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Einstein’s	General	Theory	of	Relativity	

Rμν −
1
2

gμνR =
1

M2
P

Tμν

GWs	are	described	as	a	tensor	perturbation	( )	in	
Friedmann-Robertson-Walker	metric:	

hij

ds2 = a(τ)2[−dτ2 + (δij + 2hij) dxidxj]
with	transverse	&	traceless	conditions:	∂ihij = 0 & hi

i = 0

—>	Two	polarization	states:	+	&	x
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GW’s	EOM:	 h′￼′￼ij + 2ℋh′￼ij − ∇2hij =
1

M2
P

ΠTT
ij

Hubble	parameter	in	 :	 

Transverse-traceless	projection	of	 :	

τ ℋ = a′￼/a
Tij ΠTT

ij

In	Fourier	space:	

hij(τ, x) = ∫
d3k

(2π)3/2
eik⋅x [ h+

k (τ) e+
ij (x) + h×

k (τ) e×
ij (x) ]

	same	as	a	massless	scalar		

Power	spectrum:	 PT(τ, x) =
k3

2π2 ( |h+
k (τ) |2 + |h×

k (τ) |2 )
Energy	spectrum:	 ΩGW(τ, k) ≡

1
ρc

dρGW

d ln k
,

	where			 	and	ρGW(τ, k) =
1
a2

M2
P h′￼ijh′￼ij ρc = 3HM2

P
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Displacement	of	test	masses	by	GWs	propagating		in	z-direction:

Gµ⌫ = 8⇡GTµ⌫

geometry matter/source

�i
i = @i�ij = 0 two polarization states of the graviton:     ,    

Perturbation around FRLW (homogenous&isotropic) background

Gravitational waves

ds2 = �dt2 + a2(t) (�ij + �ij) dx
idxj

Einstein equations:

Polarizations		+:	

	x:	

Detection	of	GWs

• Direct:	Interferometers	

II Theory and Background

Laser source

Mass

Mass

Photosensor
Interference pattern

Figure II.7: Schematic of a Michelson interferometer.

featuring the second time derivative of the quadrupole tensor

Qij(t) =
Z

d3x0 T00(t, x0)x0ix0j. (II.60)

This is an interesting outcome and reveals the nature of GW sources: They are time-
dependent and anisotropic (non-spherical) motions of mass, where only the second
and higher orders of the multipole expansion contribute. GWs carry energy and one
can show that the corresponding energy-momentum tensor is given by

TGW
µ⌫ =

1

32⇡G
D
@µhTT

ij @⌫hij
TT

E
(II.61)

with time average h•i. By integrating the energy flow TGW
0i over a spherical surface,

the luminosity

L =

Z
dAiTGW

0i =
G
5

D ...
QTT

ij
...
Q ij

TT
E

(II.62)

is obtained, i.e. the total amount of energy radiated by a quadrupole source per time.
The TT representation QTT

ij = Qij – 1
3�ijQk

k is used at this point.

Detection

The basic concept of GW observation is simple and just requires placing a ruler next to
two test masses. This is basically what a Michelson interferometer does (see Fig. II.7):
Monochromatic laser light is split up by a beam splitter into orthogonal directions.
Both partial beams are then reflected by freely floating test masses at a certain dis-
tance. After passing through the splitter a second time, the two beams interfere with
each other. A change in the interference pattern signals a changing interferometer arm
length which can be caused by traversing GWs. The incredible smallness of strain h
makes it however extremely difficult to distinguish an actual signal from thermal, seis-

26

• Indirect:	B-mode	polarization	of	CMB	(GWs	from	inflation)

																			Pulsar	timing	arrays:	GW	effects	on	pulsar	timing						
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We	know	GW	signals	are	extremely	weak.		

Is	it	really	possible	to	detect	GWs?	
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We	know	GW	signals	are	extremely	weak.		

Is	it	really	possible	to	detect	GWs?	

—>	YES!		GW150914	detection	at	LIGO!	

It	has	opened	up	a	possibility	to	detect	GWs	in	a	variety	of	
frequencies.
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1-2.	Impact	on	Particle	Physics?

h′￼′￼ij + 2ℋh′￼ij − ∇2hij =
1

M2
P

ΠTT
ij <—	source	

Sources	of	GWs?	

• Astronomical	sources:	binaries,	supernove		
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1-2.	Impact	on	Particle	Physics?

h′￼′￼ij + 2ℋh′￼ij − ∇2hij =
1

M2
P

ΠTT
ij <—	source	

Sources	of	GWs?	

• Astronomical	sources:	binaries,	supernove

• Primordial/Cosmological	sources			

Examples:	Cosmic	Infaltion	

																			1st	order	Phase	transition	

																			Topological	defect	

																			(Cosmic	strings,	Domain	Walls,	monopoles,	etc)

																			Primordial	Black	Hole	(formation)

																			Preheating/Fragments	after	inflation….

Sources	=	Physics	Beyond	the	Standard	Model	
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G
ravitational W

ave

Photon

N
eutrino

1-3.	Exploring	Early	Universe	(BSM	in	cosmology)

GWs	carry	the	information	

from	the	“earliest	Universe”!	

GW	detections	as	a	probe	of	BSM!
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1-3.	Exploring	Early	Universe	(BSM	in	cosmology)

GWs	carry	the	information	

from	the	“earliest	Universe”!	

