes pressure equilibrium
- At small scales: $P_{\delta} \sim k^4 T(k)^2 P_R \sim k^{-3}$

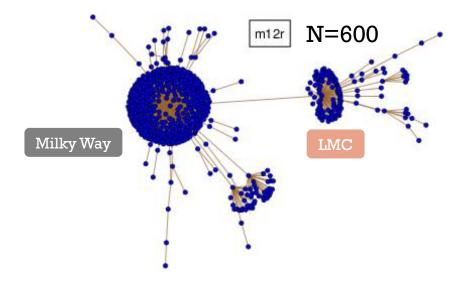


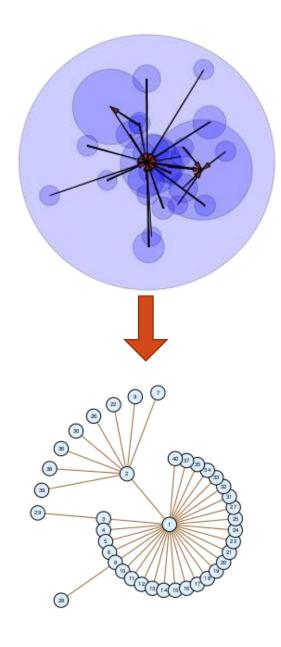
Power-law networks from dark matter halos

Example: N = 40 most massive halos FIRE2 m12r

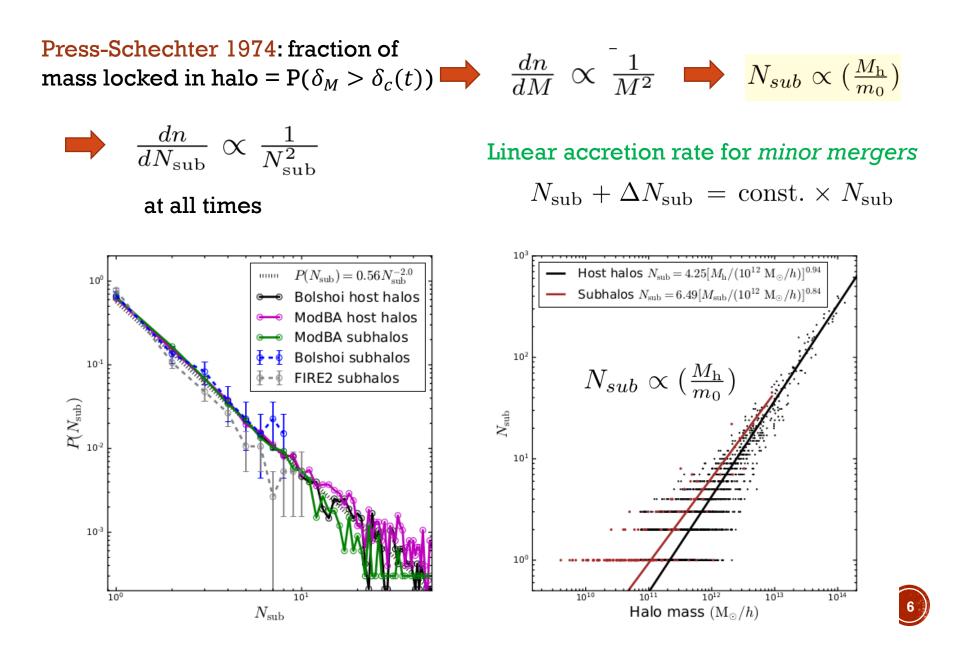
 $\{N_{\rm sub,1}, N_{\rm sub,2}, N_{\rm sub,3}, N_{\rm sub,8}\} = \{29, 8, 1, 1\}$

We use 11 MW-like zoomin FIRE2 simulations + BolshoiP cosmological simulation





Scaling behaviors of the N_{sub} (or k-1): from simulations & our model construction



