

Composite quarks and leptons with

low-scale SO(10) unification

Benoît Assi (Fermilab)

Pheno Symposium (Univ. of Pittsburgh) - May 10, 2022

Work in progress with Bogdan Dobrescu

Substructure

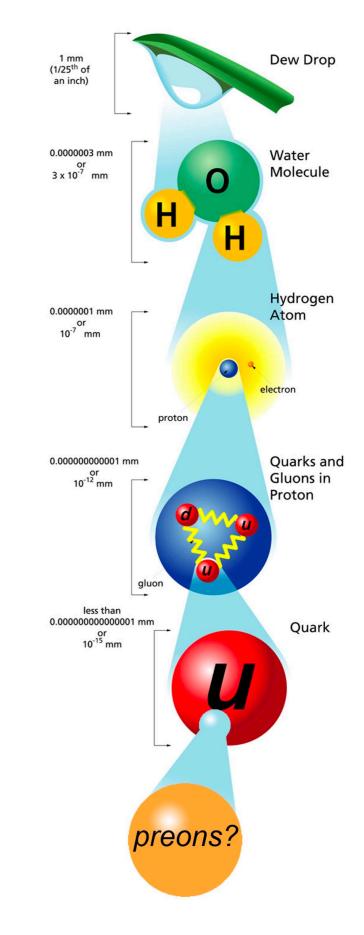
Quark and lepton compositeness

Can we write down such a model?

SM fermions chiral \Rightarrow composite dynamics also chiral

A spectrum of light bound states arises

Model in a nutshell


Preons bind into prebaryons under SU(15)

Prebaryons include all 3 SM generations of matter

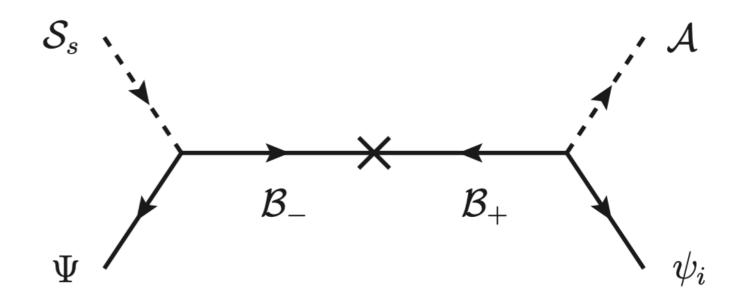
Higgs doublets are di-prebaryon bound states

Implications

Low-scale unification, mass hierarchies, new proton decay modes.

UV model

Preons $(\Psi, \psi_{2,3,4}, \Omega)$ are massless chiral fermions


 $SU(15)_p$ confines the preons below confining scale $\Lambda_{\rm pre}$

Scalars break flavor and SO(10) symmetry at Λ_{10}

Fields charged under $SU(15) \times SO(10)$ gauge group

field	spin	$SU(15)_{\rm p}$	SO(10)	comments	
Ψ	1/2	15	16)	
ψ_2, ψ_3, ψ_4	1/2	15	1	here is a massless preons	
Ω	1/2	120	1		
\mathcal{A}	0	$\overline{105}$	1	flavor-dependent couplings	
\mathcal{S}_{a}	0	1	45	SO(10) breaking VEVs	
\mathcal{S}_s	0	1	16		
$\mathcal{B}_+ \;, \mathcal{B}$	1/2	15 , $\overline{15}$	1	Dirac mass $> \Lambda_{10}$	

Light first SM generation since no direct coupling to A exists. Suppressed by dimension 5 effective Yukawa operator.

Theory below GUT scale

	Fields charge	d under $SU($	$(15)_p \times SU(3)_c \times SU(2)$	$W_W \times U(1)_Y$
SU(N) gauge theory,	Fermion	$SU(15)_{\rm p}$	$SU(3)_c \times SU(2)_W$	$U(1)_Y$
with $(N + 4)$ -fund. and 1-symm. rep. \Rightarrow massless	ψ_Q	15	(3, 2)	+1/6
chiral baryons form	ψ_U	15	$(\overline{3},1)$	-2/3
	ψ_D	15	$(\overline{3},1)$	+1/3
Ω LH fermion in symm.	ψ_L	15	(1, 2)	-1/2
rep. anomaly cancelled by 19 LH fermions in fund.	ψ_E	15	(1, 1)	+1
reps.	$\psi_1,, \psi_4$	15	(1, 1)	0
	Ω	120	(1, 1)	0

SO(10) symmetry breaking $\psi_{4...19}$ and re-labelling w.r.t SM charges: $\Psi = \psi_U + \psi_Q + \psi_E + \psi_D + \psi_U + \psi_1$

The SM-singlet LH fermion $\psi_1 \leftrightarrow \psi_N$ and is conjugate of RH neutrino

