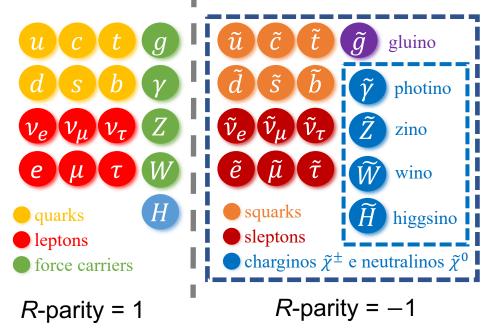
Searches for electroweak production of supersymmetric particles with the ATLAS detector

2022 Phenomenology Symposium, Pittsburgh (US)

Eric Ballabene


on behalf of the ATLAS Collaboration University and INFN Milan (IT)

Introduction

Supersymmetry (SUSY) is an extension of the Standard Model (SM)

Standard Model particles Supersymmetric particles

R-parity distinguishes between SM and SUSY particles.

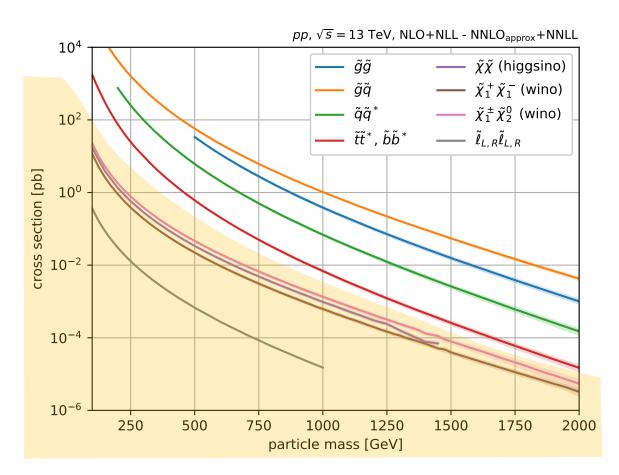
A new fermionic/bosonic supersymmetric partner to each boson/fermion in the SM with spin differing by ½ unit is introduced.

The superpartners of the SM Higgs and the electroweak gauge bosons, known as *electroweakinos*, mix to form chargino $\tilde{\chi}^{\pm}$ and neutralino $\tilde{\chi}^{0}$ mass eigenstates.

R-parity conservation (RPC): SUSY particles are produced in pairs and the lightest supersymmetric particle (LSP) is stable and weakly interacting, thus a candidate for dark matter.

*R***-parity violation (RPV):** Additional terms in the Lagrangian potential W_{RPV} allow for RPV interactions, including the decay of the lightest neutralino into softer particles.

Introduction


Wide program of SUSY searches in ATLAS with *R*-parity conserving or violating models

- Strong 3rd generation • \rightarrow see *B. Martin's talk*
- •
- **Electroweak** \rightarrow focus of *this talk* •

Electroweak production has a relatively small cross section compared to strong production

Challenging signatures

Many uncovered regions in the exclusion contours Advanced analysis techniques and large dataset needed to gain sensitivity

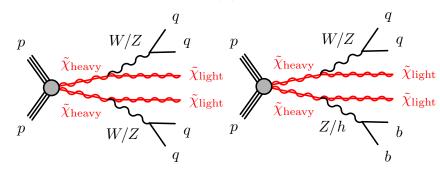
Outline

Covering **new results** by the ATLAS collaboration!

All results targeting electroweak production of SUSY particles using the full Run 2 dataset collected at $\sqrt{s} = 13$ TeV:

- All hadronic [Phys.Rev.D 104, 112010]
- 2 leptons and \geq 2 jets analysis [CERN-EP-2022-014]
- 2 leptons and 0 jets analysis [ATLAS-CONF-2022-006]
- RPV with leptons and many jets [EPJC 81 (2021) 1023]

Other new analyses I won't have time to cover:

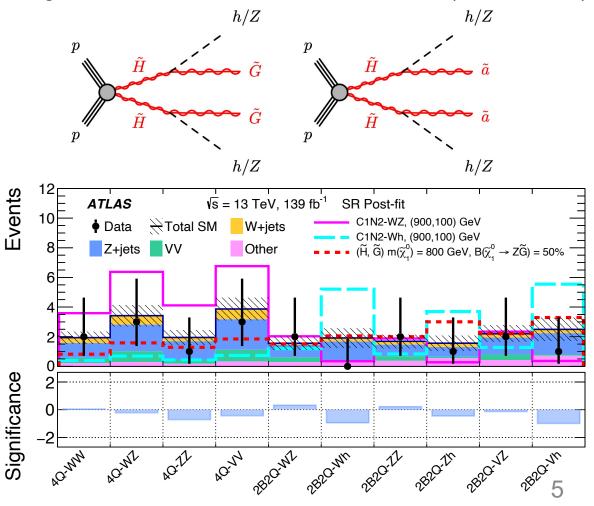

- WW unfolding for 2L0J analysis [ATLAS-CONF-2022-011, backup slide]
- 3 leptons search [Eur. Phys. J. C 81 (2021) 1118, backup slide]
- Long lived particles with large *d*E/*d*x [SUSY-2018-42, see M. Proffitt's talk]

Phys.Rev.D 104, 112010

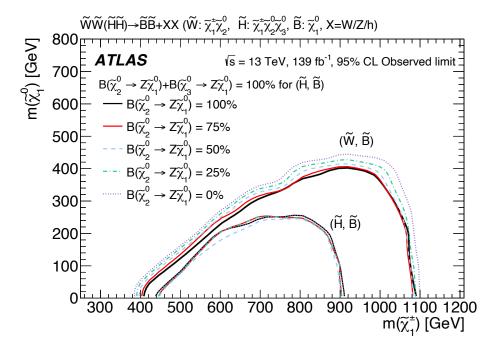
All hadronic

Targeted models:

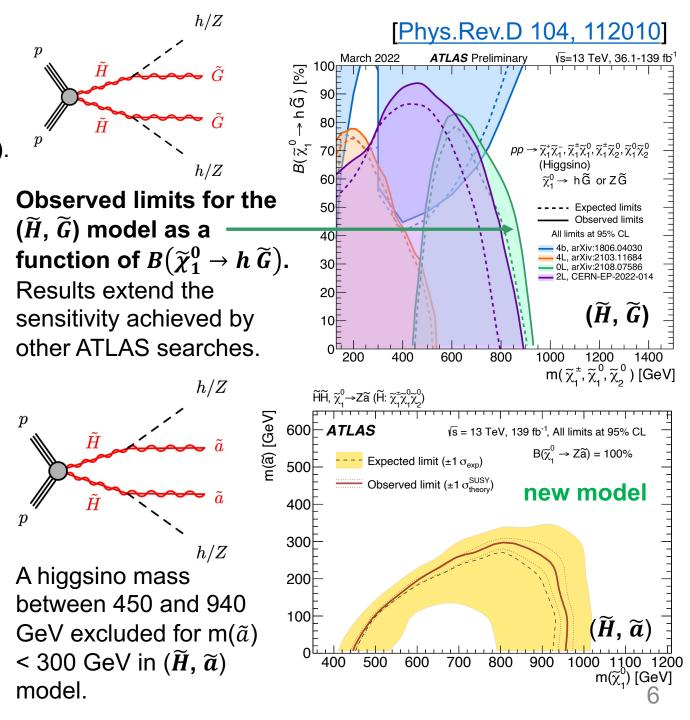
 Production of heavy charginos/neutralinos in different bino/wino/higgsino mass hierarchies.



Signature: Large radius jets for the hadronic decays of *W*, *Z* and Higgs bosons, $\leq 2 b$ -jets and missing transverse energy ($E_{\rm T}^{\rm miss}$).


Background estimation: *Z*+jets, *W*+jets, $t\bar{t}$, and *Wt* backgrounds normalized to data in Control Regions (CRs).

Signal region (SR): events selected with hard kinematics using the effective mass of the two leading large radius jets and $E_{\rm T}^{\rm miss}$. 4Q and 2B2Q SRs to target *qqqq* and *bbqq* final states, respectively.

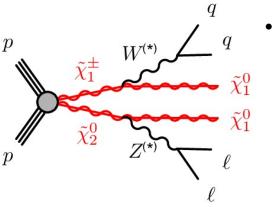

• Production of light higgsinos decaying into gravitinos (\tilde{G}) in general gauge mediation (GGM) or decaying into axinos (\tilde{a}) assuming the SM extension with a QCD axion (**new model**)

Data compatible with SM \rightarrow exclusion limits set on SUSY particles masses at 95% confidence level (CL).

Observed limits for the $(\widetilde{W}, \widetilde{B})$ and $(\widetilde{H}, \widetilde{B})$ models for various $B(\widetilde{\chi}_2^0 \to Z \widetilde{\chi}_1^0)$. The $(\widetilde{H}, \widetilde{B})$ hierarchy well motivated when the mass of a bino-like $\widetilde{\chi}_1^0$ is half the *Z*/H boson mass and the LSP dark matter can annihilate via the *Z*/H resonance ("*Z*/H-funnel" dark matter).

[CERN-EP-2022-014]

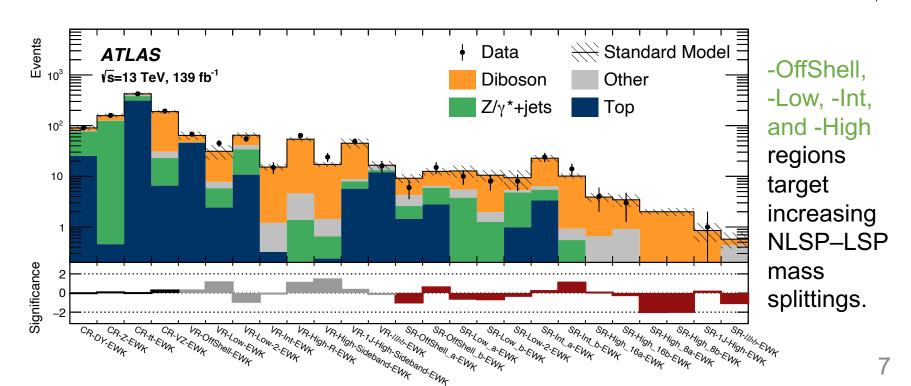
Targeted models:


 Production of charginos and neutralinos decaying into LSP neutralinos.