In	the	following,	we	will	focus	on

				1.	Cosmic	Inflation	

				2.	1st	order	PT

				3.	Topological	defect	(cosmic	strings)

GW	detections	as	a	probe	of	BSM!
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2.	GWs	from	Cosmic	Inflation
Cosmic	Inflation	is	the	standard	paradigm	of	the	modern	
cosmology	which	can	solve	problems	in	Big	Bang	Cosmology

‣ Flatness	problem

‣ Horizon	problem

‣ Origin	of	the	primordial	density	fluctuations

Problem of Big Bang Cosmology

Origin of primordial density fluctuations

Seeds of the large sale structure 
of the Universe

Solution: Cosmological Inflation before Big Bang

Inflation is driven by a scalar field (infalton) 
with a very flat potential 

30

δT
T

≃ 10−5

Seeds	of	the	large	scale	structure

‣ Primordial	GWs	produced	during	inflation

Power	spectrum	

of	tensor	perturbation: PT =

8
M2

P (
Hinf

2π )
2
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Simple	scenario:	``Slow-roll	Inflation’’

									Inflation	is	driven	by	a	slow-rolling	scalar	(Inflaton)

0 5 10
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1.0

1.5

�/MP

c N
×V

(�
)/M

P4

Slow-roll:	E ∼ VEnd	of	Inflation:	

									K ∼ V

Oscillation	->	decay	->	reheating

ϕ + δϕ

• Inflation	takes	place	during	slow-roll:	 

• Quantum	fluctuation	 	is	magnified	to	a	macroscopic	scale					
—>		origin	of	the	density	fluctuation

a(t) ∝ eHinf t

δϕ
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FIG. 5. Constraints in the r vs. ns plane for the Planck
2018 baseline analysis, and when also adding BICEP/Keck
data through the end of the 2018 season plus BAO data to
improve the constraint on ns. The constraint on r tightens
from r0.05 < 0.11 to r0.05 < 0.035. This figure is adapted from
Fig. 28 of Ref. [2] with the green contours being identical.
Some additional inflationary models are added from Fig. 8 of
Ref. [35] with the purple region being natural inflation.
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PS
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Constraints	on	inflation	scenario	from	CMB	observations

Tensor-to-scalar	ratio:

Power	spectrum	of	scalar

perturbation:

PS(k0) = 2.099 × 10−9

k0 = 0.05 Mpc−1

Spectral	index:

ns = 1 +
d ln PS

d ln k
≃ 0.965
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Inflationary	predictions	of	a	slow-roll	inflation

ℒinf =
1
2

ημν(∂μϕ)(∂νϕ) − V(ϕ)

Defining	the	slow-roll	parameters	(in	Planck	units	 )	MP = 1

Before we discuss the models, let’s recall the basic equations used to calculate the
inflationary parameters. The slow-roll parameters may be defined as (see ref. [18] for a
review and references):

✏ =
1

2

✓
V

0

V

◆2

, ⌘ =
V

00

V
, ⇣

2 =
V

0
V

000

V 2
. (1.1)

Here and below we use units mP = 2.4⇥ 1018 GeV = 1, and primes denote derivatives with
respect to the inflaton field �. The spectral index ns, the tensor to scalar ratio r and the
running of the spectral index ↵ ⌘ dns/d ln k are given in the slow-roll approximation by

ns = 1� 6✏+ 2⌘ , r = 16✏ , ↵ = 16✏⌘ � 24✏2 � 2⇣2 . (1.2)

The amplitude of the curvature perturbation �R is given by

�R =
1

2
p
3⇡

V
3/2

|V 0| , (1.3)

which should satisfy �2
R = 2.215 ⇥ 10�9 from the Planck measurement [19] with the pivot

scale chosen at k0 = 0.05 Mpc�1.
The number of e-folds is given by

N =

Z �0

�e

V d�

V 0 , (1.4)

where �0 is the inflaton value at horizon exit of the scale corresponding to k0, and �e is the
inflaton value at the end of inflation, defined by max(✏(�e), |⌘(�e)|, |⇣2(�e)|) = 1. The value
of N depends logarithmically on the energy scale during inflation as well as the reheating
temperature, and is typically around 50–60.

2 Radiatively corrected quadratic and quartic potentials

Inflation driven by scalar potentials of the type

V =
1

2
m

2
�
2 +

�

4!
�
4 (2.1)

provide a simple realization of an inflationary scenario [5]. However, the inflaton field �

must have couplings to ‘matter’ fields which allow it to make the transition to hot big bang
cosmology at the end of inflation. Couplings such as (1/2)h�N̄N or (1/2)g2�2

�
2 (to a

Majorana fermion N and a scalar � respectively) induce correction terms to the potential
which, to leading order, take the Coleman-Weinberg form [20]

Vloop ' ��
4 ln

✓
�

µ

◆
. (2.2)

Here, µ is a renormalization scale which we set to µ = mP
1, and  = (2h4 � g

4)/(32⇡2) in
the one loop approximation.

1
For the radiatively corrected quartic potential the observable inflationary parameters do not depend on

the choice of the renormalization scale. However, this may not be the case for the radiatively corrected

quadratic potential, as discussed in ref. [21].
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V
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✓
�

µ

◆
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1, and  = (2h4 � g

4)/(32⇡2) in
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1
For the radiatively corrected quartic potential the observable inflationary parameters do not depend on

the choice of the renormalization scale. However, this may not be the case for the radiatively corrected

quadratic potential, as discussed in ref. [21].

– 2 –

the	spectral	index	&	tensor-to-scalar	ratio:

The	power	spectrum	of	scalar	perturbation:	 PS =
1

12π2

V3

(V′￼)2

The	number	of	e-folds:	

Here,	 	at	the	horizon	exit	&	the	end	of	inflation	ϕ = ϕ0 ϵ(ϕe) = 1

Ne = ∫
ϕ0

ϕe

dϕ
V
V′￼
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Inflationary	predictions	of	a	slow-roll	inflation

The	power	spectrum	of	scalar	perturbation:	


																														 	PS =
1

12π2

V3

(V′￼)2
→ 2.099 × 10−9

The	number	of	e-folds:	 Fix	(say,	50-60)	Ne = ∫
ϕ0

ϕe

dϕ
V
V′￼

→

predictions
ns & r
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Ex)	A	successful	inflation	scenario:	non-minimal	 	inflationλϕ4

Action	in	the	Jordan	frame: See,	for	example,	

NO,	Rehman	&	Shafi,	PRD	82	(2010)	04352	

• Non-minimal	gravitational	coupling

• Quartic	coupling	dominates	during	inflation
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Gravitino constraints on supergravity inflation
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(Dated: May 5, 2022)

Supergravity embedding of the Standard Model of particle physics provides phenomenologically
well-motivated and observationally viable inflationary scenarios. We investigate a class of inflation-
ary models based on the superconformal framework of supergravity and discuss constraints from
the reheating temperature, with the particular focus on the gravitino problem inherent in these
scenarios. We point out that a large part of the parameter space within the latest BICEP/Keck
95% confidence contour may have been excluded by the gravitino constraints, depending on the
mass scale of the inflaton. Precision measurements of the scalar spectral index by a future mission
may rule out some of these scenarios conclusively.