Linear attachment leads to power-law networks of known exponents

Attachment
Probability =
$$\frac{A_i}{\sum_j A_j}$$

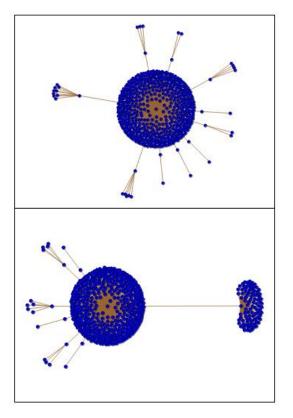
Barabasi-Albert model

- $A_k = k, k = 1, 2, 3, ..., N$
- Power index k=-3 at large k

P. L. Krapivsky, S. Redner, and F. Leyvraz, PRL 85 (2000) no. 21, 4629–4632

- $A_1 = \alpha' \ll 1$
- $A_k = k, k = 2, 3, ..., N$
- power index = $-(3 + \sqrt{1 + 8\alpha'})/2$ that approaches $-2 \text{ as } \alpha'$ approaches zero

Look alike, but not right... ($\alpha' = 1/60$)



$$A_{j,h} = \left(k_j^{-1} + (\alpha k_j^{\beta})^{-1}\right)^{-1}$$

Can explore this to generate the subhalo occupation number

We exploit the linear attachment rate to construct a network model

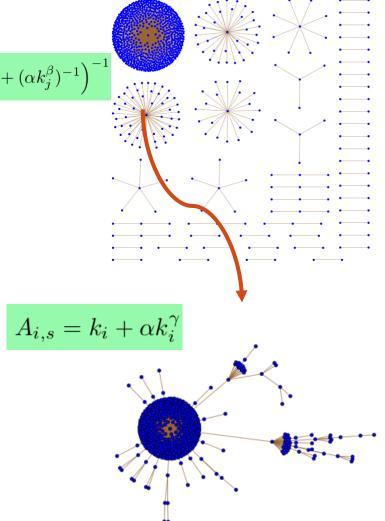
$$A_{j,h} = \left(k_j^{-1} + (\alpha k_j^{\beta})^{-1}\right)^{-1}$$

Two step ModBA

 α =0.05 && β = 2.2, γ (*N*) in general >2

Major mergers do not contribute to N_{sub}

- Low N_{sub} halos have their attachment rate suppressed
- Linear attachment at large N_{sub} • Tidal stripping
- Sub-subhalos erased or released to the host
- Linear attachment at low N_{sub} •

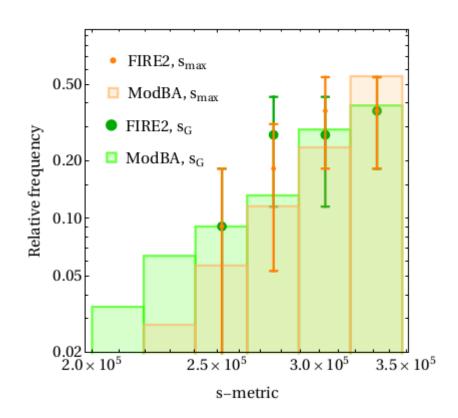


Scale-free networks

Properties (Li Lun, et al 2006)

- Power-law degree
 distribution
- Hub-like core
- Preserved by random degree-preserving rewiring
- Self-similar

$$s_G = \sum_{(i,j)\in E} k_i k_j.$$



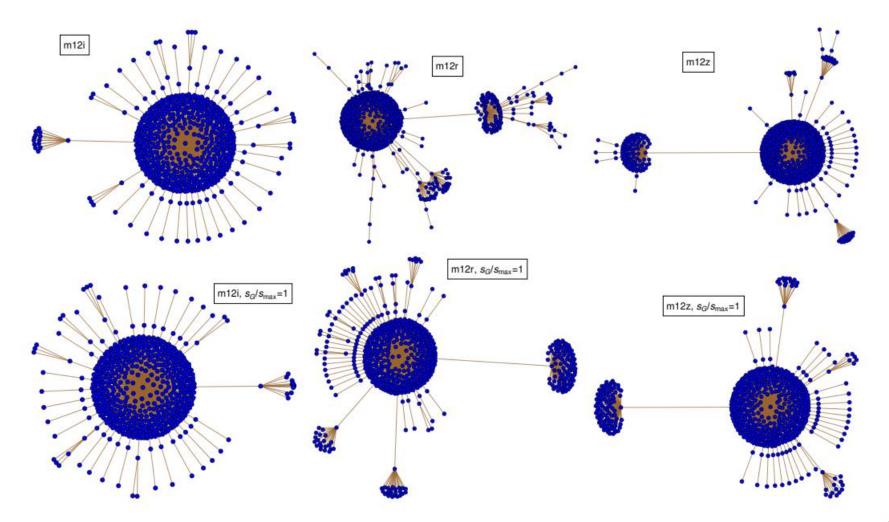
Given a degree sequence $D=\{k_1, k_2, ..., k_N\}$, one can construct a graph maximizing s_G (Li Lun, et al 2006)