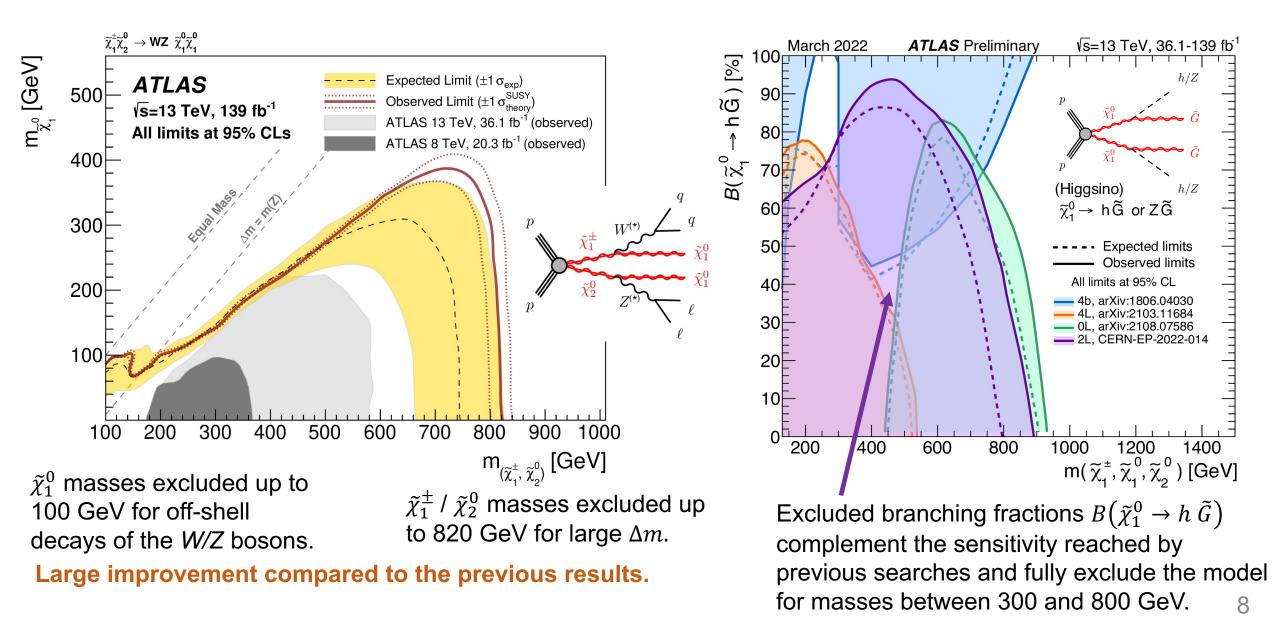
Signature: 2 Same Flavour (SF) leptons, \geq 2 jets and $E_{\rm T}^{\rm miss}$.

Background estimation:

Drell-Yann (DY), Z+jets, $t\bar{t}$, and VZ (with V = W or Z) backgrounds normalized to data in CRs.


SR: Cut-and-count event selection to target different SUSY particle masses.

 Production of neutralinos decaying into a nearly massless gravitino through a Higgs/Z boson assuming gauge-mediated SUSY breaking (GMSB).



h/Z

[CERN-EP-2022-014]

2 leptons and 2 jets

ATLAS-CONF-2022-006

p

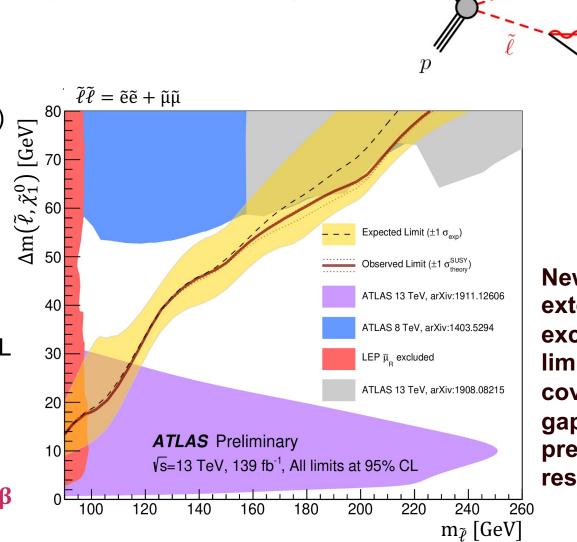
2 leptons and no jets

Targeted models:

• Production of sleptons (selectrons+smuons) decaying into neutralinos through leptons

Signature: 2 SF leptons, 0/1 jets and $E_{\rm T}^{\rm miss}$.

Background estimation: SF events of flavour symmetric backgrounds from Different Flavour (DF) events in data.


SR: Cut-and-count event selection. Different SRs in m_{T2}^{100} to target different SUSY particle masses in **compressed mass splittings**.

Data compatible with SM prediction.

Slepton masses excluded up to 150 GeV at 95% CL for mass splittings $\Delta m(\tilde{\ell}, \tilde{\chi}_1^0)$ up to 50 GeV.

Limits also set for smuons separately!

Excluded portions of the region expected to be compatible with the g - 2 anomaly for small tan β [see <u>backup slide</u>].

New results extend LEP exclusion limits and cover the gap between previous results.

[ATLAS-CONF-2022-006]

W

10

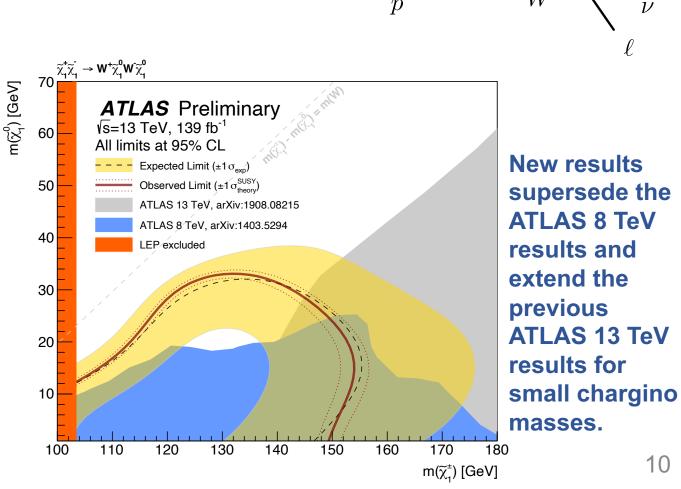
2 leptons and no jets

Targeted models:

Production of charginos decaying into neutralinos through W bosons

Signature: 2 SF or DF leptons, no jets and $E_{\rm T}^{\rm miss}$.

Very challenging signature


- low signal production cross section
- signal similar to the WW background
- targeting compressed mass splittings

Background estimation: VV and top ($t\bar{t}$ and Wt) backgrounds normalized to data in CRs.

SR: Event selection based on BDTs. Multi-class classification with 4 ouput scores: **BDT-signal**, BDT-VV, BDT-top, BDT-others. SR defined for high values of *BDT-signal*.

Data compatible with SM prediction

Chargino masses excluded up to 135 GeV at 95% CL for $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)$ up to 100 GeV.

RPV with leptons and many jets

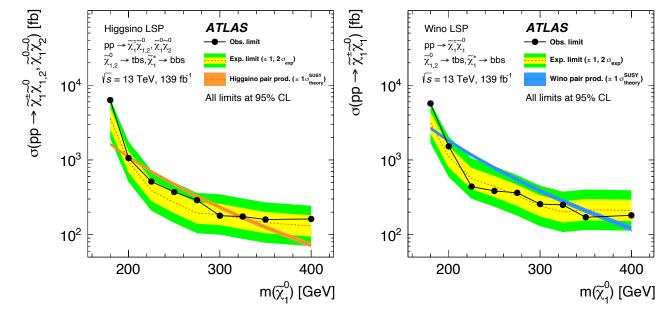
Targeted models: Production of charginos and neutralinos in RPV models *p*

$$\mathcal{W}_{RPV} = \lambda_{ijk} L_i L_j e_k^c + \lambda'_{ijk} Q_i L_j d_k^c + \lambda''_{ijk} u_i^c d_j^c d_k^c + m_i L_i H_u$$

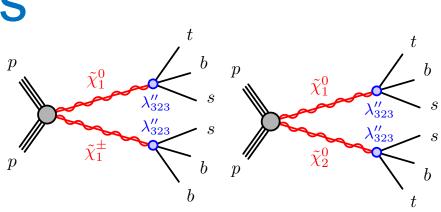
 $\lambda''_{321} \neq 0 \text{ allows } \tilde{\chi}_{1/2}^0 \rightarrow tbs \text{ and } \tilde{\chi}_1^{\pm} \rightarrow bbs \text{ decays}$

NN₅, bin

Signature: 1ℓ or 2ℓ with same charge and high jet multiplicity


Background estimation:

 data driven, based on predicting the high jet multiplicity (up to 10/15 jets) from the

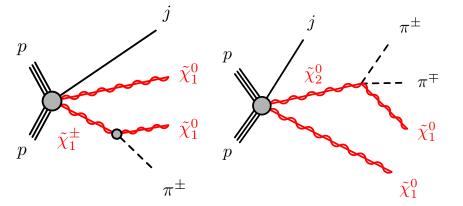


SR: Event selection based on n_{jets} .

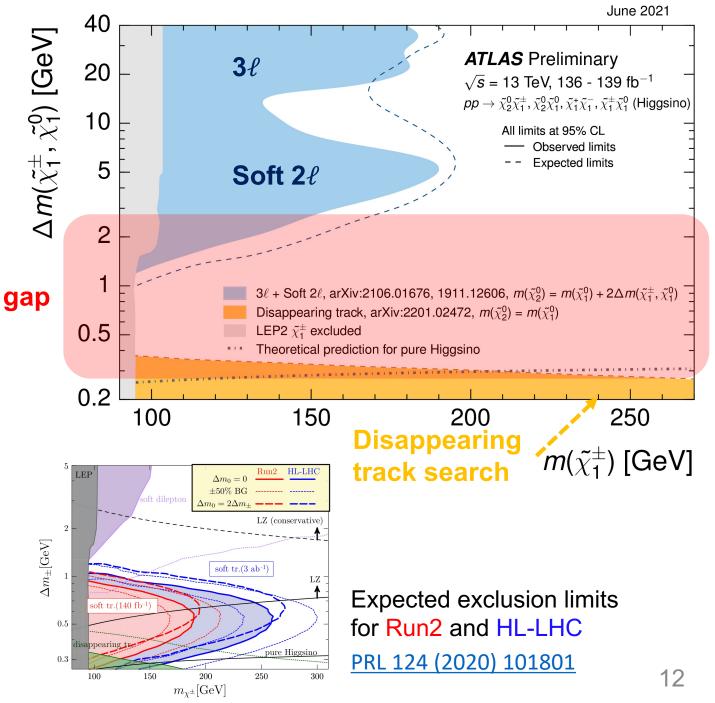
First limits on direct production of electroweakinos with fully hadronic RPV decays since LEP!

Electroweakinos with higgsino (wino) masses between 200 (197) GeV and 320 (365) GeV excluded at 95% CL. 11

[EPJC 81 (2021) 1023]


Higgsino constraints

Higgsino searches very well motivated


- Higgsino mass connected to the scale of the electroweak symmetry breaking.
- The naturalness argument requires it to be around the electroweak scale.

Existing gap between soft lepton searches and the disappearing track search.

A search for soft displaced tracks arising from chargino/neutralino decays into pions could cover the gap!

Novel approach using a soft displaced track, never performed before at LHC.

