Large N Dark Matter

Chester Mantel

Work in progress with Graham Kribs

Dark Matter Magnetic Moment

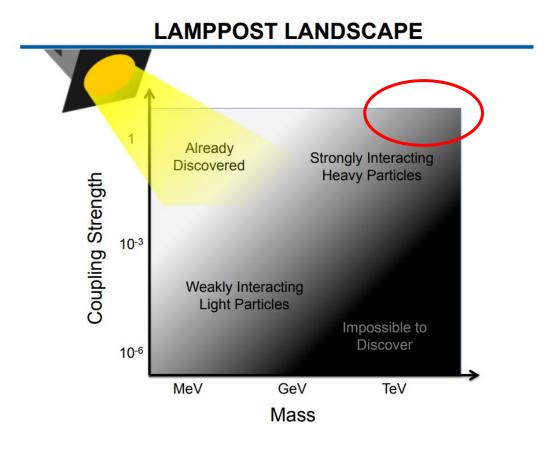
- Magnetic dipole provides strong probe on high mass DM
 - Lattice results found SU(3) DM to have $\mu_{DM} \sim \mu_n$ Constrains $m_{DM} < 10$ TeV (2013, XENON100)
- Enhanced recoil energy spectrum
 - Used to constrain μ_{DM} as a function of mass

What can we get out of constraints on μ_{DM} ?

Appelquist, et al. arXiv:hep-ph/1301.1693v2
Banks, et al. arXiv:hep-ph/1007.5515v1
Barger, et al. arXiv:hep-ph/1007.4345
Gresham, et al. arXiv:hep-ph/1401.3739v1

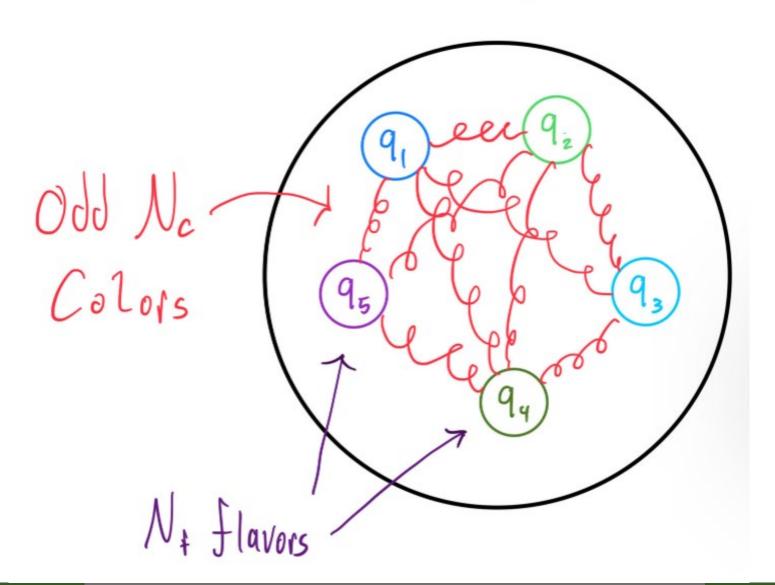
Composite Dark Matter

- Constraints of $\mu_{DM} \longrightarrow Heavy DM$
 - Strongly coupled
- Dark quarks (duarks) confine
 - ► DM naturally stable
- Thermal relic \longrightarrow $U(1)_{EM}$ (for now)
- Dark hadrons (dadrons)
 - Neutral fermions with magnetic dipole moment



PHASER, *Phys. Rev. D* **97**, 035001 (2018)

Dadron -> Wimp



How to Constrain N_c

Direct detection \longrightarrow m_{DM} lower bound

 $1/N_c$ Expansion \longrightarrow N_c scaling of μ_{DM}

Cosmology \longrightarrow m_{DM} upper bound

How to Constrain N_c

Direct detection \longrightarrow m_{DM} lower bound

 $1/N_c$ Expansion \longrightarrow N_c scaling of μ_{DM}

Cosmology \longrightarrow m_{DM} upper bound

What can be learned from direct detection?

Still much to be done!