Introduction.— Understanding the origin of cosmic in-
flation is an important goal of particle cosmology, and
for that purpose, model building in a theory beyond
the Standard Model is a promising direction of research.
In particular, supergravity embedding of the Standard
Model o↵ers a well-motivated framework; supersymme-
try allows natural gauge unification, softens the hier-
archy problem and provides a natural candidate for
the dark matter. Realizing a realistic inflationary sce-
nario within supergravity was once considered challeng-
ing. The statement of this di�culty, known as the ⌘
problem, is based on assumptions including the canonical
form of the Kähler potential. The avenues to circumvent
the ⌘ problem are now well known. In this letter, we
will be concerned with a class of supergravity inflation-
ary models obtained by relaxing the assumption of the
canonical Kähler potential. These are the direct super-
symmetric analogue of the nonminimally coupled Higgs
inflation type model [1, 2], which has been a focus of
much attention due to its solid phenomenological origin
and the excellent fit of the cosmological parameters to
the measurements by the WMAP and Planck satellites.

Basic structure of the supergravity inflation model.—
The inflationary model of our interest is constructed from
the supergravity lagrangian

L �
Z

d4✓ �†�K +
nZ

d2✓�3W + h.c.
o
, (1)

in which the superpotential is assumed to include the
coupling of a singlet or adjoint superfield S and a vector-
like pair (�,�) under a certain gauge symmetry

W � yS��. (2)

This structure is common. Examples include the singlet
S and the Higgs doublet superfields (�,�) = (Hu, Hd) of
the NMSSM [4–6], and S = 24H and (�,�) = (5H ,5H)
of the minimal SU(5) grand unification model [7, 8]. See
also [9] for the construction in the Pati-Salam model,
[10–14] for the type I and type III seesaw models, [15]
for the B � L model, [16] for the SO(10) grand unified
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FIG. 1. The prediction of the primordial tilt ns and
the tensor-to-scalar ratio r by the nonminimally coupled su-
pergravity inflation model, shown for the e-folding number
Ne = 50, 60 and 70. The points for y = 10�6, 2 ⇥ 10�6,
5⇥ 10�6, 10�5, 2⇥ 10�5, 5⇥ 10�5, 1 are marked with •. The
thick dashed line r = 16

3 (1�ns) corresponds to the minimally
coupled (⇠ = 0) model. The blue contours on the background
are the Planck+BICEP/Keck 2018 1- and 2-� constraints [3].

theory, [17] for the hybrid inflation model and [18] for
the gauge mediated supersymmetry breaking model. The
Kähler potential in the superconformal framework [19–
25] is chosen in the form

K =� 3M2
P + |�|2 + |�|2 + |S|2

� 3

2
�
�
��+ h.c.

�
� ⇣

M2
P

|S|4, (3)

where MP = 2.44⇥1018 GeV is the reduced Planck mass,
and �, ⇣ are real parameters. One may always adjust
the parameter ⇣ so that S is stabilized at some constant
value, which is assumed to be small compared to the
scale of inflation. Parametrizing the scalar component of
the vector-like fields along the D-flat direction as � =
� = 1

2', the standard supergravity computation gives
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Note:		λ =
y2

4

• Once	 	is	fixed,	only	1	free	parameter	( )	determines	the	predictions

• Predicted	GWs	are	

Ne ξ
r ≳ 0.003

Future	experiments	(CMB-S4,	LiteBIRD)	will	cover	the	region!
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This	scenario	also	predicts	a	relation	between	TR & (ns, r)

2

the scalar part of the action

Sscalar =

Z
d4x

p
�g


M2

P + ⇠'2

2
R� 1

2
(@')2 � y2

16
'4

�
.

(4)

Here, ⇠ ⌘ �

4 � 1
6 parametrizes the nonminimal coupling

between the scalar field ' and the scalar curvature R.
The action (4) is recognized as that of the nonminimally
coupled �'4 model [26] and the prediction for the cosmo-
logical parameters is obtained in the standard slow roll
paradigm, after transforming it into the Einstein frame.
The inflaton field b' canonically normalized in the Ein-
stein frame is related to ' by the relation

db' =
MP

p
M2

P + ⇠'2(1 + 6⇠)

M2
P + ⇠'2

d'. (5)

The scalar potential in the Einstein frame is deformed by
the factor arising from the Weyl transformation as

VE(') =
y2

16

M4
P'

4

(M2
P + ⇠'2)2

. (6)

This potential is concave for not too small ⇠, giving the
observationally supported perturbation spectrum with
the suppressed tensor mode at the CMB scale. The
model has two tunable parameters ⇠ (or �) and y, but
with the normalization of the scalar perturbation ampli-
tude, there remains only one parameter degree of free-
dom. As ⇠ is increased from zero, the coupling y is also
increased towards a larger value. The predicted primor-
dial tilt ns and tensor-to-scalar ratio r are shown in Fig. 1
for di↵erent values of e-folding number Ne. It can be seen
that y & 10�6 ⇠ 10�5 is in good agreement with the
recent cosmological data. Note that y ⇠ 10�6 is not un-
naturally small from the phenomenological perspective,
as it is in the same order as the Standard Model electron
Yukawa coupling. The fact that the ‘self-coupling’ in the
potential (6) appears as y2, and not as y, is a salient fea-
ture of this supergravity inflation model which is in stark
contrast to the nonsupersymmetric counterpart. For ex-
ample, the Higgs inflation model [1, 2] requires a large
nonminimal coupling ⇠ ⇠ 104 in order to accommodate
the Standard Model Higgs self coupling, which led some
authors to worry about the unitarity issue [27–30] (see
however [31]). Since the self coupling is y2 in supergrav-
ity, this awkwardness, if it exists, may be easily avoided.

