Conformal Freeze-In \& the Dark Photon

Wen Han Chiu, Sungwoo Hong, and Liantao Wang

Motivations

- A model with:
- Naturally small kinetic mixing
- Asymmetric reheating
- Naturally light, Higgsless dark photons (relative to v)
- Potentially light dark matter
- Interesting thermal history

Cosmological Evolution

$$
\begin{gathered}
\mathcal{L} \supset \frac{\lambda}{\Lambda^{d-2}} B^{\mu v} \mathcal{O}_{\mu \nu} \quad \begin{array}{l}
\lambda \sim 10^{-12}, d>2 \\
\text { Freeze-in processes: } \quad f \bar{f} \rightarrow \text { CFT state } \\
A_{\mu}^{*} \rightarrow \text { CFT state }
\end{array} \\
\rho_{\mathrm{ds}}\left(T_{\mathrm{SM}}\right)=\frac{B_{d} M_{*}}{\sqrt{g_{*}(2 d-5)}\left(T_{\mathrm{SM}}^{2 \mathrm{~d}-5}-T_{R}^{2 d-5}\right) T_{\mathrm{SM}}^{4}} \\
\qquad\left\{\begin{array}{l}
d<5 / 2 \Rightarrow \text { IR Freeze }- \text { in } \\
d>5 / 2 \Rightarrow \text { UV Freeze }- \text { in }
\end{array}\right. \\
\rho_{\mathrm{ds}}\left(T_{\mathrm{ds}}\right)=A T_{\mathrm{ds}}^{4}
\end{gathered}
$$

Cosmological Evolution: Endpoint 1

Dark sector particle spectrum:

$$
\mathcal{L}_{\mathrm{eff}} \supset e\left(\frac{m_{\mathrm{gap}}}{\Lambda}\right)^{d-2} \frac{1}{m_{\mathrm{gap}}^{2}}\left(\bar{f} \gamma_{\mu} f\right)\left(i \pi^{\dagger} \overleftrightarrow{\partial}^{\mu} \pi\right)
$$

Cosmological Evolution: Endpoint 2

$$
\rho_{\mathrm{ds}}\left(T_{\mathrm{SM}}=T_{\mathrm{NR}}\right)=A m_{\mathrm{DM}}^{4}
$$

Modifies dispersion relation \& Boltzmann equation

UV freeze-in $\forall d>2$

Cosmological Evolution: Endpoint 3

Relic density curves (IR freeze-in)

Constraints

Self-interactions

- NDA yields

$$
\sigma_{\text {self }} \sim \frac{1}{8 \pi} \frac{m_{\mathrm{DM}}^{2}}{m_{\text {gap }}^{4}}=\frac{1}{8 \pi} \frac{1}{m_{\text {gap }}^{2}} r^{2}
$$

- Imposing the galaxy cluster constraints, we get

$$
m_{\mathrm{DM}} \gtrsim r^{4 / 3} \frac{100}{(36 \pi)^{1 / 3}} \mathrm{MeV}
$$

Warm dark matter bounds

- Relaxed by

$$
T_{\mathrm{ds}} \ll T_{\mathrm{SM}}
$$

- Can be shown that

Star cooling bounds

- Different constraints for $T_{\text {star }}>m_{\text {gap }}$ vs $T_{\text {star }}<m_{\text {gap }}$
- Case with $T_{\text {star }}>m_{\text {gap }}$ places lower bound for d below 2
- Only has non-trivial constraints $r T_{\text {star }}<m_{\text {DM }}$

Conclusions

- A conformal phase for dark matter evolution is very interesting
- A large range of dark matter masses is allowed
- Strong self-interactions is a key observational constraint

Backup

$T_{\text {NR }}$ curves

Relic density curve (UV freeze-in)

Small λ generation

- At scale $M \gg$,

$$
\mathcal{L} \supset \frac{\lambda_{0}}{M^{d_{\mathrm{BZ}}-2}} B_{\mu \nu} O^{\mu \nu}
$$

- Strongly coupled theory runs (walks) to IR fixed point

$$
\lambda \sim \lambda_{0}\left(\frac{\Lambda}{M}\right)^{d_{\mathrm{BZ}}-2}
$$

$m_{\text {gap }}$ generation

- Needs local, relevant scalar deformation to CFT

$$
\mathcal{L} \sim c_{s} \mathcal{O}_{s} \rightarrow m_{\mathrm{gap}} \sim c_{s}^{1 /\left(4-d_{s}\right)}
$$

- Scalar deformation arises from $\mathcal{O}_{\mu \nu} \mathcal{O}^{\mu \nu}$ OPE
- Needs numerical CFT bootstrap

Asymmetric reheating

