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Simulated Dataset
From arXiv: 2007.01850

« Background: pp — jj
» W-like signals: pp - W' — WZ W — jj, Z — vv with my, = 1.2 TeV, my, € {59,80,120,174} GeV
» Top-like signals: pp — Z' — tt withm, = 1.3 TeV, m, € {80,174} GeV

» Higgs-like signals: pp — HH,H — hh,h — jj with m;; = 174 GeV, m;, € {20,30} GeV
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Iterative Matching Procedure
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Train a Neural Network, NN,,, on a set of inputs, Xn
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Decision Ordering

 For a pair of events x; and x,, we say two networks have the same Decision
Ordering if they agree on which event is more anomalous.
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Decision Ordering

 For a pair of events x; and x,, we say two networks have the same Decision
Ordering if they agree on which event is more anomalous.

 We can then average over all possible pairs of events to give us a summary
statistic, the Average Decision Ordering (ADQO).

 An ADO of 1 corresponds to one network ordering all events in exactly the
same way as another, an ADO of 0.5 means there is no consistency in how
one network orders events relative to another.
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Finding the “Next Best” Observable

* Our set of observables are the Energy Flow Polynomials, a formally infinite set
of jet substructure observables that form a discrete linear basis for all IRC
safe observables. [arXiv: 1712.07124]

* (Generalization of Energy Correlators, built on sums of momenta fractions and
powers of angular distances.

 The EFP with the highest ADO on the pairs of events misordered by NN is
the “next best” observable, and is added to our list of inputs.
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Model AUCs
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Conclusion and Future Work

o Simple architectures and inputs can be used to match the decision orderings
of a much more complex anomaly detector.

* |earning to correctly order background events transfers to correctly ordering
a variety of signal events.

* Future work: How can we get an ADO closer to 1? More EFPs or something
more complicated?

* Future work: How well does this method work with other starting anomaly
detection architectures?
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Decision Ordering

» Given two decision functions f and g, the Decision Ordering given a pair of
events, x; and X, Is:

DO[f, gl(x},x,) = © ([f()ﬁ) —f(xz)] [8(X1) — g(xz)] )
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Decision Ordering

» Given two decision functions f and g, the Decision Ordering given a pair of
events, x; and X, Is:

DO[f, gl(x},x,) = © ([f()ﬁ) —f(xz)] [g(xl) — g(xz)] )

 We can then average over all possible pairs of events to give us a summary
statistic, the Average Decision Ordering:

ADOl f, g] = deldxz p1(x1)py(x,)DOL £, g](xy, x5)
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Energy Flow Polynomials

 Formally infinite set of jet substructure observables that form a discrete linear
basis for all IRC safe observables.

K

N
szlpT,b

_ y) 2 \PI2
‘9655) = (A”/ab + A ab>

May 10, 2022 Layne Bradshaw - University of Oregon



Energy Flow Polynomials

 Formally infinite set of jet substructure observables that form a discrete linear
basis for all IRC safe observables.

K

Pr
ZC(ZK) — ~ O — Z Z,
szlpT,b a=1

_ y) 2 \PI2
‘9655) = (A”/ab + A ab>

May 10, 2022 Layne Bradshaw - University of Oregon



Energy Flow Polynomials

 Formally infinite set of jet substructure observables that form a discrete linear
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Energy Flow Polynomials

 Formally infinite set of jet substructure observables that form a discrete linear
basis for all IRC safe observables.
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