Simple, Interpretable Anomaly Detectors

Layne Bradshaw with Spencer Chang & Bryan Ostdiek

Based on arXiv: 2203.01343

Phenomenology 2022 Symposium

May 10, 2022

 It could be that new physics at the LHC is hiding in places we haven't looked.

 It could be that new physics at the LHC is hiding in places we haven't looked.

 It could be that new physics at the LHC is hiding in places we haven't looked.

- It could be that new physics at the LHC is hiding in places we haven't looked.
- Want to design broader, model agnostic searches.

- It could be that new physics at the LHC is hiding in places we haven't looked.
- Want to design broader, model agnostic searches.
- Anomaly detection is a popular unsupervised method.

Anomaly Detection with Convolutional Autoencoders

Compressed representation

https://blog.keras.io/building-autoencoders-in-keras.html

Anomaly Detection with Convolutional Autoencoders

Compressed representation

https://blog.keras.io/building-autoencoders-in-keras.html

Anomaly Detection with Convolutional Autoencoders

https://blog.keras.io/building-autoencoders-in-keras.html

May 10, 2022

Simulated Dataset From arXiv: 2007.01850

- Background: $pp \rightarrow jj$
- Top-like signals: $pp \to Z' \to t\bar{t}$ with $m_{Z'} = 1.3$ TeV, $m_t \in \{80, 174\}$ GeV
- Higgs-like signals: $pp \rightarrow HH, H \rightarrow hh, h \rightarrow jj$ with $m_H = 174$ GeV, $m_h \in \{20, 80\}$ GeV

• W-like signals: $pp \to W' \to WZ, W \to jj, Z \to \nu\bar{\nu}$ with $m_{W'} = 1.2$ TeV, $m_W \in \{59, 80, 120, 174\}$ GeV

Simulated Dataset From arXiv: 2007.01850

- Background: $pp \rightarrow jj$
- Top-like signals: $pp \to Z' \to t\bar{t}$ with $m_{Z'} = 1.3$ TeV, $m_t \in \{80, 174\}$ GeV
- Higgs-like signals: $pp \rightarrow HH, H \rightarrow hh, h \rightarrow jj$ with $m_H = 174$ GeV, $m_h \in \{20, 80\}$ GeV

May 10, 2022

• W-like signals: $pp \to W' \to WZ, W \to jj, Z \to \nu\bar{\nu}$ with $m_{W'} = 1.2$ TeV, $m_W \in \{59, 80, 120, 174\}$ GeV

Simulated Dataset From arXiv: 2007.01850

- Background: $pp \rightarrow jj$
- Top-like signals: $pp \to Z' \to t\bar{t}$ with $m_{Z'} = 1.3$ TeV, $m_t \in \{80, 174\}$ GeV
- Higgs-like signals: $pp \rightarrow HH, H \rightarrow hh, h \rightarrow jj$ with $m_H = 174$ GeV, $m_h \in \{20, 80\}$ GeV

May 10, 2022

• W-like signals: $pp \to W' \to WZ, W \to jj, Z \to \nu\bar{\nu}$ with $m_{W'} = 1.2$ TeV, $m_W \in \{59, 80, 120, 174\}$ GeV

Train a Neural Network, NN_n , on a set of inputs, X_n

Train a Neural Network, NN_n, on a set of inputs, X_n

Quantify how well NN_n matches the Autoencoder

Train a Neural Network, NN_n, on a set of inputs, X_n

Find the "next best" observable

Quantify how well NN_n matches the Autoencoder

Train a Neural Network, NN_n, on a set of inputs, X_n

Add the "next best" observable to X_n

Find the "next best" observable

May 10, 2022

Layne Bradshaw - University of Oregon

Train a Neural Network, NN_n, on a set of inputs, X_n

Add the "next best" observable to X_n

Find the "next best" observable

May 10, 2022

Layne Bradshaw - University of Oregon

Add the "next best" observable to X_n

Find the "next best" observable

May 10, 2022

Layne Bradshaw - University of Oregon

Train a Neural Network, NN_n, on a set of inputs, X_n

High-Level Neural Network

High-Level Neural Network

 Designed to regress the AE's anomaly score

High-Level Neural Network

• Designed to regress the AE's anomaly score

Paired Neural Network

High-Level Neural Network

• Designed to regress the AE's anomaly score

Paired Neural Network

 Designed to learn which of a pair of events the AE deems to be more anomalous

Iterative Matching Procedure

Method inspired by 2010.11998

Train a Neural Network, NN_n, on a set of inputs, X_n

Add the "next best" observable to X_n

Find the "next best" observable

May 10, 2022

Layne Bradshaw - University of Oregon

Decision Ordering

Ordering if they agree on which event is more anomalous.

• For a pair of events x_1 and x_2 , we say two networks have the same Decision

Decision Ordering

- For a pair of events x_1 and x_2 , we say two networks have the same *Decision Ordering* if they agree on which event is more anomalous.
- We can then average over all possible pairs of events to give us a summary statistic, the *Average Decision Ordering* (ADO).
- An ADO of 1 corresponds to one network ordering all events in exactly the same way as another, an ADO of 0.5 means there is no consistency in how one network orders events relative to another.