Prebaryons below confinement scale

 $SU(15)_p$ interactions give rise to composite chiral **prebaryons**: $(\Psi \psi_i \Omega, \psi_i \psi_j \Omega, \Psi \Psi \Omega)$

Bound states of **SM fermions**: $(\Omega_{Qi}, \Omega_{Li}, \Omega_{Ui}, \Omega_{Di}, \Omega_{Ei})$

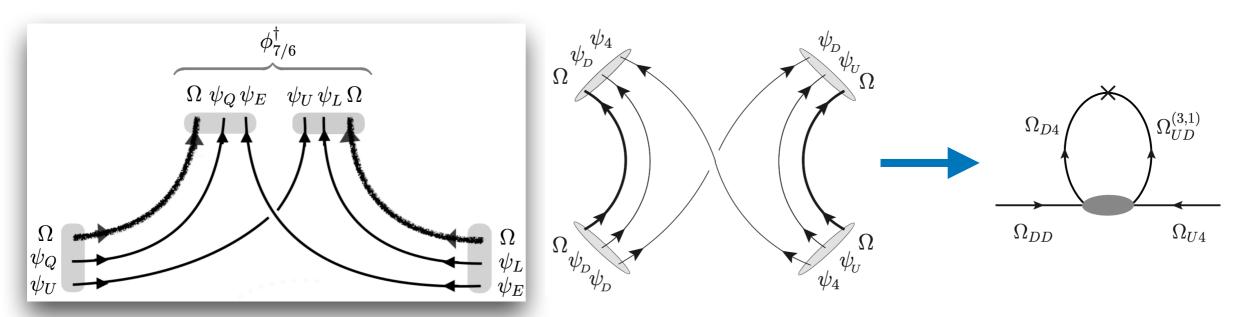
Additional bound states:

12 Dirac fermions which are vectorlike under SM gauge

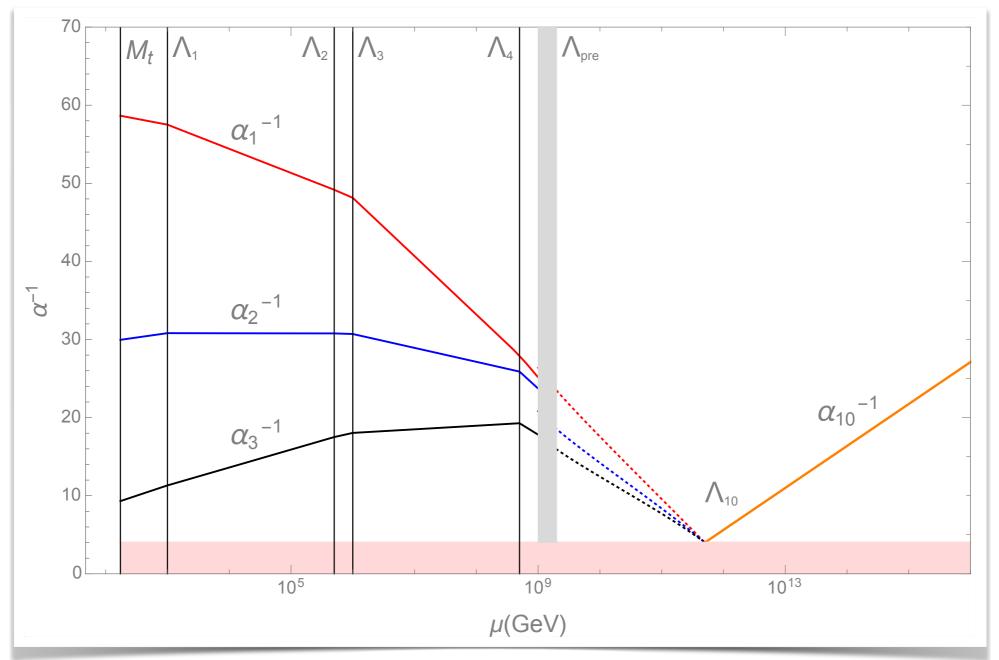
6 gauge singlet Weil fermions: $(\Omega_{ij}, \Omega_{Ni})$