Conclusions

New set of compelling results published by the ATLAS collaboration.

- Tighter constraints set on the masses of SUSY particles.
- New signal models considered.
- Regions with compressed mass splittings excluded.

No SUSY found yet, the SM is surviving our new ATLAS searches...

- Many models and phase space regions not explored yet!
- Larger datasets, improved data analysis techniques or even dedicated new searches needed.
- Run3 is due to start this year –

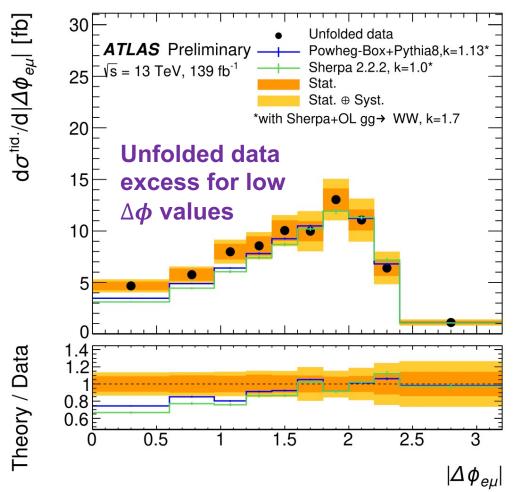
for future discoveries!

Thank you for your attention! Any questions?

<u>SUSY-2018-42</u>

WW unfolding for 2L0J analysis

Motivation: *WW* background was the main background process in the <u>2 ℓ +0jets analysis</u>. *WW* background was estimated with a scale factor in CR-WW, which resulted to be $\mu_{WW} = 1.25 \pm 0.11$.

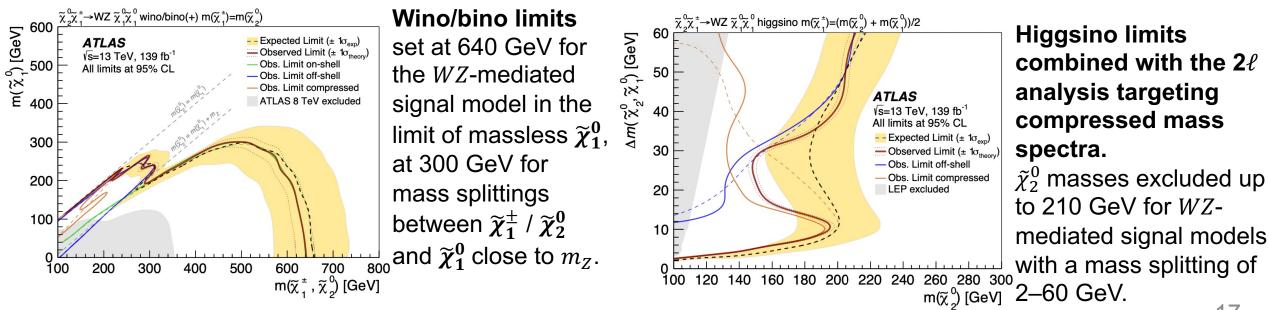

- Differences from unity of scaling factors suggest mismodelling in the phase space targeted by the search.
- Fiducial and differential measurement of *WW* background.

Unfolded fiducial cross section: $\sigma_{WW} = 19.2 \pm 2.6$ fb, with largest systematic uncertainty coming from jet measurements (12%).

Unfolded scale factor $\mu_{WW}^{unfolded} = 1.22$ compatible with the result from 2ℓ +0jets analysis.

Validation of the SM in a particularly interesting region for supersymmetric searches.

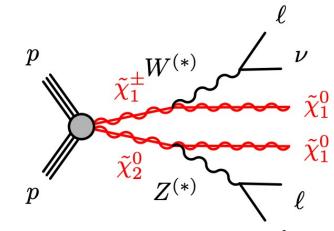
Unfolded differential cross section as a function of $\Delta \phi$ between the two leptons


3 leptons search

Targeted models: Charginos and neutralinos

Signature: Leptonic decays of W, Z and SM Higgs bosons (Higgs boson decaying into leptons+X via WW, ZZ, or $\tau\tau$).

Background estimation: *WZ* background normalized to data in CRs.


SR: Independent optimisation for the on-shell WZ, off-shell WZ, and Wh selections.

Eur. Phys. J. C 81 (2021) 1118

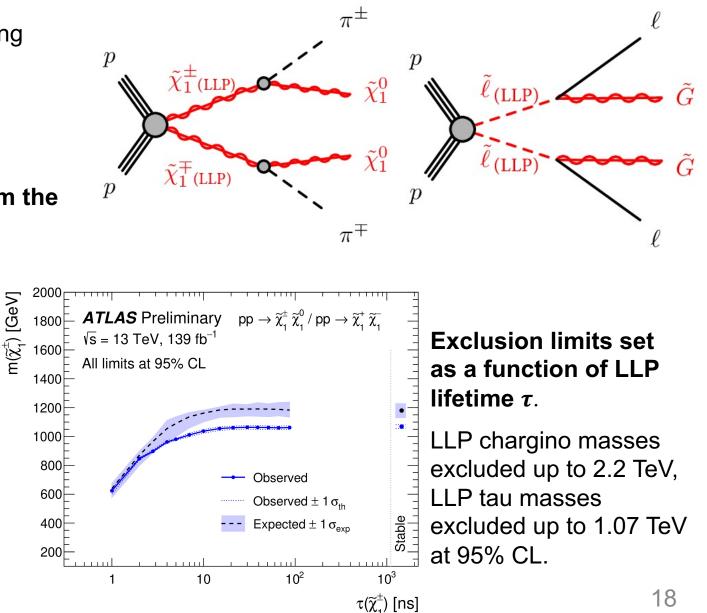
 χ_1

W

<u>SUSY-2018-42</u>

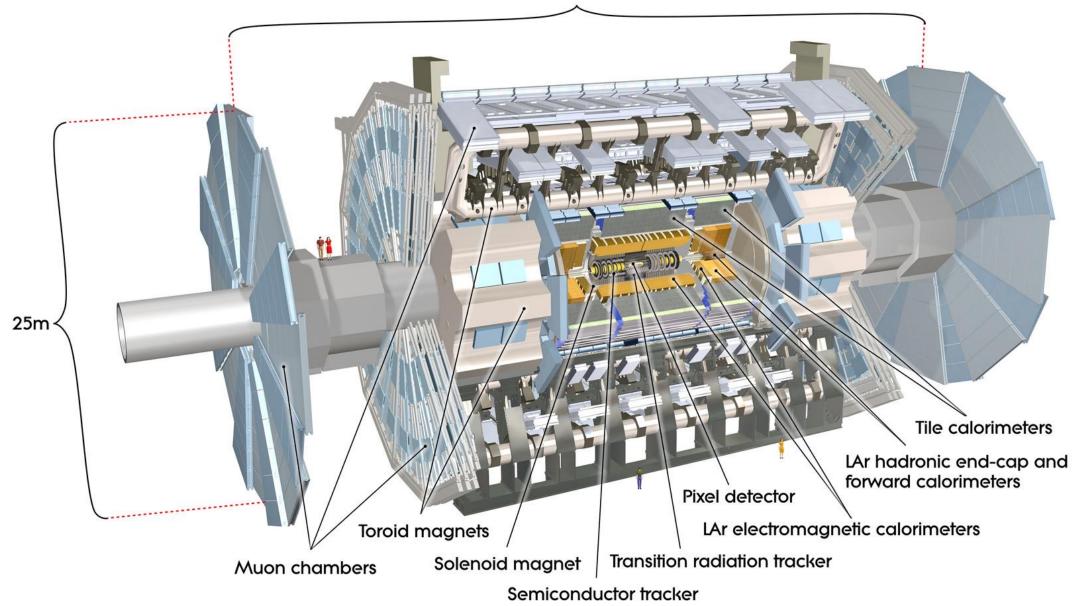
Long lived particles with large dE/dx

Targeted models: Charginos and sleptons as Long Lived Particles (LLPs)


Signature: isolated tracks with high p_T and large specific ionisation.

Reconstruction of the mass for each track from the Bethe-Bloch relation: $m_{dE/dx} \equiv \frac{p_{reco}}{\beta \gamma (\langle dE/dx \rangle_{corr})}$

Background estimation: mass distribution of SM tracks estimated in CRs close to the SRs.


Signal region: dE/dx larger than 1.8 MeV $g^{-1}cm^2$. Different SRs in dE/dx to target different LLPs.

Observed data excess with **global significance 3.6** σ in an high mass inclusive SR \rightarrow calls for further investigation.


The ATLAS detector

44m

SUSY search strategy

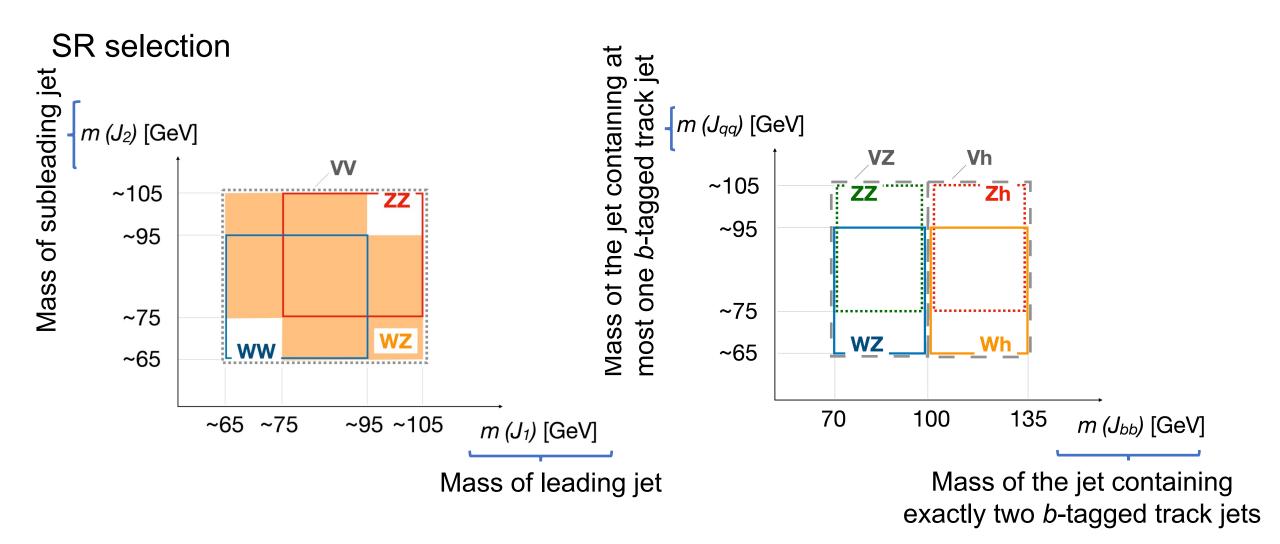
- Signal regions (SRs) are defined where the excesses of data would be expected over the SM if there was a signal present.
- Control regions (CRs) are kinematically similar to the SRs but with suppressed signal. They are used to extract datadriven normalisation factors for dominant background components using simultaneous likelihood fit.
- Validation regions (VRs) are used to check that background estimates provide accurate normalisation and shape of the distributions before unblinding the SRs.

