

Conformal Freeze-In & the Dark Photon

Wen Han Chiu, Sungwoo Hong, and Liantao Wang

Based on arXiv:22XX.XXXXX

Motivations

- A model with:
 - Naturally small kinetic mixing
 - Asymmetric reheating
 - Naturally light, Higgsless dark photons (relative to v)
 - Potentially light dark matter
- Interesting thermal history

Cosmological Evolution

Cosmological Evolution: Endpoint 1

Cosmological Evolution: Endpoint 2

Cosmological Evolution: Endpoint 3

Relic density curves (IR freeze-in)

Constraints

Self-interactions

Warm dark matter bounds

• Relaxed by

$$T_{\rm ds} \ll T_{\rm SM}$$

Can be shown that

 $m \gtrsim m_{\text{bound}} \rightarrow T_{\text{NR}} \gtrsim m_{\text{bound}}$

Star cooling bounds

- Different constraints for $T_{star} > m_{gap}$ vs $T_{star} < m_{gap}$
- Case with $T_{\text{star}} > m_{\text{gap}}$ places lower bound for d below 2
- Only has non-trivial constraints $rT_{\rm star} < m_{\rm DM}$

Conclusions

- A conformal phase for dark matter evolution is very interesting
- A large range of dark matter masses is allowed
- Strong self-interactions is a key observational constraint

Backup

$T_{\rm NR}$ curves

Relic density curve (UV freeze-in)

Small λ generation

• At scale $M \gg \Lambda$,

$$\mathcal{L} \supset \frac{\lambda_0}{M^{d_{\rm BZ}-2}} B_{\mu\nu} O^{\mu\nu}$$

• Strongly coupled theory runs (walks) to IR fixed point $\lambda \sim \lambda_0 \left(\frac{\Lambda}{M}\right)^{d_{\rm BZ}-2}$

$m_{\rm gap}$ generation

- Needs local, relevant scalar deformation to CFT $\mathcal{L}\sim c_s\mathcal{O}_s\to m_{\rm gap}\sim c_s^{1/(4-d_s)}$
- Scalar deformation arises from $\mathcal{O}_{\mu\nu}\mathcal{O}^{\mu\nu}$ OPE
- Needs numerical CFT bootstrap

Asymmetric reheating