Gravitino problem.— Supergravity entails the grav-
itino, which is potentially harmful in cosmological sce-
narios [32–35] depending on its mass m3/2 = F/

p
3MP,

see e.g. [36]. A stable gravitino may be produced by the
decay of the inflaton, by the decay of a heavier supersym-
metric particle, or thermally produced via the freeze-in
mechanism. See [37] for the details of computations of
the thermal production rate. The stable gravitino in the
mass range 4.7 eV . m3/2 . 0.24 keV becomes a hot

or warm dark matter component, which is severely con-
strained by the analysis of small scale structure formation
[38, 39]. In the range 0.24 keV . m3/2 . 1GeV, the grav-
itino behaves as cold dark matter. The condition that the
Universe is not overclosed by the gravitino sets an upper
bound on the reheating temperature TR . 102 ⇠ 107

GeV, depending on the mass m3/2 [40]. The gravitino in
the range 1GeV . m3/2 . 1TeV is restricted due to light
element photodestruction. The overclosure bound for the
m3/2 & 1TeV gravitino dark matter gives TR . 109

GeV. The gravitino with m3/2 � 1TeV is likely to be
unstable. The condition that the successful big bang
nucleosynthesis is not jeopardized by the decay of the
gravitino gives a bound on the reheating temperature
TR . 105 ⇠ 109 GeV [41]. Extremely light, m3/2 .
eV, or extremely heavy, m3/2 & 107 GeV [42], gravitinos
are unconstrained. Although realizing such mass spec-
tra in a realistic supersymmetry breaking mechanism is
challenging, there exist possible scenarios, e.g. gravitino
dark matter at m3/2 & EeV discussed in [43–45].
Constraints from the reheating temperature.— Regard-

less of the details of the particle physics model that is
embedded in supergravity, the constraints from the grav-
itino problem are always present. The constraints give
an upper bound on the reheating temperature. It is thus
important to elucidate the relation between the reheating
temperature and the prediction for the cosmological pa-
rameters, whenever the viability of an inflationary model
is discussed within supergravity.
Assuming the standard thermal history of the Uni-

verse, inflation (accelerated cosmic expansion) ends1 at
time tend, followed by a period of (p)reheating character-
ized by the equation of state parameter w. The Universe
then thermalizes at time tth and becomes radiation dom-
inant2 until matter-radiation equality is reached at time
teq. After that the Universe stays matter dominated,
until today t0. The e-folding number Nk between the
horizon exit of the comoving wave number k and the end
of inflation is then expressed as [47, 48]

Nk ⌘ ln
aend
ak

= 66.5� lnh� ln
k

a0H0
+

1� 3w

12(1 + w)
ln

⇢th
⇢end

+
1

4
ln

Vk

⇢end
+

1

4
ln

Vk

M4
P

+
1

12

�
ln geq⇤ � ln gth⇤

�
,

(7)

1
We use the condition that one of the slow roll parameters

✏V = (M2
P/2)(VE,b'/VE)

2
or ⌘V = M2

PVE,b'b'/VE reaches unity,

namely, max(✏V, ⌘V) = 1 for the end of inflation. This is in good

agreement with the actual termination of accelerated cosmic ex-

pansion for the models studied here.
2
Strictly speaking, the completion of thermalization and the start

of radiation dominance (the end of reheating) are di↵erent, as

emphasized e.g. in [46]. However, the distinction has little sig-

nificance in our analysis due to the logarithmic dependance in the

equation (7). We thus assume in our analysis that the Universe

becomes radiation dominant immediately after thermalization.

ρth =
π2

30
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* T4
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3
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FIG. 2. The prediction for the primordial tilt ns and the tensor-to-scalar ratio r, computed for the rescaled reheating
temperature �

�1
TR = 1 MeV, 1 GeV, 1 TeV and 106, 109, 1012, 1015, 1018, 1021, 1024, 1027, 1030 GeV (red lines). The curves

for e-foldings Ne = 45, 50, 55, 60, 65, 70 are also indicated in green. The near-horizontal grey curve ns = 1� 3r/8�
p

r/3 is
the prediction in the limit ⇠ � 1. The contours on the background are the Planck+BICEP/Keck 2018 1- and 2-� constraints
[3].

where H0 = 100h km s�1 Mpc�1 with h = 0.674 [49] is
the Hubble parameter today, Vk is the potential (6) eval-
uated at the time of the horizon exit of the wave number
k, and a, ⇢, g⇤ are the scale factor, the energy density and
the number of relativistic degrees of freedom evaluated
at the time specified by the super/subscripts (k for the
horizon exit, end for the end of inflation, th for the com-
pletion of thermalization (end of reheating), eq for the
matter-radiation equality and 0 for the present time).

The equation of state parameter w in (7) is understood
to be the averaged value over the time tend < t < tth. In
the supergravity inflation scenario we consider, the infla-
ton has mass M which is much smaller than the inflation-
ary scale and is thus negligible during inflation. Including
this mass, the potential (6) after inflation becomes

VE(') '
y2

16
'4 +

1

2
M2'2. (8)

At the beginning of (p)reheating the quartic term dom-
inates and the cosmic expansion is radiation-like, w '
wr = 1/3. As the amplitude of the inflaton oscillations
is diminished, the quartic and the quadratic terms be-
come comparable at time t?, when ' = '? '

p
8M/y.