- *s_G* / *s_{max}*=0.98 (**FIRE2 simulations**)
- *s_G* / *s_{max}*=0.93 (Model constructions)

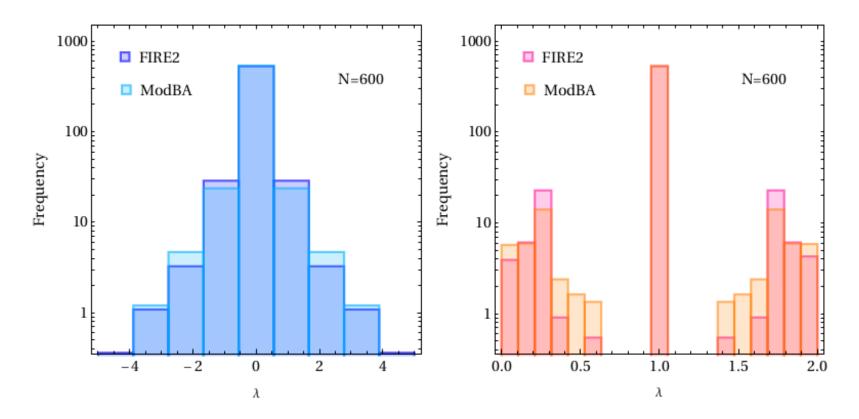
Preferential attachment naturally leads to scale-free networks: Early attachment advantage

Top: graphs reconstructed from FIRE2 simulations

Bottom: s_{max} graphs based on the corresponding degree sequence



Similarity => Scale free



Eigenvalue spectra of the adjacency matrix and the Laplacian matrix

- Adjacency matrix: $X_{ij} = X_{ji} = 1$ if i, j nodes are connected
- Normalized Laplacian matrix: $L=I-D^{-1/2}XD^{-1/2}$

Possible applications

Topological			
data analysis			

- Metrics based on the adjacency matrix
- Persistent homology
- Could have sensitivity to scale-violating physics

╋

Graph neural network

- Observables can be encoded into *weights* of nodes/links
- Graph Fourier Transformation + Low pass filter

 $\mathbf{h}_{u}^{(k+1)} = \text{UPDATE}^{(k)} \left(\mathbf{h}_{u}^{(k)}, \text{AGGREGATE}^{(k)} (\{ \mathbf{h}_{v}^{(k)}, \forall v \in \mathcal{N}(u) \}) \right)$

arXiv: 2205.03392

characteristic velocity and

cross sections of SIDM

• Has been applied to study halo shape and orientation (Jagvaral Y. et al, arXiv: 2204.07077)

SUMMARY

- Our graph model offers a simple way to understand the hierarchical structure of the dark matter distribution.
- Our knowledge of structure formation improves our understanding of other networks
- It is promising to apply graphbased techniques to explore small-scale physics.

A graph representation has been exploited for persistent homology studies based on the density fields