Summary of ATLAS searches

ATLAS SUSY Searches* - 95% CL Lower Limits

March 2022

$\sqrt{s} = 13 \text{ TeV}$ $\int \mathcal{L} dt \, [\mathbf{f}\mathbf{b}^{-1}]$ Model Signature Mass limit Reference 0 e, µ 2-6 jets E_T^{miss} E_T^{miss} 139 139 1.85 $m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ 2010.14293 $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$ 1-3 jets q [8× Degen.] 0.9 mono-jet 2102.10874 $m(\tilde{q})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$ E_T^{miss} 2-6 jets 139 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$ $0 e, \mu$ 2.3 $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ 2010.14293 1.15-1.95 Forbidden 2010.14293 $m(\tilde{\chi}_{1}^{0})=1000 \text{ GeV}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_1^0$ $1 e, \mu$ 2-6 jets 139 2.2 $m(\tilde{\chi}_{1}^{0}) < 600 \, \text{GeV}$ 2101.01629 ര് ee, µµ 2 jets E_T^{miss} 139 2.2 $m(\tilde{\chi}_{1}^{0}) < 700 \, GeV$ CERN-EP-2022-014 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_{1}^{\ell}$ $0 e, \mu$ 7-11 jets E_T^{miss} 139 1.97 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_{1}^{0}$ $m(\tilde{\chi}_{1}^{0}) < 600 \, GeV$ 2008.06032 SS e, µ 6 jets 139 1.15 $m(\tilde{g})-m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}$ 1909.08457 $E_T^{\rm miss}$ 0-1 e, µ 3 b 79.8 ATLAS-CONF-2018-041 2.25 $m(\tilde{\chi}_1^0) < 200 \text{ GeV}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_1^0$ SS e, µ 6 jets 139 1.25 $m(\tilde{g})-m(\tilde{\chi}_{1}^{0})=300 \text{ GeV}$ 1909.08457 $\tilde{b}_1 \tilde{b}_1$ E_T^{miss} $0 e, \mu$ 2 b 139 1.255 $m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ 2101.12527 0.68 2101 12527 10 GeV $< \Delta m(\tilde{b}_1 \tilde{\chi}_1^0) < 20$ GeV $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$ 6bForbidden $\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ 1908.03122 $0 e, \mu$ 139 0.23-1.35 E_T^{L} 2b139 0.13-0.85 2τ $\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV}$ 2103.08189 ≥ 1 jet E_T^{miss} 0-1 e, µ 139 1.25 $m(\tilde{\chi}_1^0)=1 \text{ GeV}$ 2004.14060.2012.03799 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ E_T^{miss} 1 e,µ 3 jets/1 b 139 Forbidden 0.65 2012.03799 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$ $m(\tilde{\chi}_{1}^{0})=500 \text{ GeV}$ E_T^{miss} $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b \nu, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$ 1-2 τ 2 jets/1 b 139 Forbidden 1.4 m(~~1)=800 GeV 2108.07665 E_T^{miss} E_T^{miss} $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$ 0 e, µ 2 c 36.1 0.85 $m(\tilde{\chi}_{\downarrow}^{0})=0 \text{ GeV}$ 1805.01649 mono-jet 0.55 $0 e, \mu$ 139 $m(\tilde{t}_1,\tilde{c})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$ 2102.10874 $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h\tilde{\chi}_1^0$ 1-2 e, µ 1-4 b E_T^{miss} 139 0.067-1.18 $m(\tilde{\chi}_2^0) = 500 \text{ GeV}$ 2006.05880 $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$ 3 e, µ 1b E_T^{miss} 139 Forbidden 0.86 $m(\tilde{\chi}_1^0)=360 \text{ GeV}, m(\tilde{t}_1)-m(\tilde{\chi}_1^0)=40 \text{ GeV}$ 2006.05880 $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZMultiple *l*/jets 139 $\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{\pm}$ $\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{\pm}$ 0.96 $m(\tilde{\chi}_{1}^{0})=0$, wino-bino 2106.01676, 2108.07586 E_T^{T} ≥ 1 jet 139 0.205 ee, µµ $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=5$ GeV, wino-bino 1911.12606 E_{T}^{miss} $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via WW 139 0.42 $m(\tilde{\chi}_1^0)=0$, wino-bino 1908.08215 $2 e, \mu$ Multiple *l*/jets E_T^{miss} 139 $\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}$ Forbidden 2004.10894,2108.07586 $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh 1.06 $m(\tilde{\chi}_1^0)=70$ GeV, wino-bino E_T^{T} $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via $\tilde{\ell}_L / \tilde{\nu}$ $2e,\mu$ 139 1.0 1908.08215 $m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^0))$ E_T^{miss} 2τ 139 $[\tilde{\tau}_L, \tilde{\tau}_{R,L}]$ 0.16-0.3 0.12-0.39 1911.06660 $\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$ $m(\tilde{\chi}_1^0)=0$ E_T^{miss} E_T^{miss} $2 e, \mu$ 0 jets 139 0.7 1908.08215 $\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0}$ $m(\tilde{\chi}_1^0)=0$ ee, µµ ≥ 1 jet 139 0.256 $m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$ 1911.12606 $\begin{array}{c} \geq 3 \ b \\ 0 \ \text{jets} \end{array} \begin{array}{c} E_T^{\text{miss}}_{T \text{miss}} \\ E_T^{\text{miss}} \\ \geq 2 \ \text{large jets} \end{array} \\ E_T^{\text{miss}} \end{array}$ $\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$ 0 e, µ 36.1 0.13-0.23 0.29-0.88 $BR(\tilde{\chi}_{1}^{0} \rightarrow h\tilde{G})=1$ 1806.04030 $4 e, \mu$ 139 0.55 $BR(\tilde{\chi}_{1}^{0} \rightarrow Z\tilde{G})=1$ 2103 11684 $0 e, \mu$ 139 0.45-0.93 $BR(\tilde{\chi}_1^0 \rightarrow Z\tilde{G})=1$ 2108.07586 Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Disapp. trk 1 jet E_T^{miss} 139 0.66 Pure Wind 2201.02472 0.21 Pure higgsino 2201.02472 Stable g R-hadron pixel dE/dx $E_T^{ m miss}$ $E_T^{ m miss}$ 139 2.05 CERN-EP-2022-029 pixel dE/dx CERN-EP-2022-029 Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$ 139 $\tilde{g} = [\tau(\tilde{g}) = 10 \text{ ns}]$ 2.2 $m(\tilde{\chi}_{1}^{0})=100 \text{ GeV}$ Displ. lep E_T^{miss} 139 $\tilde{\ell}\tilde{\ell}, \tilde{\ell} \rightarrow \ell\tilde{G}$ 0.7 $\tau(\tilde{\ell}) = 0.1 \text{ ns}$ 2011.07812 ē. ũ 0.34 $\tau(\tilde{\ell}) = 0.1 \text{ ns}$ 2011.07812 pixel dE/dx E_T^{miss} 0.36 139 $\tau(\tilde{\ell}) = 10 \text{ ns}$ CERN-EP-2022-029 $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} \rightarrow Z \ell \rightarrow \ell \ell \ell$ 0.625 1.05 $3e,\mu$ 139 $[BR(Z\tau)=1, BR(Ze)=1]$ Pure Wind 2011.10543 E_T^{miss} $(\tilde{\chi}_2^0 \quad [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$ $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \to WW/Z\ell\ell\ell\ell\nu\nu$ $4 e, \mu$ 0 jets 139 0.95 1.55 $m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}$ 2103.11684 Large λ_{112}'' $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$ 4-5 large jets 36.1 1.3 1.9 1804.03568 [m(X1)=200 GeV, 1100 GeV Multiple $\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow tbs$ 1.05 36.1 X'' =2e-4, 1e-2 0.55 $m(\tilde{\chi}_1^0)=200$ GeV, bino-like ATLAS-CONF-2018-003 $\tilde{t}\tilde{t}, \tilde{t} \rightarrow b\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm} \rightarrow bbs$ $\geq 4b$ 139 Forbidden 0.95 $m(\tilde{\chi}_1^{\pm})=500 \text{ GeV}$ 2010.01015 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$ 2 jets + 2 b 36.7 0.42 0.61 1710.07171 $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$ $2 e, \mu$ 2 b 36.1 0.4-1.45 $BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$ 1710.05544 1.0 1μ DV 136 -10< λ'____<1e-8, 3e-10< λ'____<3e-9 $BR(\tilde{t}_1 \rightarrow q\mu) = 100\%, \cos\theta_l = 1$ 2003.11956 $\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1,2}^{0} \rightarrow tbs, \tilde{\chi}_{1}^{\pm} \rightarrow bbs$ $1-2 e, \mu$ ≥6 jets 139 0.2-0.32 Pure higgsino 2106.09609 10⁻¹ 1

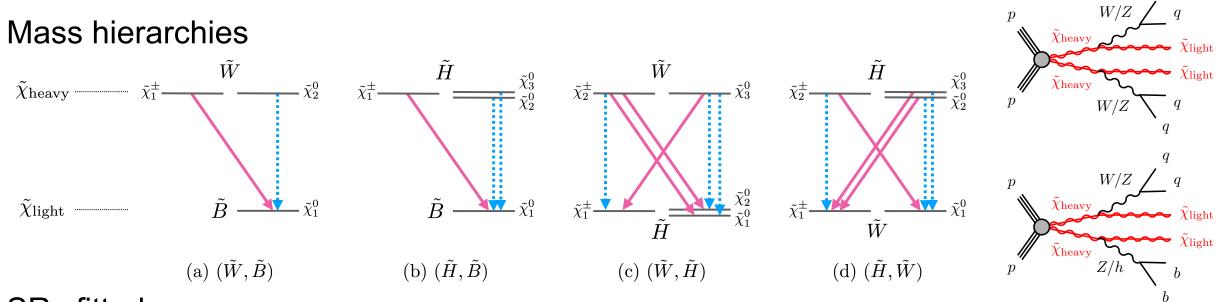

*Only a selection of the available mass limits on new states or phénomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made

Mass scale [TeV]