Let us denote the energy density at this moment as
⇢?(< ⇢end). After t?, the quadratic term of the poten-
tial dominates and the cosmic expansion becomes matter-
like, w ' wm = 0. Thus the (p)reheating of this model
proceeds stepwise, first with radiation-like equation of
state, and then with matter-like equation of state. Ac-
cordingly, the fourth term of (7) may be written more

concretely as

1� 3w

12(1 + w)
ln

⇢th
⇢end

=
1� 3wr

12(1 + wr)
ln

⇢?
⇢end

+
1� 3wm

12(1 + wm)
ln

⇢th
⇢?

. (9)

Now using wr = 1/3, wm = 0 and introducing dimen-
sionless parameter � (0  �  1) to denote ⇢? = �4⇢end,
(9) becomes

1

12
ln

⇢th
⇢?

=
1

12
ln

"
⇡2gth⇤
30⇢end

✓
TR

�

◆4
#
. (10)

Here, TR is the reheating temperature and we have used
⇢th = ⇡2gth⇤ T 4

R/30. The reheating temperature always
appears in the combination TR/�. The energy density at
the end of inflation may be evaluated as ⇢end ' 2Vend.
The parameter � depends on the phenomenological model
embedded in supergravity; for example, in the messenger
inflation model [18] we find � ⇠ 10�5 for the messenger
mass M = 108 GeV and Yukawa coupling y = 5.735 ⇥
10�6.

We solved the equations of motion for the supergrav-
ity inflation model to find the primordial tilt ns and the
tensor-to-scalar ratio r, for given values of the reheat-
ing temperature TR. The results are shown in Fig. 2 as
red curves, together with the 1- and 2-� contours from
the Planck +BICEP/Keck 2018 data [3]. The curves are

Shinsuke	Kawai	&	NO,	2111.03645,	to	appear	PRD

For	similar	studies,	see	

Cheong,	Lee	&	Park,	
2111.00825;		

Ellis,	Garcia,	Nanopoulos,	
Olive	&	Verner,	2112.04466

δ =
ρquad

ρend
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Non-minimal	 	inflationλϕ4

• Simple	1-field	inflation	with	the	introduction	of	 

• Consistent	with	Planck	+	others	with	a	suitable	choice	of	
quartic	coupling	 	

ξ |ϕ |2 R

λ |ϕ |4
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Non-minimal	 	inflationλϕ4

• Simple	1-field	inflation	with	the	introduction	of	 

• Consistent	with	Planck	+	others	with	a	suitable	choice	of	
quartic	coupling	 


• Potentially,	any	scalar	can	play	the	role	of	inflaton	

ξ |ϕ |2 R

λ |ϕ |4

So,	it	may	be	more	interesting	if	the	inflaton	in	this	scenario	
can	play	another	important	role	in	particle	physics

An	interesting	possibility	is	the	identification:

														Inflaton	=	a	Higgs	field	in	a	gauge	extension	of	the	SM	

*	SM	Higgs	is	not	likely	the	inflaton	since	its	running	
quartic	coupling	runs	into	negative	at	high	energies
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Example:	Minimal	B-L	Model

SU(3)C SU(2)L U(1)Y U(1)B−L

qiL 3 2 1/6 +1/3
ui
R 3 1 2/3 +1/3

diR 3 1 −1/3 +1/3
!iL 1 2 −1/2 −1
N i

R 1 1 0 −1
eiR 1 1 −1 −1
H 1 2 −1/2 0
Φ 1 1 0 +2

Table 5: The particle content of the minimal U(1)X extended SM with Z2-parity. In
addition to the SM particle content (i = 1, 2, 3), the three RHNs (N j

R (j = 1, 2) and NR)
and the U(1)B−L Higgs field (Φ) are introduced. The unification into SU(5)×U(1)X is
achieved only for xH = −4/5, and xH is quantized in our model.

xH → 0

f

f̄

Z ′

e+e− → µ+µ−

e+e− → Z h

e+e− → Z ′∗ → N N

h

−mZ gX xH

mZ′ $ mf ,mh

2× vX ≥ 6.9TeV

C!
L =

g!L√
(g!L)

2 + (g!R)
2

(17)

C!
R =

g!R√
(g!L)

2 + (g!R)
2

(18)

±Λ2 (19)
QeQf

(2vX)2
(20)

4

A	simple	&	well-motivated	U(1)	gauge	extension	of	the	SM	

B-L	Higgs	field	&	Inflaton
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Example:	Minimal	B-L	Model

• Anomaly	global	B-L	symmetry	in	the	SM	is	gauged

• Right-handed	neutrinos	to	cancel	gauge/gravitational	anomaly	

• Spontaneous	B-L	gauge	symmetry	breaking	to	generate	
Majorana	mass	for	RHNs


• Type-I	seesaw	mechanism	after	electroweak	symmetry	
breaking


• Leptogenesis	via	CP-asymmetric	out-of-equilibrium	NR	decay	

!14

Simple scenario: Baryogenesis via Leptogenesis
Fukugita &Yanagida (1986)

Ø Right-handed neutrino decay in the early Universe 
generates lepton asymmetry

Ø Lepton asymmetry is converted to Baryon 
asymmetry by the SM non-perturbative effect 
(Sphaleron processes)

5 

Link	to	the	generation	of	BAU:	Leptogenesis		

CP-asymmetric	out-of-equilibrium	decay	of	heavy	neutrinos	

à Lepton	asymmetry	of	the	Universe		

à	BAU	from	LAU	via	sphaleron	process	

Ø  Tiny	neutrino	masses		
Ø  Baryon	Asymmetry	of	the	Universe	

Seesaw	Mechanism	

Fukugita-Yanagida,		
PLB	174	(1986)	45	
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Embedding	into	Grand	Unified	Theory	is	also	possible	

quarks, the charge conjugation of right-handed up quarks, and the charge conjugation of

right-handed charged leptons are embedded in 10 representation:

5∗ ⊃ di CR ⊕ !iL, 10 ⊃ qiL ⊕ ui C
R ⊕ !iCR , (2)

