Simple, Interpretable Anomaly Detectors

Layne Bradshaw with Spencer Chang \& Bryan Ostdiek
Based on arXiv: 2203.01343

Phenomenology 2022 Symposium

Introduction

- It could be that new physics at the LHC is hiding in places we haven't looked.

Introduction

- It could be that new physics at the LHC is hiding in places we haven't looked.

Introduction

- It could be that new physics at the LHC is hiding in places we haven't looked.

Introduction

- It could be that new physics at the LHC is hiding in places we haven't looked.
- Want to design broader, model agnostic searches.

Introduction

- It could be that new physics at the LHC is hiding in places we haven't looked.
- Want to design broader, model agnostic searches.
- Anomaly detection is a popular unsupervised method.

Anomaly Detection with Convolutional Autoencoders

https://blog.keras.io/building-autoencoders-in-keras.html

Anomaly Detection with Convolutional Autoencoders

https://blog.keras.io/building-autoencoders-in-keras.html

Anomaly Detection with Convolutional Autoencoders

https://blog.keras.io/building-autoencoders-in-keras.html

Simulated Dataset

From arXiv: 2007.01850

- Background: $p p \rightarrow j j$
- W-like signals: $p p \rightarrow W^{\prime} \rightarrow W Z, W \rightarrow j j, Z \rightarrow \nu \bar{\nu}$ with $m_{W^{\prime}}=1.2 \mathrm{TeV}, m_{W} \in\{59,80,120,174\} \mathrm{GeV}$
- Top-like signals: $p p \rightarrow Z^{\prime} \rightarrow t \bar{t}$ with $m_{Z^{\prime}}=1.3 \mathrm{TeV}, m_{t} \in\{80,174\} \mathrm{GeV}$
- Higgs-like signals: $p p \rightarrow H H, H \rightarrow h h, h \rightarrow j j$ with $m_{H}=174 \mathrm{GeV}, m_{h} \in\{20,80\} \mathrm{GeV}$

Simulated Dataset

From arXiv: 2007.01850

- Background: $p p \rightarrow j j$
- W-like signals: $p p \rightarrow W^{\prime} \rightarrow W Z, W \rightarrow j j, Z \rightarrow \nu \bar{\nu}$ with $m_{W^{\prime}}=1.2 \mathrm{TeV}, m_{W} \in\{59,80,120,174\} \mathrm{GeV}$
- Top-like signals: $p p \rightarrow Z^{\prime} \rightarrow t \bar{t}$ with $m_{Z^{\prime}}=1.3 \mathrm{TeV}, m_{t} \in\{80,174\} \mathrm{GeV}$
- Higgs-like signals: $p p \rightarrow H H, H \rightarrow h h, h \rightarrow j j$ with $m_{H}=174 \mathrm{GeV}, m_{h} \in\{20,80\} \mathrm{GeV}$

Background

80 GeV W

174 GeV Top

80 GeV Higgs

Simulated Dataset

From arXiv: 2007.01850

- Background: $p p \rightarrow j j$
- W-like signals: $p p \rightarrow W^{\prime} \rightarrow W Z, W \rightarrow j j, Z \rightarrow \nu \bar{\nu}$ with $m_{W^{\prime}}=1.2 \mathrm{TeV}, m_{W} \in\{59,80,120,174\} \mathrm{GeV}$
- Top-like signals: $p p \rightarrow Z^{\prime} \rightarrow t \bar{t}$ with $m_{Z^{\prime}}=1.3 \mathrm{TeV}, m_{t} \in\{80,174\} \mathrm{GeV}$
- Higgs-like signals: $p p \rightarrow H H, H \rightarrow h h, h \rightarrow j j$ with $m_{H}=174 \mathrm{GeV}, m_{h} \in\{20,80\} \mathrm{GeV}$

Iterative Matching Procedure
 Method Inspired by Faucett, Thaler, Whiteson [2010.11998]