ATLAS Preliminary

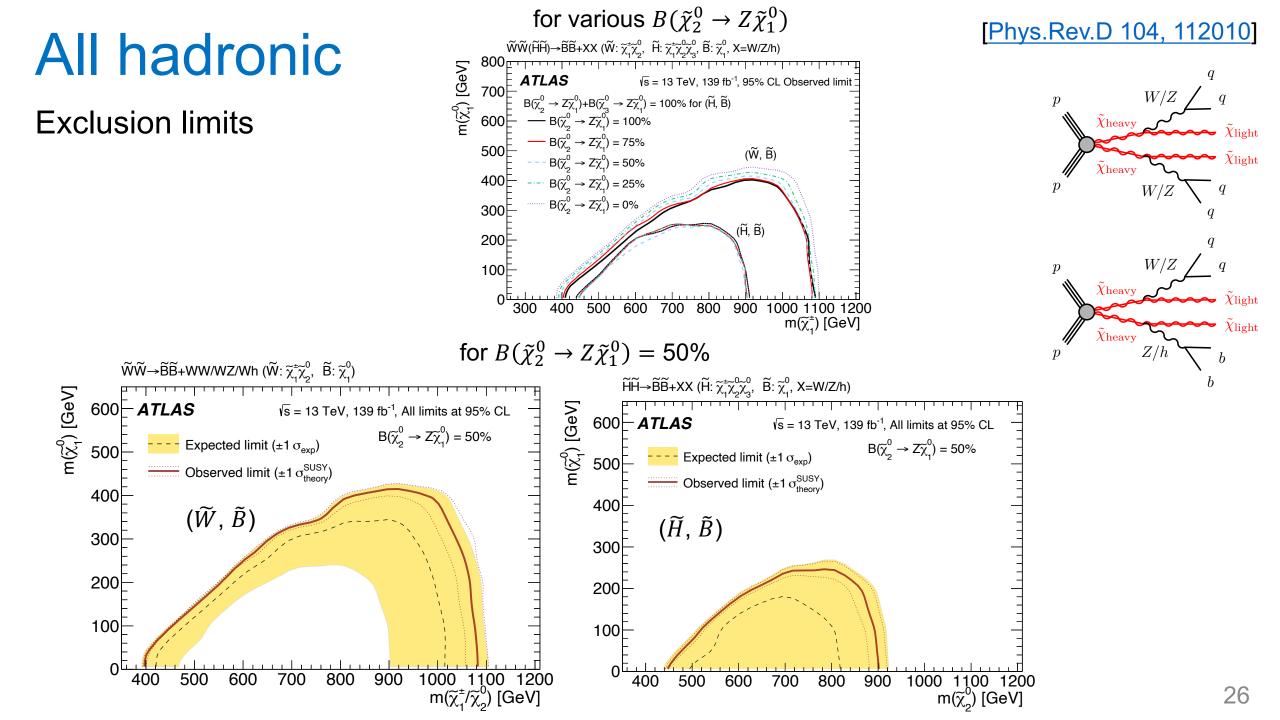
SR selection

		$n(W_{qq})$	$n(Z_{qq})$	$n(V_{qq})$	$n(Z_{bb})$	$n(h_{bb})$
	4Q-WW	= 2		= 2	= 0	= 0
	4Q-WZ	≥ 1	≥ 1	= 2	= 0	= 0
4Q SR -	4Q-ZZ		= 2	= 2	= 0	= 0
	4Q-VV	•••	•••	= 2	= 0	= 0
	2B2Q-WZ	= 1	•••	= 1	= 1	= 0
2B2Q SR	2B2Q-ZZ	•••	= 1	= 1	= 1	= 0
	2B2Q-Wh	= 1	• • •	= 1	= 0	= 1
	2B2Q-Zh	•••	= 1	= 1	= 0	= 1
	2B2Q-VZ	•••		= 1	= 1	= 0
	2B2Q-Vh		• • •	=1	= 0	= 1



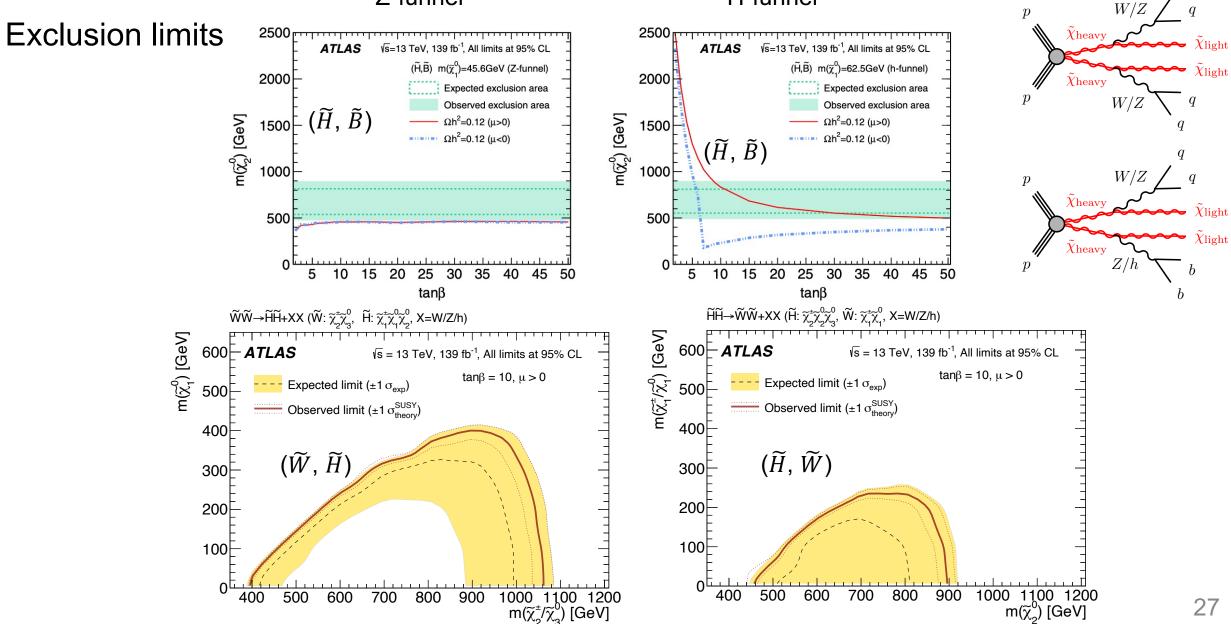
SR selection

	S	R(CR0L)	VR(CR)1L	VR(C	VR(CR)1Y	
	4Q	2B2Q	4Q	2B2Q	4Q	2B2Q	VRTTX
$n_{\text{Large-}R \text{ jets}}$		≥2		≥2	2	<u>≥</u> 2	=1
n _{lepton}		=0	:	=1	=0		=3
$p_{\mathrm{T}}(\ell_1)$ [GeV]			>	>30		• •	>30
n _{photon}					=	=1	• • •
$n(V_{qq})$	=2(=1)	=1(=0)	=2(=1)	=1(=0)	=2(=1)	=1(=0)	
$n(!V_{qq})$	=0(=1)	=0(=1)	=0(=1)	=0(=1)	=0(=1)	=0(=1)	
$n(J_{bb})$	=0	=1	=0	=1	=0	=1	=1
$m(J_{bb})$ [GeV]		∈[70, 135(150)]	• • •	∈[70, 150]	•••	∈[70, 150]	•••
$n_{b\text{-jet}}^{\text{unmatched}}$		=0	:	=0	=	=0	
$n_{b-\text{jet}}$	≤1		=0		≤ 1		
$E_{ m T}^{ m miss}$	>300	>200	>	>50	<	200	• • •
$p_{\mathrm{T}}(W)$			>	200		• •	
$p_{\rm T}(\gamma)$					>2	200	• • •
m _{eff}	>1300	>1000(>900)	>1000	>900	>1000	>900	
$\min\Delta\phi(E_{\mathrm{T}}^{\mathrm{miss}},j)$		>1.0	>	-1.0	>	1.0	• • •
m _{T2}		>250	•••	>250	•••	>250	• • •


Phys.Rev.D 104, 112010

All hadronic




SRs fitted

Model	Production	Final states	SRs simultaneously fitted	Branching ratio
(\tilde{W}, \tilde{B})	$ ilde{\chi}_1^{\pm} ilde{\chi}_1^{\mp}$, $ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$	WW, WZ, Wh	4Q-VV, 2B2Q-WZ, 2B2Q-Wh	${\cal B}(ilde{\chi}_1^\pm o W ilde{\chi}_1^0) = 1$
				$\mathcal{B}(\tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0)$ scanned
(\tilde{H},\tilde{B})	$ ilde{\chi}_1^\pm ilde{\chi}_1^\mp, ilde{\chi}_1^\pm ilde{\chi}_2^0,$	WW, WZ, Wh,	4Q-VV, 2B2Q-VZ, 2B2Q-Vh	${\cal B}(ilde{\chi}_1^\pm o W ilde{\chi}_1^0) = 1$
	$ ilde{\chi}_1^\pm ilde{\chi}_3^0, ilde{\chi}_2^0 ilde{\chi}_3^0$	ZZ, Zh, hh		$\mathcal{B}(\tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0)$ scanned
				$\mathcal{B}(ilde{\chi}^0_3 o Z ilde{\chi}^0_1) = 1 - \mathcal{B}(ilde{\chi}^0_2 o Z ilde{\chi}^0_1)$
(\tilde{W}, \tilde{H})	$ ilde{\chi}_2^\pm ilde{\chi}_2^\mp$, $ ilde{\chi}_2^\pm ilde{\chi}_3^0$	WW, WZ, Wh, ZZ, Zh, hh	4Q-VV, 2B2Q-VZ, 2B2Q-Vh	Determined from $(M_2, \mu, \tan \beta)$
$(ilde{H}, ilde{W})$	$egin{aligned} &\widetilde{\chi}_2^\pm \widetilde{\chi}_2^\mp, \widetilde{\chi}_2^\pm \widetilde{\chi}_2^0, \ &\widetilde{\chi}_2^\pm \widetilde{\chi}_3^0, \widetilde{\chi}_2^0 \widetilde{\chi}_3^0 \end{aligned}$	WW, WZ, Wh, ZZ, Zh, hh	4Q-VV, 2B2Q-VZ, 2B2Q-Vh	Determined from $(M_2, \mu, \tan \beta)$

Production

 $ilde{\chi}_1^{\pm} ilde{\chi}_1^{\mp}, ilde{\chi}_1^{\pm} ilde{\chi}_1^0,$

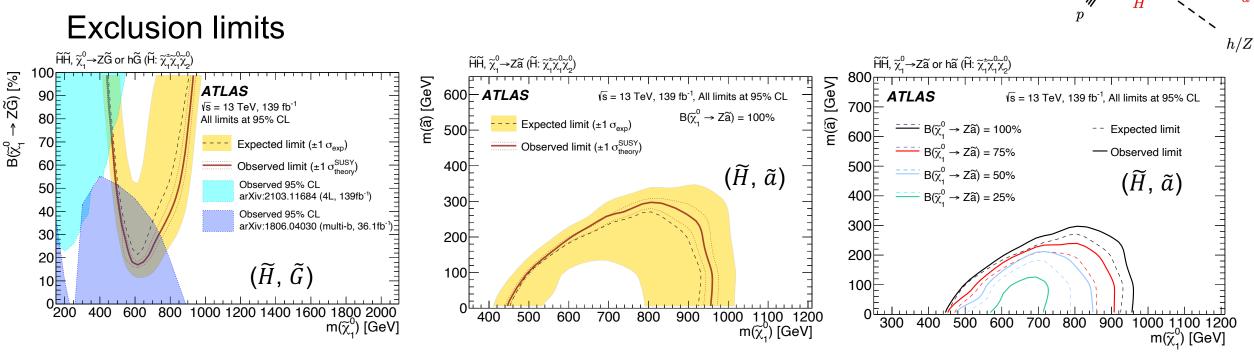
 $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0, \, \tilde{\chi}_1^0 \tilde{\chi}_2^0$