This quark and lepton unification requires the following two conditions,

1

3
x−

1

3
= −

1

2
x− 1,

1

6
x+

1

3
= −

2

3
x−

1

3
= x+ 1, (3)

which should be satisfied with a unique x value. The solution is x = −4/5 and hence the

SU(5) unification leads to a quantization of U(1)X charge [61]. As is well known, the SU(5)

GUT normalization for the SM U(1)Y coupling and rescaled charges are

gY =

√

3

5
g1, Q1 =

√

3

5
QY . (4)

The SU(5)× U(1)X can be embedded into SO(10). In the following, we list the decom-

position of several SO(10) multiplets to SU(5)× U(1)X [62]:

SO(10) ⊃ SU(5)× U(1)X

10 = 5(−2/5) + 5∗(2/5),

16 = 1(1) + 5∗(−3/5) + 10(1/5),

45 = 1(0) + 10(−4/5) + 10∗(4/5) + 24(0),

126 = 1(2) + 5∗(2/5) + 10(6/5) + 15∗(−6/5) + 45(−2/5) + 50∗(2/5).

The SM fermions and RH neutrinos are embedded in 16 representation. The SM Higgs

doublet (H) is embedded in 10 representation,3 while the U(1)X Higgs field (Φ2) is in

126 representation. Similarly to the embedding of U(1)Y into SU(5), the SO(10) GUT

normalization of U(1)X is given by

gX =

√

5

8
gχ, Qχ =

√

5

8
QX . (5)

For simplicity, we assume the SO(10) symmetry breaking to the U(1)X extended SM by

non-zero vacuum expectation values (VEVs) of 〈1(0)〉 and 〈24(0)〉 in a 45-representation

3 To be precise, for deriving realistic SM fermion mass matrices, the SM Higgs doublet is identified with

a linear combination of SU(2)L doublets in 10 and 126 representations. See Eq. (7) for the Yukawa

coupling in the SO(10) GUT.

5

U(1)x	Higgs	field	&	Inflaton

SM	fermions	+	RHN

See	for	example	

NO,	Raut	&	Shafi,	1906.06869

NO,	Seto	&		Uchida,	2006.01406
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3.	GWs	from	1st	order	phase	transition

There	are	many	well-motivated	models	beyond	the	SM,	
in	which	the	SM	gauge	symmetry	is	extended.


We	naturally	expect	that	the	universe	experienced	some	
phase	 transitions	 associated	 to	 the	 extended	 gauge	
symmetry	 breaking,	 in	 addition	 to	 the	 electroweak	 &	
QCD	phase	transitions	in	the	SM.


If	a	gauge	symmetry	breaking	exhibits	1st	order	phase	
transition,	we	may	expect	a	large	amplitude	of	GWs	
created	by	bubble	dynamics.
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1st	order	phase	transitionSymmetry 2020, 12, 733 4 of 24

Figure 1. Two types of phase transitions. (Upper) Case of the first-order phase transition; shapes of
the effective potential at T > TC, T = TC and T < TC [left panel] and the temperature evolution of the
VEV of scalar [right panel]. (Lower) Counterparts in the case of the second-order phase transition.

Before we discuss EWPT, we consider the f4 theory in order to see the symmetry behavior at
high-T. The Lagrangian is given by

L =
1
2

∂µ j∂µ j � V0(j), V0(j) = �
m2

2
j2 +

l

4!
j4, (7)

where l > 0 and m2
> 0. This model has the Z2 symmetry, j ! �j, but it is spontaneously

broken because of the �m2 term. The field-dependent scalar mass is derived by m̄2 = ∂2V0/∂j2 =
�m2 + lj2/2. The one-loop effective potential in the MS scheme takes the form

V1(j; T) =
m̄4

64p2

✓
ln

m̄2

µ̄2 �
3
2

◆
+

T4

2p2 IB(a2), (8)

where µ̄2 = 4pe�gE µ2 with gE being the Euler constant. Combining this with V0(j), one finds

Veff(j; T) = V0(j) + V1(j; T)

' �
p2T4

90
+

1
2

✓
�m2 +

l

24
T2

◆
j2

�
T

12p
(m̄2)3/2 +

l

4!
j4 +

m̄4

64p2

✓
ln

T2

µ̄2 + 2cB

◆
, (9)

where cB = ln aB/2 and HTE is used in the second line. One can find that the Z2 symmetry can be
restored at high temperature due to the positive contribution of the O(T2) term. Presence of the (m̄2)3/2

Tn

Bubble	nucleation	occurs	at	 	(nucleation	temp)	
if	the	condition	is	satisfied:

Tn

Γ(Tn) ∼ T4
ne−S3/Tn ∼ H(Tn)4

Thermal	bubble	nucleation	rate/vol

Vacuum Decay & Bubble Nucleation

Bubble nucleation rate vs. Expansion of Universe
� ⇠ e�S3/T H

�H�4 !⇠ 1

Nucleation criterion
S3/Tn ⇠ 140 5

- Friedmann equation
- Universe radiation dominated
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Theory	background:	finite-temperature	field	theory	

U(1)B−L symmetry breaking vacuum, the B −L Higgs field develops the VEV, and the RH

neutrinos N i
R and the B − L gauge boson (Z ′ boson) acquire their masses, respectively, as

mN i
R
=
YN i√
2
v2, (24)

m2
Z′ =4g2B−Lv

2
2, (25)

where gB−L is the U(1)B−L gauge coupling and v2 is defined as 〈Φ2〉 = v2/
√
2. Then,

the tree level B − L Higgs boson mass is given as m2
Φ2

= λ2v22. Note the LEP constraint

mZ′/gB−L ! 6 TeV [44, 45] and the constraint from the LHC Run 2 on the search for a

narrow resonance (see, for example, Refs. [46–49])

mZ′ ! 3.9 TeV, (26)

for gB−L % 0.7.