Train a Neural Network, NN_{n}, on a set of inputs, X_{n}

Iterative Matching Procedure

 Method Inspired by Faucett, Thaler, Whiteson [2010.11998]

 Method Inspired by Faucett, Thaler, Whiteson [2010.11998]}

Train a Neural Network, NN_{n}, on a set of inputs, X_{n}

Quantify how well NN_{n} matches the Autoencoder

Iterative Matching Procedure

 Method Inspired by Faucett, Thaler, Whiteson [2010.11998]

 Method Inspired by Faucett, Thaler, Whiteson [2010.11998]}

Train a Neural Network, NN_{n}, on a set of inputs, X_{n}

Quantify how well NN_{n} matches the Autoencoder

Find the "next best" observable

Iterative Matching Procedure

 Method Inspired by Faucett, Thaler, Whiteson [2010.11998]

 Method Inspired by Faucett, Thaler, Whiteson [2010.11998]}

Train a Neural Network, NN_{n}, on a set of inputs, X_{n}

Add the "next best" observable to X_{n}
Quantify how well NN_{n} matches the Autoencoder

Find the "next best" observable

Iterative Matching Procedure

 Method Inspired by Faucett, Thaler, Whiteson [2010.11998]

 Method Inspired by Faucett, Thaler, Whiteson [2010.11998]}

Train a Neural Network, NN_{n}, on a set of inputs, X_{n}

Add the "next best" observable to X_{n}
Quantify how well NN_{n} matches the Autoencoder

Find the "next best" observable

Iterative Matching Procedure

Method Inspired by Faucett, Thaler, Whiteson [2010.11998]

Add the "next best" observable to X_{n}
Quantify how well NN_{n} matches the Autoencoder

Find the "next best" observable

Network Architectures

High-Level Neural Network

Network Architectures

High-Level Neural Network

- Designed to regress the AE's anomaly score

Network Architectures

High-Level Neural Network

Paired Neural Network

- Designed to regress the AE's anomaly score

Network Architectures

High-Level Neural Network

- Designed to regress the AE's anomaly score

Paired Neural Network

- Designed to learn which of a pair of events the AE deems to be more anomalous

Iterative Matching Procedure

Method inspired by 2010.11998 Train a Neural Network, NN_{n}, on a set of inputs, X_{n}

Add the "next best" observable to X_{n}
Quantify how well NN_{n} matches the Autoencoder

Find the "next best" observable

Decision Ordering

- For a pair of events x_{1} and x_{2}, we say two networks have the same Decision Ordering if they agree on which event is more anomalous.

Decision Ordering

- For a pair of events x_{1} and x_{2}, we say two networks have the same Decision Ordering if they agree on which event is more anomalous.
- We can then average over all possible pairs of events to give us a summary statistic, the Average Decision Ordering (ADO).
- An ADO of 1 corresponds to one network ordering all events in exactly the same way as another, an ADO of 0.5 means there is no consistency in how one network orders events relative to another.

Iterative Matching Procedure

Method inspired by 2010.11998

$$
\text { Train a Neural Network, } \mathrm{NN}_{n} \text {, on a set of inputs, } X_{n}
$$

Quantify how well NN_{n} matches the Autoencoder

Find the "next best" observable

Finding the "Next Best" Observable

- Our set of observables are the Energy Flow Polynomials, a formally infinite set of jet substructure observables that form a discrete linear basis for all IRC safe observables. [arXiv: 1712.07124]
- Generalization of Energy Correlators, built on sums of momenta fractions and powers of angular distances.
- The EFP with the highest ADO on the pairs of events misordered by NN_{n} is the "next best" observable, and is added to our list of inputs.