Direct detection

$$\frac{d\sigma_T}{dE_R} \stackrel{\text{NR}}{=} \frac{1}{8\pi} \frac{m_T}{m_N^2} \frac{1}{v^2} e^2 \mu_\chi^2 \left[\left(\frac{v^2}{E_R} - \frac{m + 2m_T}{2mm_T} \right) 2 \frac{m_N^2}{m_T} F_M^{(p,p)}(q^2) + 4 F_\Delta^{(p,p)}(q^2) \right] - 2 \sum_N g_N F_{\Sigma'\Delta}^{(N,p)}(q^2) + \frac{1}{4} \sum_{N,N'} g_N g_{N'} F_{\Sigma'}^{(N,N')}(q^2) \right]$$

• Strongest constraints generally from xenon experiments (XENON1T, LUX)

del Nobile: arXiv:hep-ph/2104.12785v1

Toy Model

$$\delta \mathcal{L}_{\mathrm{DM}} = \overline{\psi}_{i} \left[i \gamma_{\mu} (D_{EM}^{\mu}) + i \gamma_{\nu} (D_{\mathrm{DM}}^{\nu})_{ij} - m \delta_{ij} \right] \psi_{j} - \frac{1}{4} (G_{\mathrm{DM}})_{\mu\nu}^{a} (G_{\mathrm{DM}})_{a}^{\mu\nu}$$

- ψ_i are duarks
- $i, j = 1, ..., N_e$
- G_a^{μν} are dark gluons
- $a = 1, ..., N_c^2-1$
- Hold $N_f \sim N_c$ Light degenerate masses
- Duarks charges: $q_{i,\dots,N_f/3}=\frac{2}{N_c}$ $q_{N_f/3+1,\dots,N_f}=-\frac{1}{N_c}$

Large N_c

- $SU(N_c) \longrightarrow 1/N_c$ Expansion
- Magnetic dipole scaling with N_e

$$\mu_{\rm DM}\sigma^j = -\frac{a_0 e}{m_{\rm DM}} \langle B | \mathcal{Q}\sigma^j | B \rangle$$

• Interpret constraints on μ_{DM} as constraints on N_{c}

$$m_{\rm DM} \sim N_c \Lambda_{DM}$$

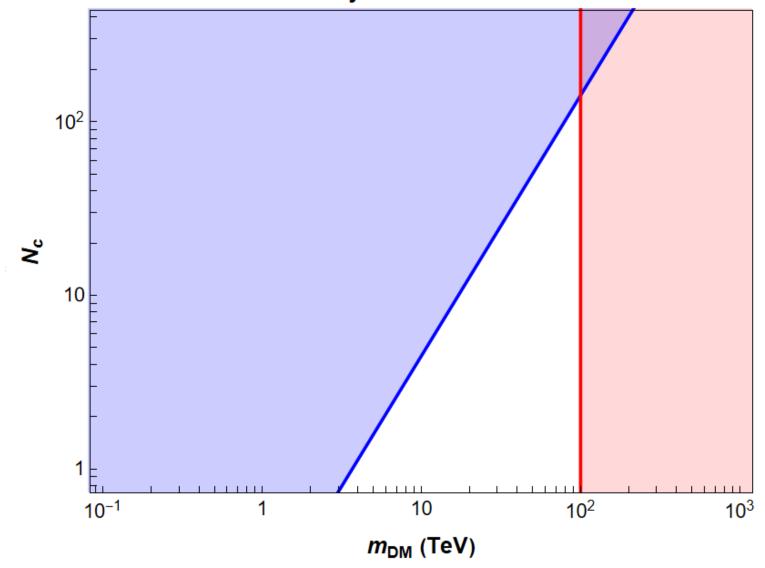
$$\mathcal{Q}\sigma^j = \mathcal{O}(1)^*$$

$$\mu_{\mathrm{DM}} = \mathcal{O}(N_c)$$

*Given 1/N_c normalization of duarks electric charge

Luty, March-Russell: arXiv:hep-ph/9405272

Preliminary Dark Color Constraint



- Leading order in N_e
- Assuming $\Omega_{
 m dark\ baryon} = \Omega_{
 m c}$ and $\Lambda_{
 m DM} < T_{
 m freeze\ out}$
- $N_f \sim N_c$ light duarks with degenerate mass

- 2σ Xenon100 2012 Bound
- ~100 TeV Unitarity Bound

Griest, Kamionkowski (1989) XENON1T: arXiv:1207.5988v2

Ongoing investigations

- 1. Scaling
 - 1. More flavors \longrightarrow No confinement for $N_f >> N_c$
 - 2. Small charges \longrightarrow Smaller μ_{DM}
- 2. Light vs heavy duarks \longrightarrow Affects N_c scaling
- 3. Where is $\Lambda_{\rm DM}$ relative to T $\sim {\rm m_{\rm DM}}/25$?
- 4. $1/N_c$ corrections

Thank you!

Questions?

Acknowledgement:

Presidential Undergraduate Research Scholarships