In the minimal B−L model, one-loop quantum corrections to the scalar potential for both

zero and finite temperature are essential for realizing the first-order phase transition. For our

numerical calculations, we have implemented our minimal U(1)B−L model into the public

code CosmoTransitions [50], where both zero- and finite-temperature one-loop effective

potentials5 [51],

Veff(ϕ, T ) = V0(ϕ) +∆V1−loop(ϕ) +∆VT (ϕ, T ), (27)

with Φ2 = ϕ/
√
2, have been calculated in the MS renormalization scheme at a renormaliza-

tion scale Q2 = v22. In the following calculations, we assume YN i & gB−L, for simplicity, and

neglect quantum corrections through neutrino Yukawa couplings YN i. Thus, the effective

potential (27) is described by only three free parameters, gB−L,λ2 and MΦ2
. In our analysis,

we use v2 instead of MΦ2
.

B. Parameter dependence

We now show a dependence of our results on three free parameters: gB−L,λ2, and v2.

At first, we focus on the gauge coupling dependence of the resultant GW spectrum. The

Ref. [43].
5 As one might know, the use of the effective Higgs potential holds the issue of gauge dependence in the

results [52]. Since resolution to this issue is under development, we adopt the effective potential technique.
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• Tree-level	potential:	V0(φ)

• 1-loop	effective	potential:

The U(1)X Higgs field is expanded around its VEV (v2) as

Φ2 =
v2 + φ2 + iχ2√

2
. (21)

The scalar masses are expressed as

m2
φ2

=−M2
Φ2

+
3λ2

2
v22, (22)

m2
χ2

=−M2
Φ2

+
λ2

2
v22. (23)

At the classical minimum with v2 =
√

2M2
Φ2
/λ2, χ2 is the would-be Nambu-Goldstone mode

eaten by the U(1)X gauge boson (Z ′ boson) and m2
φ2

= λ2v22 . The RH neutrinos N i
R and

the Z ′ boson acquire their masses as

mN i
R
=
YN i√
2
v2, (24)

m2
Z′ =q2Φ2

g2X v22. (25)

One-loop corrections to the scalar potential for both zero and finite temperatures are

essential for realizing the first-order phase transition. One-loop correction is given by

∆V1−loop(ϕ) =
∑

s

gs
m4

s

64π2

(

ln
m2

s

Q2
− cs

)

−
∑

f

gf
m4

f

64π2

(

ln
m2

f

Q2
− cf

)

+
∑

v

gv
m4

v

64π2

(

ln
m2

v

Q2
− cv

)

. (26)

Here, gi, with i = s (scalars), f (fermions) and v (vectors) denotes the number of internal

degrees of freedom, ci = 5/6 (3/2) is a constant for a vector boson (a scalar or a fermion), and

Q is the renormalization scale. The finite temperature correction to the effective potential

is expressed by

∆VT (ϕ) =
∑

s

gs
T 4

2π2
JB(m

2
s/T

2)−
∑

f

gf
T 4

2π2
JF (m

2
f/T

2) +
∑

v

gv
T 4

2π2
JB(m

2
v/T

2), (27)

where JB(F ) is an auxiliary function in thermal corrections (see e.g. Refs. [74, 75]).

We include the thermal correction to masses of φ2, χ2 and the Z ′ boson as given by

∆m2
φ2/χ2

=
q2Φ2

4
g2χT

2 +
λ2

6
T 2 +

∑

N

|YN |2

24
T 2, (28)

∆m2
Z′

L
=
∑

Φ

NΦq
2
Φ

g2χ
6
T 2 +

∑

f

Nc(q
2
Lf + q2Rf )

g2χ
6
T 2, (29)

11

• Finite	temperature	corrections	to	the	effective	potential:

The U(1)X Higgs field is expanded around its VEV (v2) as

Φ2 =
v2 + φ2 + iχ2√

2
. (21)

The scalar masses are expressed as

m2
φ2

=−M2
Φ2

+
3λ2

2
v22, (22)

m2
χ2

=−M2
Φ2

+
λ2

2
v22. (23)

At the classical minimum with v2 =
√

2M2
Φ2
/λ2, χ2 is the would-be Nambu-Goldstone mode

eaten by the U(1)X gauge boson (Z ′ boson) and m2
φ2

= λ2v22 . The RH neutrinos N i
R and

the Z ′ boson acquire their masses as

mN i
R
=
YN i√
2
v2, (24)

m2
Z′ =q2Φ2

g2X v22. (25)

One-loop corrections to the scalar potential for both zero and finite temperatures are

essential for realizing the first-order phase transition. One-loop correction is given by

∆V1−loop(ϕ) =
∑

s

gs
m4

s

64π2

(

ln
m2

s

Q2
− cs

)

−
∑

f

gf
m4

f

64π2

(

ln
m2

f

Q2
− cf

)

+
∑

v

gv
m4

v

64π2

(

ln
m2

v

Q2
− cv

)

. (26)

Here, gi, with i = s (scalars), f (fermions) and v (vectors) denotes the number of internal

degrees of freedom, ci = 5/6 (3/2) is a constant for a vector boson (a scalar or a fermion), and

Q is the renormalization scale. The finite temperature correction to the effective potential

is expressed by

∆VT (ϕ) =
∑

s

gs
T 4

2π2
JB(m

2
s/T

2)−
∑

f

gf
T 4

2π2
JF (m

2
f/T

2) +
∑

v

gv
T 4

2π2
JB(m

2
v/T

2), (27)

where JB(F ) is an auxiliary function in thermal corrections (see e.g. Refs. [74, 75]).