Model ADOs

Model AUCs

Model AUCs

$59 \mathrm{GeV} W$

174 GeV Top

80 GeV W

20 GeV Higgs

120 GeV W

80 GeV Higgs

174 GeV W

Conclusion and Future Work

- Simple architectures and inputs can be used to match the decision orderings of a much more complex anomaly detector.
- Learning to correctly order background events transfers to correctly ordering a variety of signal events.
- Future work: How can we get an ADO closer to 1? More EFPs or something more complicated?
- Future work: How well does this method work with other starting anomaly detection architectures?

Backup Slides

Autoencoder Architecture

Decision Ordering

- Given two decision functions f and g, the Decision Ordering given a pair of events, x_{1} and x_{2} is:

$$
\mathrm{DO}[f, g]\left(x_{1}, x_{2}\right)=\Theta\left(\left[f\left(x_{1}\right)-f\left(x_{2}\right)\right]\left[g\left(x_{1}\right)-g\left(x_{2}\right)\right]\right)
$$

Decision Ordering

- Given two decision functions f and g, the Decision Ordering given a pair of events, x_{1} and x_{2} is:

$$
\operatorname{DO}[f, g]\left(x_{1}, x_{2}\right)=\Theta\left(\left[f\left(x_{1}\right)-f\left(x_{2}\right)\right]\left[g\left(x_{1}\right)-g\left(x_{2}\right)\right]\right)
$$

- We can then average over all possible pairs of events to give us a summary statistic, the Average Decision Ordering:

$$
\operatorname{ADO}[f, g]=\int \mathrm{d} x_{1} \mathrm{~d} x_{2} p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right) \mathrm{DO}[f, g]\left(x_{1}, x_{2}\right)
$$

Energy Flow Polynomials

- Formally infinite set of jet substructure observables that form a discrete linear basis for all IRC safe observables.

$$
\begin{gathered}
z_{a}^{(\kappa)}=\left(\frac{p_{T}}{\sum_{b=1}^{N} p_{T, b}}\right)^{\kappa} \\
\theta_{a b}^{(\beta)}=\left(\Delta \eta_{a b}^{2}+\Delta \phi_{a b}^{2}\right)^{\beta / 2}
\end{gathered}
$$

Energy Flow Polynomials

- Formally infinite set of jet substructure observables that form a discrete linear basis for all IRC safe observables.

$$
\begin{aligned}
& z_{a}^{(\kappa)}=\left(\frac{p_{T}}{\sum_{b=1}^{N} p_{T, b}}\right)^{\kappa} \quad \bullet \sum_{a=1}^{N} z_{a} \\
& \theta_{a b}^{(\beta)}=\left(\Delta \eta_{a b}^{2}+\Delta \phi_{a b}^{2}\right)^{\beta / 2}
\end{aligned}
$$

Energy Flow Polynomials

- Formally infinite set of jet substructure observables that form a discrete linear basis for all IRC safe observables.

$$
\begin{array}{ll}
z_{a}^{(\kappa)}=\left(\frac{p_{T}}{\sum_{b=1}^{N} p_{T, b}}\right)^{\kappa} & \Longleftrightarrow \sum_{a=1}^{N} z_{a} \\
\theta_{a b}^{(\beta)}=\left(\Delta \eta_{a b}^{2}+\Delta \phi_{a b}^{2}\right)^{\beta / 2} & \Longleftrightarrow\left(\theta_{a b}\right)^{k}
\end{array}
$$

Energy Flow Polynomials

- Formally infinite set of jet substructure observables that form a discrete linear basis for all IRC safe observables.

$$
\begin{array}{ll}
z_{a}^{(\kappa)}=\left(\frac{p_{T}}{\sum_{b=1}^{N} p_{T, b}}\right)^{\kappa} & \Longleftrightarrow \sum_{a=1}^{N} z_{a} \\
\theta_{a b}^{(\beta)}=\left(\Delta \eta_{a b}^{2}+\Delta \phi_{a b}^{2}\right)^{\beta / 2} & \Longleftrightarrow\left(\theta_{a b}\right)^{k}
\end{array}
$$

EFPs Selected