vectorlike fermion	component LH , RH	$SU(3) \times SU(2) \times U(1)$
$\Omega_{8,2}$	$\Omega_{QU}^{(8,2)}$, $\overline{\Omega}_{QD}^{(8,2)}$	(8, 2, -1/2)
$\Omega_{6,1}$	$\Omega_{QQ}^{(6,1)}$, $\overline{\Omega}_{UD}^{(\overline{6},1)}$	(6, 1, +1/3)
$\Omega_{3,3}$	$\Omega_{QL}^{(3,3)}$, $\overline{\Omega}_{QQ}^{(\overline{3},3)}$	(3, 3, -1/3)
$\Omega_{3,2}$	$\Omega_{QE} \ , \ \overline{\Omega}_{UL}$	(3, 2, +7/6)
\mathcal{L}_2	$\Omega_{QU}^{(1,2)}$, $\overline{\Omega}_{QD}^{(1,2)}$	(1, 2, -1/2)
$\Omega_{3,1}$	Ω_{UU} , $\overline{\Omega}_{DE}$	(3, 1, -4/3)
Q	$\Omega_{Q4} \ , \ \overline{\Omega}_{DL}$	(3, 2, +1/6)
\mathcal{D}_2	$\Omega_{QL}^{(3,1)}$, $\overline{\Omega}_{UE}$	(3, 1, -1/3)
\mathcal{D}_1	$\Omega_{UD}^{(3,1)} \ , \ \overline{\Omega}_{D4}$	(3, 1, -1/3)
\mathcal{L}_1	$\Omega_{L4} \ , \ \overline{\Omega}_{LE}$	(1, 2, -1/2)
U	Ω_{DD} , $\overline{\Omega}_{U4}$	(3, 1, +2/3)
E	$\Omega_{E4} \ , \ \overline{\Omega}_{LL}$	(1, 1, +1)

Di-prebaryons and mass hierarchy


Scalars lighter than $\Lambda_{\rm pre}$ are **di-prebaryons** bound by remnant SU(15) + SM gauge + A exchange (think deuteron)

Vfermions of (8,2, +1/2) most deeply bound with largest Dirac mass and Yukawa-couple as: $y_{88}\phi_{88}^*\Omega_{OU}^{(8,2)}\Omega_{OD}^{(8,2)}$


Additional mass generating mechanism can arise from loop-effects of non-planar SU(15) interactions at $\Lambda_{\rm pre}$

 $H_{(u,d)}(1,2,\pm 1/2)\equiv\Omega_{(U,D)4}\Omega_{Q3}(1,2,\mp 1/2)$ give rise to up (down)-type quark masses.

vectorlike fermion	mass
$\Omega_{8,2}$	$y_{88}\left\langle \phi_{88} ight angle$
$\Omega_{6,1}$	$y_{6ar{6}}\left\langle \phi_{6ar{6}} ight angle$
Ω _{3,3}	$y_{33}\left\langle \phi_{33} ight angle$
Ω _{3,2}	$y_{7/6}\left<\phi_{7/6} ight>$
\mathcal{L}_2	$y_{88}^{\prime}\left\langle \phi_{88}\right\rangle +y_{6\bar{6}}^{\prime}\left\langle \phi_{6\bar{6}}\right\rangle$
Ω _{3,1}	$y_{4/3}\left\langle \phi_{4/3} ight angle$
Q	$y_{1/6}\left\langle \phi_{1/6} ight angle$
\mathcal{D}_2	$y'_{7/6}\langle\phi_{7/6} angle$
\mathcal{D}_1	$y_{1/6}' y_{4/3}' \langle \phi_{1/6} \rangle \frac{\langle \phi_{4/3} \rangle}{m_{\mathcal{D}_2}}$
\mathcal{L}_1	$y_{1/6}' y_{7/6}' \langle \phi_{1/6} \rangle \frac{\langle \phi_{7/6} \rangle}{m_{\mathcal{L}_2}}$
U	$\frac{m_{\mathcal{D}_1}}{N_c N}$
ε	$\frac{m_{\mathcal{L}_1}}{N}$

Unification

 $\begin{array}{l} \text{Below } \Lambda_{10} \text{ mass hierarchy:} \\ \Lambda_1 \leftrightarrow (\Omega_{U4}, \Omega_{DD}; \Omega_{E4}\Omega_{LL}; H_{u,d}) \\ \Lambda_2 \leftrightarrow (\Omega_{D4}, \Omega_{UD}, \Omega_{UE}, \Omega_{QL}; \Omega_{L4}\Omega_{LE}) \\ \Lambda_3 \leftrightarrow (\Omega_{DE}, \Omega_{UU}, \Omega_{Q4}, \Omega_{DL}, \Omega_{QE}\Omega_{UL}; \phi_{76,16,43}) \\ \Lambda_4 \leftrightarrow (\Omega_{D4}, \Omega_{UD}, \Omega_{UE}, \Omega_{QL}; \Omega_{LE}\Omega_{L4}; \phi_{88,66,33}) \end{array}$