 $ilde{\chi}_1^{\pm} ilde{\chi}_1^{\mp}, ilde{\chi}_1^{\pm} ilde{\chi}_1^0,$

 $ilde{\chi}_1^{\pm} ilde{\chi}_2^0,\, ilde{\chi}_1^0 ilde{\chi}_2^0$

Final states

ZZ, Zh, hh


ZZ, Zh, hh

SRs fitted

Model

 (\tilde{H}, \tilde{G})

 (\tilde{H}, \tilde{a})

SRs simultaneously fitted

4Q-ZZ, 2B2Q-ZZ, 2B2Q-Zh

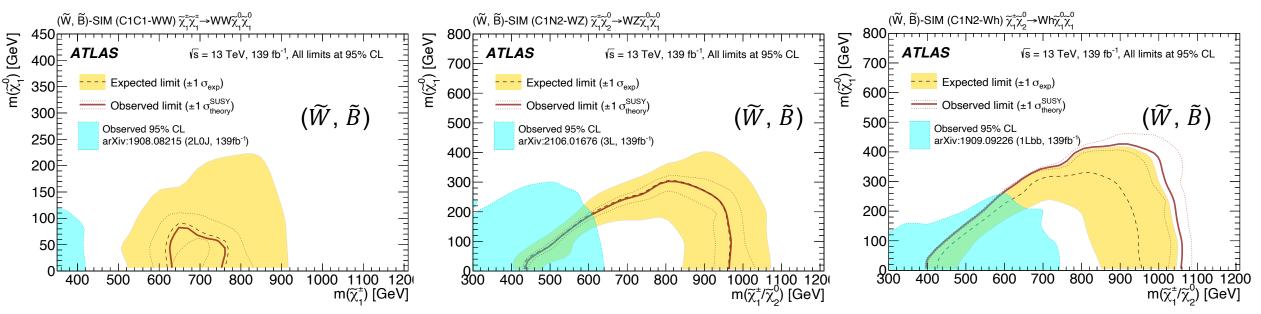
4Q-ZZ, 2B2Q-ZZ, 2B2Q-Zh

Phys.Rev.D 104, 112010

Branching ratio

 $\mathcal{B}(\tilde{\chi}_1^0 \to Z\tilde{G})$ scanned

 $\mathcal{B}(\tilde{\chi}_1^0 \to Z\tilde{a})$ scanned

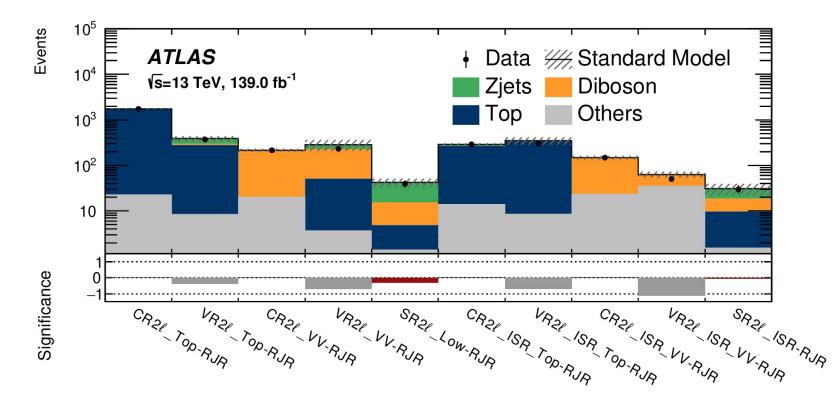

h/Z

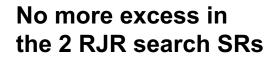
h/Z

SRs fitted

Model	Production	Final states SRs simultaneously fitted		Branching ratio		
		(ilde W, ilde B) sim	plified models: (\tilde{W}, \tilde{B}) -SIM			
C1C1-WW	$ ilde{oldsymbol{\chi}}_1^\pm ilde{oldsymbol{\chi}}_1^\mp$	WW	4Q-WW	${\cal B}(ilde{\chi}_1^\pm o W ilde{\chi}_1^0) = 1$		
C1N2-WZ	$ ilde{\chi}_1^\pm ilde{\chi}_2^0$	WZ	4Q-WZ, 2B2Q-WZ	$\mathcal{B}(ilde{\chi}_1^\pm o W ilde{\chi}_1^0) = \mathcal{B}(ilde{\chi}_2^0 o Z ilde{\chi}_1^0) = 1$		
C1N2-Wh	$ ilde{\chi}_1^\pm ilde{\chi}_2^0$	Wh	2B2Q-Wh	$\mathcal{B}(ilde{\chi}_1^\pm o W ilde{\chi}_1^0) = \mathcal{B}(ilde{\chi}_2^0 o h ilde{\chi}_1^0) = 1$		

Exclusion limits


[CERN-EP-2022-014]


Analysis selection

Region		<i>n</i> jets	n ^{b-ta} jets	S(E)	(T ^{miss})	<i>m_{ℓℓ}</i> [GeV]		<i>m_X</i> [GeV]		<i>m</i> _{T2} [GeV]	ΔR_X	<i>p</i> _T ^{<i>j</i>1} [GeV]
SR-High-E	WK	≥ 2	≤ 1	(18,2	21,∞)	71–111	60 -	$< m_{jj} <$	110	> 80	$\Delta R_{jj} \in (0, 0.8, 1.6)$	_
VR-High-Sideband-EWK		≥ 2	≤ 1	>	18	71-111	$20 < m_{jj}$	< 60 ∪	$m_{jj} > 1$	10 > 80	$\Delta R_{jj} < 1.6$	
VR-High-R	-EWK	≥ 2	≤ 1	>	18	71–111	1	$m_{jj} > 2$	0	> 80	$\Delta R_{jj} > 1.6$	_
SR-1J-High	n-EWK	1	≤ 1	>	12	71–111	60 -	$< m_{i_1} <$	110	> 80	_	_
VR-1J-High	h-Sideband-EWK	K 1	≤ 1	>	12	71–111	$20 < m_{j_1}$	< 60 ∪	$m_{j_1} > 11$	l 0 > 80	_	-
SR- <i>llbb</i> -EV	WK	≥ 2	≥ 2	>	18	71-111		$< m_{bb} <$		> 80	_	_
VR- <i>llbb</i> -E	WK	≥ 2	≥ 2	12-	-18	71–111	60 <	$< m_{bb} <$	150	> 80	-	_
SR-Int-EW	K	≥ 2	0	(12, 1	5,18)	81-101	60 -	$< m_{jj} <$	110	> 80	-	> 60
VR-Int-EW	Ϋ́K	≥ 2	0	12-	-18	81-101	60 -	$< m_{jj} <$	110	> 80	-	< 60
CR-VZ-EW	ΥK	≥ 2	0	12-	-18	81-101	$20 < m_{jj}$	< 60 ∪	$m_{jj} > 11$	10 > 80	_	_
CR-tt-EWK	C	≥ 2	≥ 1	9-	-12	81-101	1	$m_{jj} > 2$	0	> 80	-	> 60
	Region	njets	n_{jets}^{b-tag}	$\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$	m _{ee}		m _X		m _{T2}	ΔR_X	$\Delta \phi(p_{\rm T}^{\ell\ell}, \vec{p}_{\rm T}^{\rm miss})$	
					[GeV]		[GeV]		[GeV]			
	SR-Low-EWK	2	0	(6, 9, 12)	81-101	L	$60 < m_{jj} < 110$	0	> 80	$\Delta R_{\ell\ell} < 1$	_	
	VR-Low-EWK	2	0	6–12	81-101		$60 < m_{jj} < 110$			$1 < \Delta R_{\ell\ell} < 1.4$	-	
	SR-Low-2-EWK	2	0	6–9	81–101		$60 < m_{jj} < 110$		< 80	$\Delta R_{\ell\ell} < 1.6$	< 0.6	
	VR-Low-2-EWK		0	6–9	81-101		$m_{jj} < 60 \cup m_{jj}$		< 80	$\Delta R_{\ell\ell} < 1.6$	< 0.6	
	CR-Z-EWK	2	0	6–9	81-101	20 < n	$n_{jj} < 60 \cup m_{jj}$	$_{j} > 110$	> 80	-	_	
	-	Region		<i>n</i> _{jets}	n_{jets}^{b-tag}	$\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$		m_{T2}	$p_{\mathrm{T}}^{j_1}$	$\Delta \phi(p_{\rm T}^{j_1}, \vec{p}_{\rm T}^{\rm miss})$	 	
	_						[GeV]	[GeV]	[GeV]			
		SR-OffS	hell-EWI	$K \geq 2$	0	> 9	(12, 40, 71)	> 100	> 100	> 2		
		VR-OffS			0	> 9	12-71	80-100		> 2		
		CR-DY-I	EWK	≥ 2	0	6-9	12-71	> 100	_	-		

RJR search

- Search motivated by the 2.0 σ and 1.4 σ excesses in the previous search using 36 fb⁻¹.
- Two SRs, using recursive-jigsaw reconstruction (RJR) variables + a new analysis strategy for the same topology, optimized for full Run 2 dataset.
- SRs designated to target $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) \sim 100$ GeV.

32

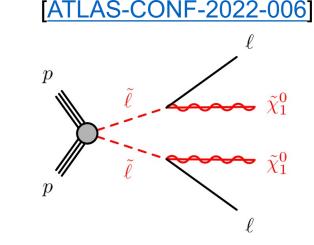
2 leptons and no jets

Data driven background estimation for the slepton search

- Data events with DF leptons surviving the SR selection (N_{DF}) are used to predict the **Flavour Symmetric Background** (FSB) in the SF channel.
- Since electrons and muons have different trigger, reconstruction, isolation and identification efficiencies, these differences must be taken into account.
- The efficiency correction method is applied. The number of expected FSB events in the SF channel is computed as: $N^{FSB} = 0.5 \times \frac{1}{2} \times \alpha \times N$

$$N_{ee}^{FSB} = 0.5 \times \kappa \times \alpha \times N_{DF}$$

$$N_{\mu\mu}^{FSB} = 0.5 \times \kappa \times \alpha \times N_{DF}$$

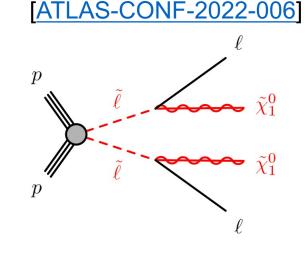

$$N_{SF}^{FSB} = 0.5 \times \left(\kappa + \frac{1}{\kappa}\right) \times \alpha \times N_{DF}$$

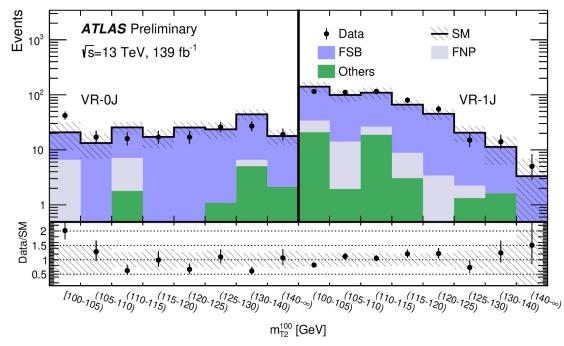
where the factor 0.5 assumes that the production rate of the DF events is twice that of the dimuon and dielectron events.