Iterative Matching Procedure

Method inspired by 2010.11998

Train a Neural Network, NN_n , on a set of inputs, X_n

Add the "next best" observable to X_n

May 10, 2022

Layne Bradshaw - University of Oregon

Quantify how well NN_n matches the Autoencoder

Find the "next best" observable

Finding the "Next Best" Observable

- Our set of observables are the Energy Flow Polynomials, a formally infinite set of jet substructure observables that form a discrete linear basis for all IRC safe observables. [arXiv: 1712.07124]
- Generalization of Energy Correlators, built on sums of momenta fractions and powers of angular distances.
- The EFP with the highest ADO on the pairs of events *misordered by* NN_n is the "next best" observable, and is added to our list of inputs.

Model ADOs

May 10, 2022

Model AUCs

Model AUCs

---- AE

Conclusion and Future Work

- Simple architectures and inputs can be used to match the decision orderings of a much more complex anomaly detector.
- Learning to correctly order background events transfers to correctly ordering a variety of signal events.
- Future work: How can we get an ADO closer to 1? More EFPs or something more complicated?
- Future work: How well does this method work with other starting anomaly detection architectures?

Backup Slides

Autoencoder Architecture

May 10, 2022

Decision Ordering

events, x_1 and x_2 is:

$$\mathsf{DO}[f,g](x_1,x_2) = \Theta\left(\left[f(x_1) - f(x_2)\right]\left[g(x_1) - g(x_2)\right]\right)$$

• Given two decision functions f and g, the Decision Ordering given a pair of

Decision Ordering

events, x_1 and x_2 is:

$$\mathsf{DO}[f,g](x_1,x_2) = \Theta\left(\left[f(x_1) - f(x_2)\right]\left[g(x_1) - g(x_2)\right]\right)$$

statistic, the Average Decision Ordering:

$$\mathsf{ADO}[f,g] = \int \mathrm{d}x_1 \mathrm{d}x_2$$

• Given two decision functions f and g, the Decision Ordering given a pair of

• We can then average over all possible pairs of events to give us a summary

 $p_1(x_1)p_2(x_2)DO[f,g](x_1,x_2)$

basis for all IRC safe observables.

$$z_a^{(\kappa)} = \left(\frac{p_T}{\sum_{b=1}^N p_{T,b}}\right)^{\kappa}$$

$$\theta_{ab}^{(\beta)} = \left(\Delta \eta_{ab}^2 + \Delta \phi_{ab}^2\right)^{\beta/2}$$

Formally infinite set of jet substructure observables that form a discrete linear

basis for all IRC safe observables.

$$z_a^{(\kappa)} = \left(\frac{p_T}{\sum_{b=1}^N p_{T,b}}\right)^{\kappa}$$

$$\theta_{ab}^{(\beta)} = \left(\Delta \eta_{ab}^2 + \Delta \phi_{ab}^2\right)^{\beta/2}$$

Formally infinite set of jet substructure observables that form a discrete linear

basis for all IRC safe observables.

$$z_a^{(\kappa)} = \left(\frac{p_T}{\sum_{b=1}^N p_{T,b}}\right)^{\kappa}$$

$$\theta_{ab}^{(\beta)} = \left(\Delta \eta_{ab}^2 + \Delta \phi_{ab}^2\right)^{\beta/2}$$

Formally infinite set of jet substructure observables that form a discrete linear

 $\longleftrightarrow \left(\theta_{ab}\right)^k$

basis for all IRC safe observables.

$$z_a^{(\kappa)} = \left(\frac{p_T}{\sum_{b=1}^N p_{T,b}}\right)^{\kappa}$$

$$\theta_{ab}^{(\beta)} = \left(\Delta \eta_{ab}^2 + \Delta \phi_{ab}^2\right)^{\beta/2}$$

Formally infinite set of jet substructure observables that form a discrete linear

EFPs Selected

	1	
EFP No.	EFP Multigraph	EFP Expression
1	•	$\sum_{a,b=1}^N z_a z_b \theta_{ab}$
54		$\sum_{a,b,c,d=1}^{N} z_a z_b z_c z_d \theta_{ab} \theta_{cd}$
60		$\sum_{a,b,c,d,e=1}^{N} z_a z_b z_c z_d z_e \theta_{ab} \theta_{ac} \theta_{de}$
63		$\sum_{a,b,c,d,e=1}^{N} z_a z_b z_c z_d z_e \theta_{ab} \theta_{ac} \theta_{bc} \theta_{de}$
70		$\sum_{a,b,c,d,e,f=1}^{N} z_a z_b z_c z_d z_e z_f \theta_{ab} \theta_{cd} \theta_{ef}$
72		$\sum_{a,b,c,d,e,f=1}^{N} z_a z_b z_c z_d z_e z_f \theta_{ab} \theta_{bc} \theta_{cd} \theta_{ef}$
74		$\sum_{a,b,c,d,e,f=1}^{N} z_a z_b z_c z_d z_e z_f \theta_{ab}^2 \theta_{cd} \theta_{ef}$
M89 10, 2	2022	$\sum_{a z_b z_c z_d z_e z_f z_g \theta_{a}} \frac{N}{Bradsha}$

naw - University of Oregon