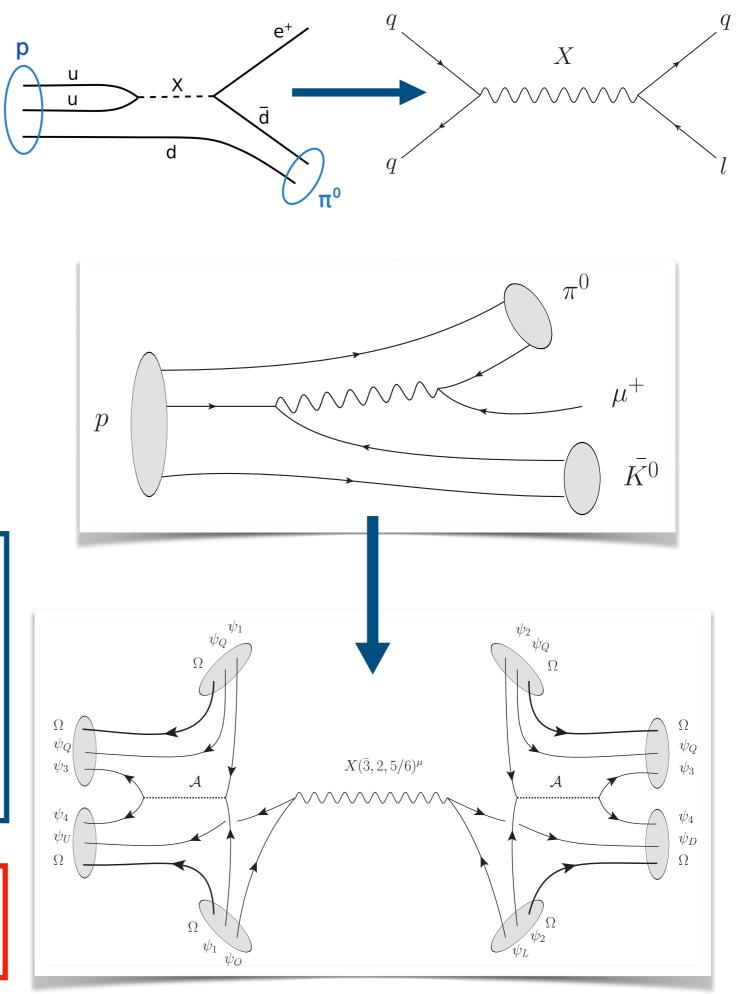
Low-scale unification possible due to SU(15) symmetry protection against rapid proton decay

Passed Λ_4 asymptotic freedom lost but couplings unify under SO(10) at $\Lambda_{10} \Rightarrow$ Freedom regained!

Proton decay

Proton decay at $\Lambda_{\rm pre}$ occurs, e.g. 8-baryon operator:

$$\frac{C_8}{\Lambda_{\text{pre}}^8} \left(\bar{\Omega}_{43} \bar{\Omega}_{43} \right) \left(\bar{\Omega}_{QQ}^{\bar{3},3} \bar{\Omega}_{QL}^{(3,3)} \right) \left(\Omega_{Q3} \Omega_{Q3} \right) \left(\Omega_{Q4} \Omega_{L4} \right)$$


Leads to (su)(ue) operator with suppression: $\frac{1}{M_{suue}^2} \approx 10^{-16} \left(\frac{\langle \phi_M^{\dagger} \rangle \langle \phi_{33}^{\dagger} \rangle}{\Lambda_{\text{pre}}^6} \right)$

Additional (B, L)-violating operators also arise

GUTs unify matter and forces \Rightarrow (*B*, *L*) not conserved \Rightarrow **Proton decay = GUT probe**

Dominant X^{μ} -mediated decay by dimension 8 operators: $\mathcal{O}_8 = \frac{y_u y_d}{\Lambda_{\text{pre}}^2 \Lambda_{10}^2} (H_u H_d)^{\dagger} (Q \sigma^{\mu} Q) (Q \sigma_{\mu} L)$ $\Lambda_{10} > 10^8 \text{GeV} \Rightarrow \tau(p \to e^+ \pi^0) \ge 2.4 \times 10^{34} y$

Novel signatures:
$$p \to (\bar{K}^0 \pi^0 (\mu/e)^+, K^+ \pi^- (\mu/e)^+)$$

 $\tau(p \to e^+ \pi^0) > \tau(p \to \bar{K}^0 \pi^0 (\mu/e)^+) > \tau(p \to K^+ \bar{\nu})$

Summary

A preonic $SU(15) \times SO(10)$ gauge theory was proposed.

Preon confinement gives rise to exactly **3 generations** of SM fermions.

Running of SM couplings leads to **low-scale** unification.

Proton decay by both GUT-mediated and confinement scale fields can lead to **novel signatures**.

Outlook

Improved understanding of strongly coupled chiral gauge theories.

Composite vectorlike fermions and scalars within reach of the LHC.

Proton decay signatures can be searched for at DUNE and other future experiments.