Fig source: T. Sousbie, arXiv:1009.4015

OUTREACH

Graph neural network

Persistent homology

Deep learning and preferential attachment

BACKUP

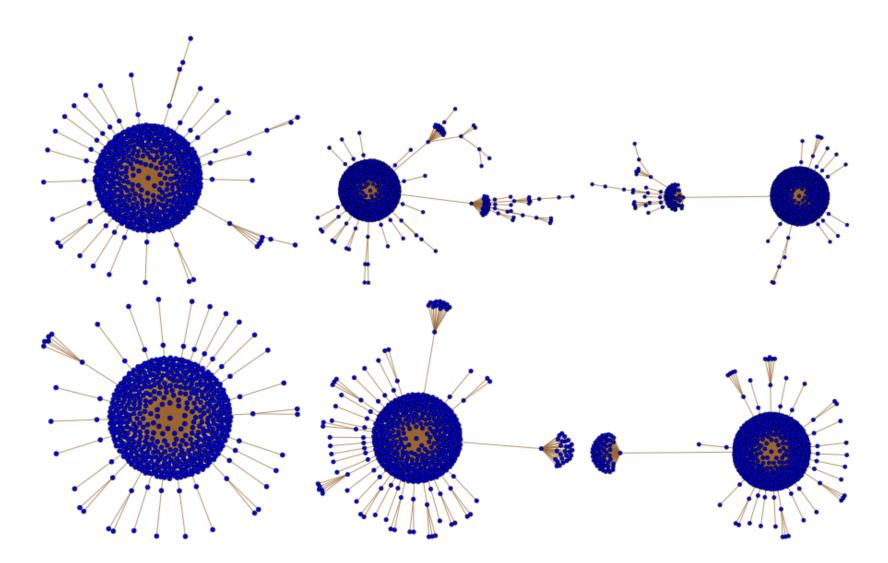
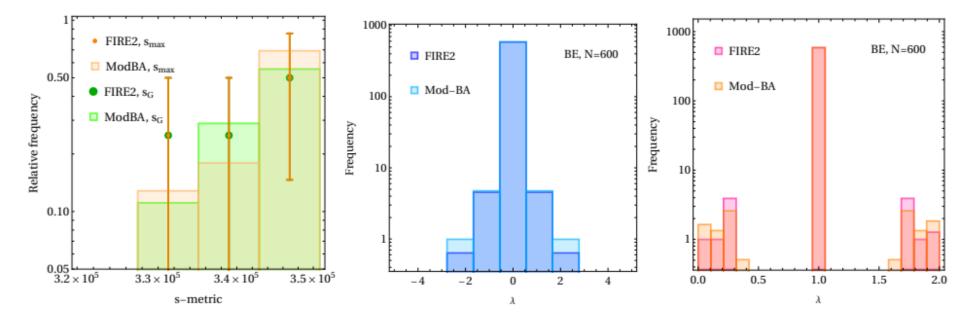


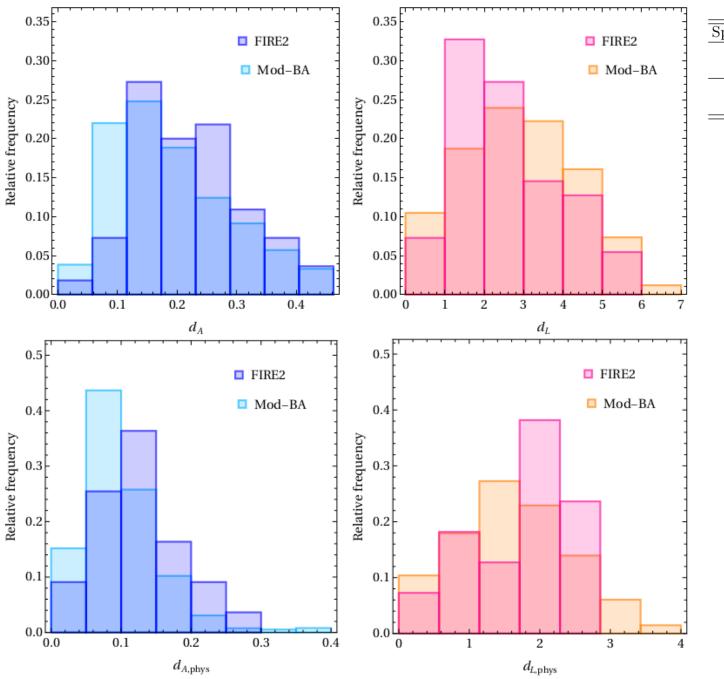
FIG. 5. Top: Example graphs of N = 600 generated using our Mod-BA model. They are selected by eye to mimic the ones in Fig.4 from a sample of a hundred graphs. Bottom: The s_{max} graphs constructed for the corresponding ones on the upper row.

A binding energy based construction

- Similar in-degree distributions
- Similar topological metrics

$$G\frac{m_H m_L}{r} > \mu \frac{|\mathbf{v}_L - \mathbf{v}_H|^2}{2}$$





Spectra distance	d_A	d_L
$-$ ModBA μ_M	0.21	2.9
ModBA σ_M	0.13	1.5
FIRE2 μ_F	0.22	
FIRE2 σ_F	0.094	1.3