 κ and α take into account the difference in reconstruction, identification and trigger efficiencies for muons and electrons, respectively.

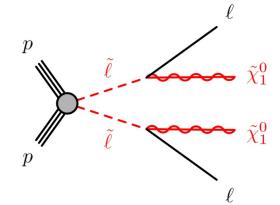
They are defined as:

$$\kappa = \sqrt{\frac{N_{\mu} + \mu^{-}}{N_{e} + e^{-}}} \quad \alpha = \sqrt{\frac{\epsilon_{\mu\mu}^{trig} \epsilon_{ee}^{trig}}{\epsilon_{e\mu}^{trig}}}$$


Data driven background estimation for the slepton search


 κ and α take into account the difference in reconstruction, identification and trigger efficiencies for muons and electrons, respectively.

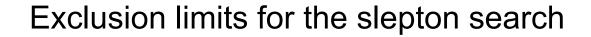
They are defined as:

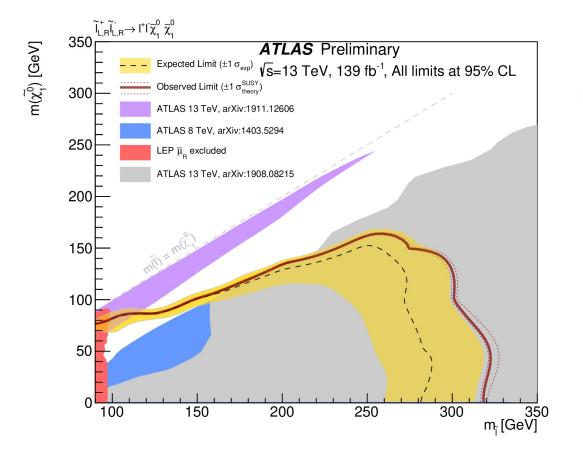

$$\kappa = \sqrt{\frac{N_{\mu^{+}\mu^{-}}}{N_{e^{+}e^{-}}}} \quad \alpha = \sqrt{\frac{\epsilon_{\mu\mu}^{trig}\epsilon_{ee}^{trig}}{\epsilon_{e\mu}^{trig}}}$$

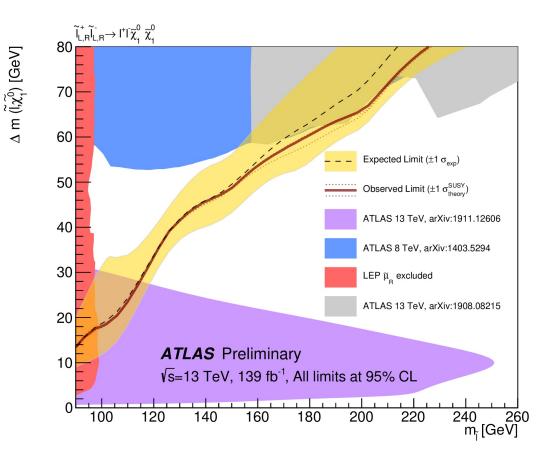
- The factor κ is extracted from data in a control sample, obtained relaxing the cuts on $p_T^{\ell_1}$ and parametrised as a function of that variable, E_T^{miss} significance and inverting the cut on $|\cos \theta_{\ell\ell}^*|$ to make it orthogonal to the SRs.
- The factor α is computed from the global efficiencies of the trigger selection applied in the analysis, evaluated on a control sample of data triggered with an independent selection.

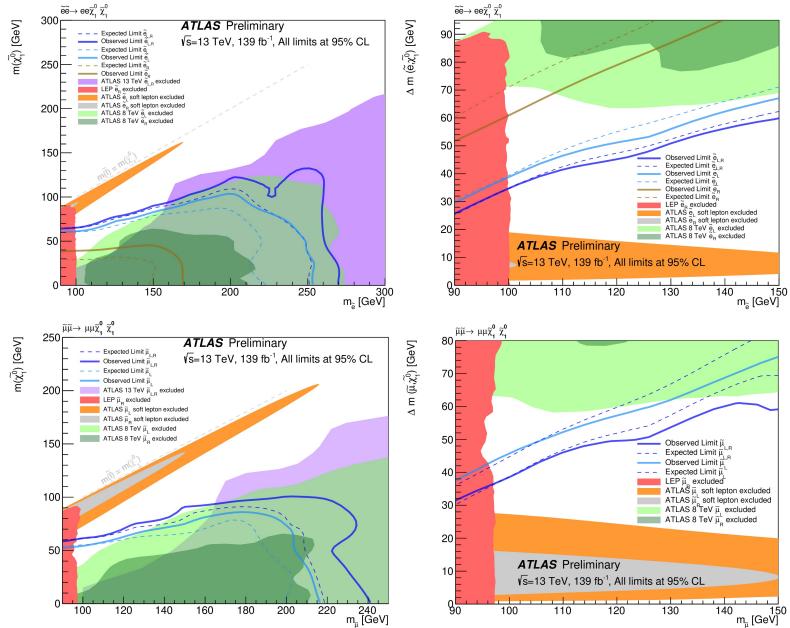
ATLAS-CONF-2022-006

34

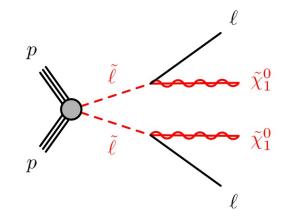

SR selection and yields for the slepton search


Signal region (SR)	SR-0J	SR-1J	
$\begin{array}{c c} \hline n_{b-\text{tagged jets}} \\ E_{\text{T}}^{\text{miss}} \text{ significance} \end{array}$	= 0 >7		
n _{non-b-tagged jets}	= 0	= 1	$\begin{array}{c} \mathbf{x} = $
$\begin{array}{c c} p_{\mathrm{T}}^{\ell_{1}} [\mathrm{GeV}] \\ p_{\mathrm{T}}^{\ell_{2}} [\mathrm{GeV}] \\ m_{\ell\ell} [\mathrm{GeV}] \\ p_{\mathrm{T,boost}}^{\ell\ell} [\mathrm{GeV}] \\ \cos \theta_{\ell\ell}^{*} \\ \Delta \phi_{\ell,\ell} \\ \Delta \phi_{p_{\mathrm{T}}^{\mathrm{miss}}, \ell_{1}} \end{array}$	> 140 > 20 > 11 < 5 < 0.2 > 2.2 > 2.2	> 100 > 50 > 60 - < 0.1 > 2.8	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Binned SRs			
m ¹⁰⁰ _{T2} [GeV]	$ \in [100,105) \\ \in [105,110) \\ \in [110,115) \\ \in [115,120) \\ \in [120,125) \\ \in [125,130) \\ \in [130,140) $		
	∈[140,∞)		$ = 4 - \frac{1}{\left[1_{00-105}, 1_{10}} \left(1_{10-115}, \frac{(1_{20-125}, 1_{30}, 1_{40}, \infty)}{(1_{20-125}, 1_{30}, 1_{40}, \infty)} \right]^{\left[1_{00-105}, 1_{10}, 1_{15}, 1_{20}, 1_{25}, 1_{30}, 1_{40}, \infty)\right]^{\left[1_{00-105}, 1_{10}, 1_{15}, 1_{20}, 1_{25}, 1_{30}, 1_{40}, \infty)\right]^{\left[1_{20-105}, 1_{20}, 1_{25}, 1_{20}, 1_{25}, 1_{30}, 1_{40}, 1_{40}, \infty)\right]^{\left[1_{20-105}, 1_{20}, 1_{25}, 1_{20}, 1_{25}, 1_{30}, 1_{40}$

