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• It could be that new physics at 
the LHC is hiding in places we 
haven’t looked.


• Want to design broader, model 
agnostic searches.


• Anomaly detection is a popular 
unsupervised method.
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Anomaly Detection with Convolutional Autoencoders
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Anomaly Detection with Convolutional Autoencoders

?
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• Background: 


• W-like signals:  with , 


• Top-like signals:  with , 


• Higgs-like signals:  with , 


•

pp → jj

pp → W′￼ → WZ, W → jj, Z → νν̄ mW′￼
= 1.2 TeV mW ∈ {59,80,120,174} GeV

pp → Z′￼ → tt̄ mZ′￼
= 1.3 TeV mt ∈ {80,174} GeV

pp → HH, H → hh, h → jj mH = 174 GeV mh ∈ {20,80} GeV

Simulated Dataset
From arXiv: 2007.01850
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High-Level Neural Network Paired Neural Network
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which of a pair of 
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anomalous
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Quantify how well  matches the AutoencoderNNn

Find the “next best” observable

Add the “next best” observable to Xn

n →
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Decision Ordering

• For a pair of events  and , we say two networks have the same Decision 
Ordering if they agree on which event is more anomalous.


• We can then average over all possible pairs of events to give us a summary 
statistic, the Average Decision Ordering (ADO). 

• An ADO of 1 corresponds to one network ordering all events in exactly the 
same way as another, an ADO of 0.5 means there is no consistency in how 
one network orders events relative to another. 

x1 x2
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Finding the “Next Best” Observable

• Our set of observables are the Energy Flow Polynomials, a formally infinite set 
of jet substructure observables that form a discrete linear basis for all IRC 
safe observables. [arXiv: 1712.07124]


• Generalization of Energy Correlators, built on sums of momenta fractions and 
powers of angular distances.


• The EFP with the highest ADO on the pairs of events misordered by  is 
the “next best” observable, and is added to our list of inputs. 

NNn

10Layne Bradshaw - University of Oregon
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Model AUCs
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Conclusion and Future Work

• Simple architectures and inputs can be used to match the decision orderings 
of a much more complex anomaly detector. 


• Learning to correctly order background events transfers to correctly ordering 
a variety of signal events. 


• Future work: How can we get an ADO closer to 1? More EFPs or something 
more complicated? 


• Future work: How well does this method work with other starting anomaly 
detection architectures?

13Layne Bradshaw - University of Oregon
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Autoencoder Architecture
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Decision Ordering

• Given two decision functions  and , the Decision Ordering given a pair of 
events,  and  is:


• We can then average over all possible pairs of events to give us a summary 
statistic, the Average Decision Ordering:

f g
x1 x2

DO[ f, g](x1, x2) = Θ ([f(x1) − f(x2)] [g(x1) − g(x2)])

ADO[ f, g] = ∫ dx1dx2 p1(x1)p2(x2)DO[ f, g](x1, x2)
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Energy Flow Polynomials

• Formally infinite set of jet substructure observables that form a discrete linear 
basis for all IRC safe observables.
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EFPs Selected
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EFP No. EFP Multigraph EFP Expression

1
NX

a,b=1

zazb✓ab

54
NX

a,b,c,d=1

zazbzczd✓ab✓cd

60
NX

a,b,c,d,e=1

zazbzczdze✓ab✓ac✓de

63
NX

a,b,c,d,e=1

zazbzczdze✓ab✓ac✓bc✓de

70
NX

a,b,c,d,e,f=1

zazbzczdzezf✓ab✓cd✓ef

72
NX

a,b,c,d,e,f=1

zazbzczdzezf✓ab✓bc✓cd✓ef

74
NX

a,b,c,d,e,f=1

zazbzczdzezf✓
2
ab✓cd✓ef

86
NX

a,b,c,e,d,f,g=1

zazbzczdzezfzg✓ab✓ac✓de✓fg

94
NX

a,b,c,e,d,f,g=1

zazbzczdzezfzg✓ab✓ac✓bc✓de✓fg

95
NX

a,b,c,d,e,f,g,h=1

zazbzczdzezfzgzh✓ab✓cd✓ef✓gh

97
NX

a,b,c,d,e,f,g,h=1

zazbzczdzezfzgzh✓ab✓bc✓cd✓ef✓gh

99
NX

a,b,c,d,e,f,g,h=1

zazbzczdzezfzgzh✓
2
ab✓cd✓ef✓gh

100
NX

a,b,c,d,e,f,g,h,i=1

zazbzczdzezfzgzhzi✓ab✓ac✓de✓fg✓hi

101
NX

a,b,c,d,e,f,g,h,i,j=1

zazbzczdzezfzgzhzizj✓ab✓cd✓ef✓gh✓ij

1
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