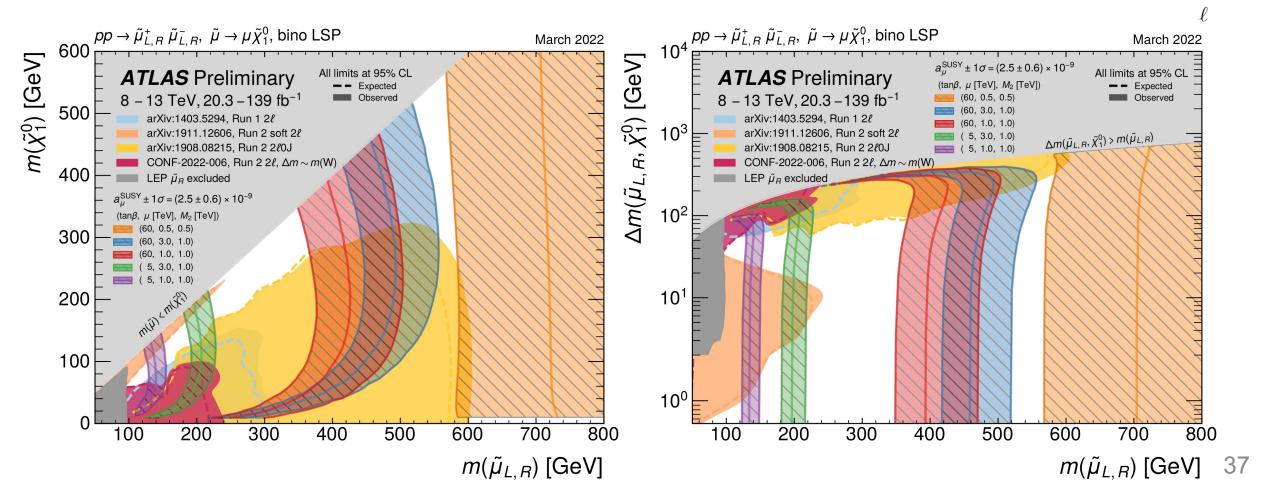

ATLAS-CONF-2022-006


p

p



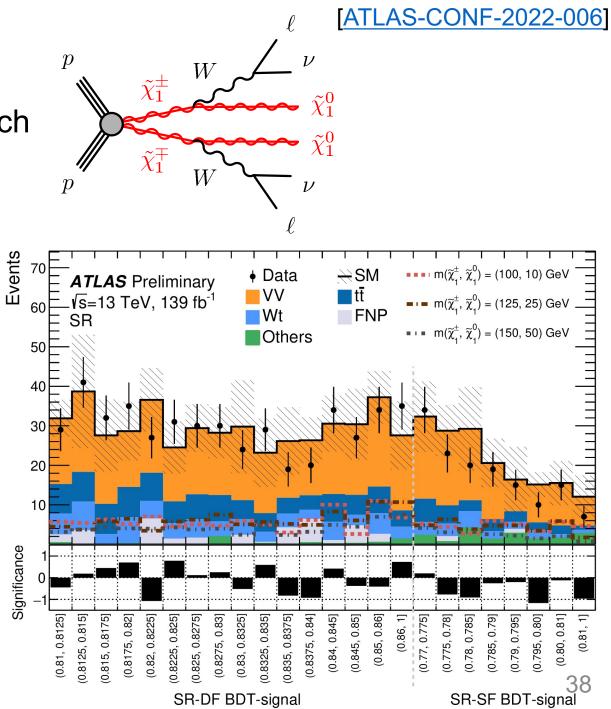
ATLAS-CONF-2022-006

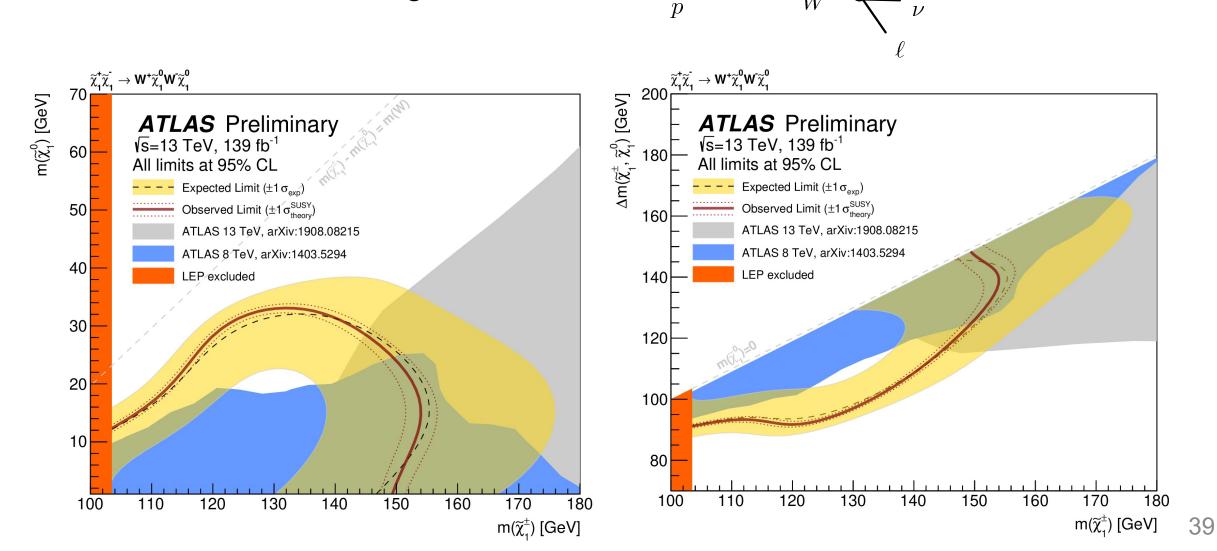


Exclusion limits for selectron pair production

150

Exclusion limits for smuon pair production


Exclusion limits in the phase space region relevant for the *g*-2 anomaly


ATLAS-CONF-2022-006

SR selection and yields for the chargino search

Signal region (SR)	SR-DF	SR-SF
n _{b-tagged jets}		= 0
nnon-b-tagged jets		= 0
$E_{\rm T}^{\rm miss}$ significance		>8
$m_{\rm T2}$ [GeV]		>50
BDT-other		< 0.01
Inclusive SRs	BDT-si	gnal
I	∈(0.81 ,0.8125]	€(0.77 ,0.775]
	€(0.8125,0.815]	∈(0.775,0.78]
	€(0.815,0.8175]	∈(0.78,0.785]
BDT-signal	€(0.8175 ,0.82]	∈(0.785 ,0.79]
	€(0.82,0.8225]	€(0.79 ,0.795]
	€(0.8225 ,0.825]	€(0.795 ,0.80]
	€(0.825 ,0.8275]	€(0.80 ,0.81]
	€(0.8275,0.83]	∈(0.81,1]
	€(0.83 ,0.8325]	
	€(0.8325 ,0.835]	
	€(0.835 ,0.8375]	
	€(0.8375 ,0.84]	
	€(0.84 ,0.845]	
	€(0.845 ,0.85]	
	€(0.85 ,0.86]	
	∈(0.86,1]	

Exclusion limits for the chargino search

p

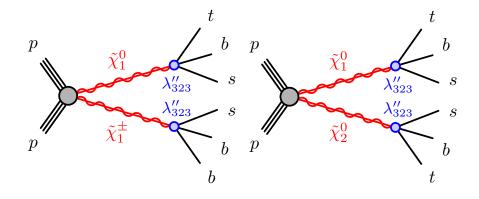
W

 $\tilde{\chi}_1^0$

 $\tilde{\chi}_1^0$

 $\tilde{\chi}_1^{\pm}$

 χ_1


ATLAS-CONF-2022-006

RPV with leptons and many jets

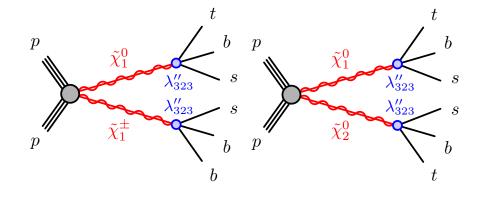
SR selection (jet counting analysis).

- The highest jet multiplicity considered (N_{last}) depends on the jet p_{T} threshold and the lepton category.
- In the 1ℓ category it corresponds to 15, 12, 11, 10, and 8 jets for the different jet p_T thresholds in increasing order. In the 2ℓ^{sc} category it corresponds to 10, 8, 7, 7, and 6 jets respectively.

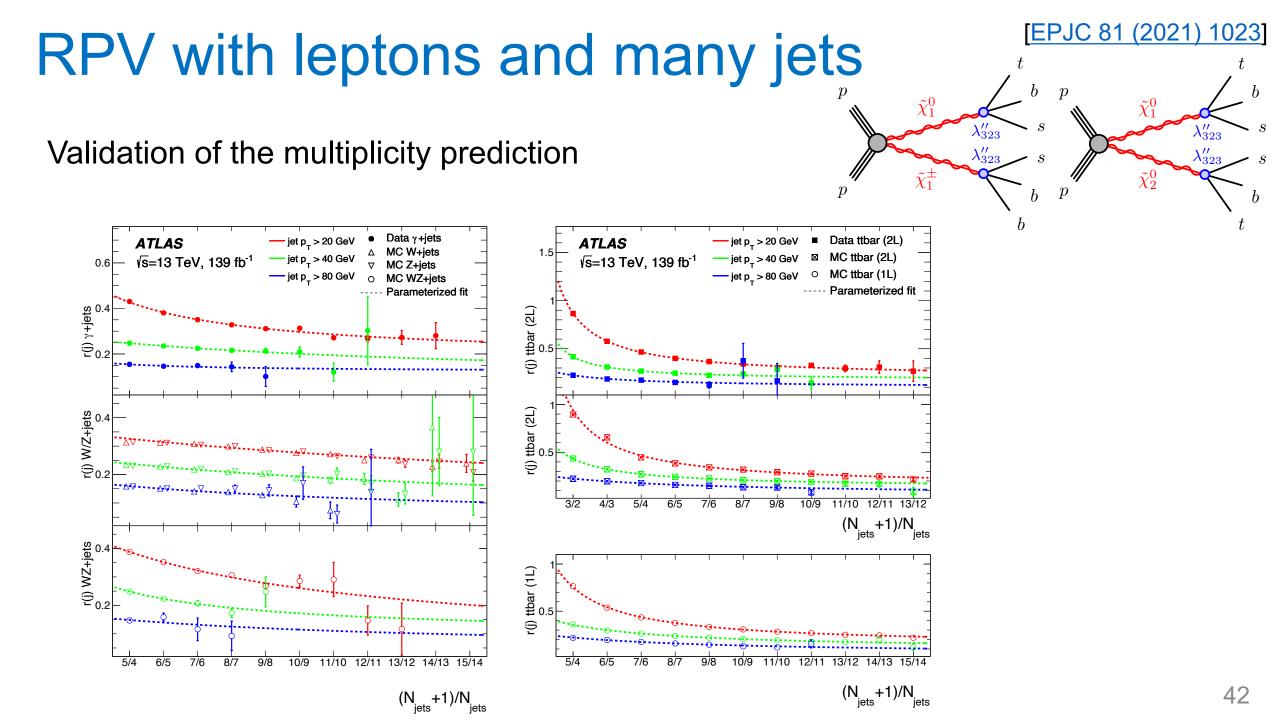
Jet multiplicity	Analysis regions
47 jets	$0b \ \ell^-, 0b \ \ell^+, 0b \ m_{\ell\ell}, 1b, 2b, 3b, \ge 4b$
$8 \ge N_{\text{last}}^{1\ell}$ jets	$0b, 1b, 2b, 3b, \ge 4b$
$4 \ge N_{\text{last}}^{2\ell^{\text{sc}}}$ jets	$\begin{array}{l}0b \ 3\ell, 0b, 1b, 2b, 3b,\\ \geq 4b\end{array}$
	47 jets $8 \ge N_{\text{last}}^{1\ell} \text{ jets}$

RPV with leptons and many jets

Jet multiplicity prediction


A data-driven approach is used to estimate the contribution of the main backgrounds in each jet multiplicity slice.

- Above a certain number of jets, the estimate of the normalization relies on assuming a functional form to describe the evolution of the number of background events for process *X* as a function of the jet multiplicity *r^X(j)* ≡ *N*_{*j*+1}^{*X*}/*N*_{*j*}^{*X*}. *r^X(j)* is assumed to be constant, implying a fixed probability of additional jet radiation, referred to as '**staircase scaling**' [Ref. <u>1</u>, <u>2</u>, <u>3</u>, <u>4</u>]. This behaviour has been observed in *W*/*Z*+jets by the ATLAS [Ref. <u>5</u>, <u>6</u>] and CMS [Ref. <u>7</u>] collaborations.
- For lower jet multiplicities, a different scaling is expected with r(j)=k/(j+1) where k is a constant, referred to as 'Poisson scaling' [Ref. 8]. The transition point between these scaling behaviours depends on the jet kinematic selections.


A combination of the two scalings is used for the kinematic phase space relevant for this search.

 $r^X(j) \equiv c_0^X + c_1^X(j + c_2^X)$

where c_0^X , c_1^X and c_2^X are processdependent constants that are extracted from the data.

[EPJC 81 (2021) 1023]