We include the thermal correction to masses of φ2, χ2 and the Z ′ boson as given by

∆m2
φ2/χ2

=
q2Φ2

4
g2χT

2 +
λ2

6
T 2 +

∑

N

|YN |2

24
T 2, (28)

∆m2
Z′

L
=
∑

Φ

NΦq
2
Φ

g2χ
6
T 2 +

∑

f

Nc(q
2
Lf + q2Rf )

g2χ
6
T 2, (29)

11

JB,F(y2) = ∫
∞

0
dxx2 log [1 ∓ e− x2 + y2]
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Phase	transition	analysis

Γ(T ) ∼ T4e−S3/T
• Thermal	bubble	nucleation	rate/vol

• 3-D	Euclidean	action

S3 = 4π∫
∞

0
dr r2 [ 1

2 ( dφ(r)
dr ) + V(φ, T )]

d2φ
dr2

+
2
r

dφ
dr

= V′￼	with	a	bounce	solution	of		

lim
r→∞

φ(r) = 0 & lim
r→0

dφ(r)
dr

= 0

Γ(Tn) ∼ T4
ne−S3/Tn ∼ H(Tn)4	We	fix	 	byTn
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Characterizing	the	GW	spectrum

• Nucleation	temperature:	Tn

• Phase	transition	strength: α =
Δρ(Tn)
ρrad(Tn)

• Hubble	normalized	transition	time	scale:
β

H(Tn)
= T

d(S3/T )
dT T=Tn

• Bubble	wall	velocity:	 vb

GW	spectrum

place [36]. On the other hand, the radiation energy density is given by

ρrad =
π2g∗
30

T 4, (2)

with g∗ being the total number of relativistic degrees of freedom in the thermal plasma. The

parameter α is defined by

α ≡
ε

ρrad
. (3)

The bubble nucleation rate per unit volume at a finite temperature is given by

Γ(T ) = Γ0e
−S(T ) " Γ0e

−S3
E
(T )/T . (4)

Here, Γ0 is a coefficient of the order of the transition energy scale, S is the action in the

four-dimensional Minkowski space, and S3
E is the three-dimensional Euclidean action [20].

The transition timescale is characterized by a dimensionless parameter

β

H!
" T

dS

dT

∣

∣

∣

∣

T!

= T
d(S3

E/T )

dT

∣

∣

∣

∣

T!

, (5)

with

β ≡ −
dS

dt

∣

∣

∣

∣

t!

. (6)

B. GW spectrum

Here, we briefly note formulas of generated GW by each of three sources: bubble collisions,

turbulence, and sound waves after bubble collisions. The final spectrum is expressed, by

taking the sum of all three, as

ΩGW (f) = Ωcoll
GW (f) + Ωsw

GW (f) + Ωturb
GW (f), (7)

in terms of the density parameter. For information, we find that the bubble collision con-

tribution is negligible, the sound wave is the dominant source, and turbulence gives a high

frequency tail in the spectrum, as GWs generated by a first-order phase transition in many

other models.

4

from	3	main	sources:	bubble	collisions	(coll),	sound	waves	(sw)	
after	bubble	collisions,	and	turbulence	(turn)	

Fitting	formulas	for	the	spectrum	are	obtained	by	simulations
Huber	et	al.,	0806.1828;	Hindmarsh	et	al.,	1504.03291;	Caprini	et	al.,	0909.0622,	..
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Parameter Dependence
Varying phase transition strength (= latent heat)

⌦GW ⇠
⇣

↵
1+↵

⌘�2, 32
 

fpeak = const.

10-6 10-4 0.01 1

10-20

10-16

10-12

10-8

↵ = {0.01, 0.1, 1} ��1 = 0.1 H�1 Tn = 100 GeV
9

Parameter Dependence
Varying duration

⌦GW ⇠
�
H��1�{1,2} fpeak ⇠

�
H��1��1

10-6 10-4 0.01 1

10-20

10-16

10-12

10-8

↵ = 0.1 ��1 = {0.01, 0.1, 1} H�1 Tn = 100 GeV
10

Parameter Dependence
Varying nucleation temperature

⌦GW = const. fpeak ⇠ Tn H�1 ⇠ T�2
n

10-6 10-4 0.01 1

10-20

10-16

10-12

10-8

↵ = 0.1 ��1 = 0.1 H�1 Tn = {10, 100, 1000} GeV
11

fpeak = fix fpeak ∼ β/H

ΩGW = fix
fpeak ∝ Tn
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Example:	Minimal	B-L	Model

DECIGO

LISA

aLIGO

CE

BBO

10 5 0.001 0.1 10 1000
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10 4
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G
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FIG. 4: The predicted GW spectra for the benchmark points are shown. Green, blue and red

curves from left to right correspond to points A, B, and C, respectively. The future experimental

sensitivity curves of LISA [55], DECIGO and BBO [56], aLIGO [57], and Cosmic Explore (CE) [58]

are also shown in black.

constant. The B − L phase transition at an energy scale far beyond the LHC reach can

be observed through GWs in the future. We have also found, for a sensible value of the

gauge coupling constant, the existence of a lower bound on the Higgs self-coupling constant

λ2 ! 10−4 in order not to realize an unwanted second inflation. We stress that, although our

analysis has been done based on the U(1)B−L model, our results in this paper are general

and applicable for any U(1) gauge theory with a minimal Higgs sector, as long as Yukawa

coupling effects on the effective Higgs potential are negligible.
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Hasegawa,	NO	&	Seto,	
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Benchmarks:	 





			 


			

(gBL, vBL, λΦ)
=(0.44, 4 TeV, 1.5 × 10−4),

(0.4, 12 TeV, 2.0 × 10−4),
(0.46, 3.8 PeV, 4.0 × 10−4)

Probing	the	seesaw	scale	with	GWs	from	1st	order	PT!	
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4.	GWs	from	Cosmic	Strings

There	are	many	well-motivated	models	beyond	the	SM,	
in	which	the	SM	gauge	symmetry	is	extended.


We	naturally	expect	that	the	universe	experienced	some	
phase	 transitions	 associated	 to	 the	 extended	 gauge	
symmetry	 breaking,	 in	 addition	 to	 the	 electroweak	 &	
QCD	phase	transitions	in	the	SM.


Cosmic	strings	are	created	

after	U(1)	symmetry	breaking

Gravitational waves from stable cosmic strings

[See also talk by Hitoshi + all other talks today]

[Ringeval: 1005.4842]

Cosmic strings:

• Topological defects after U(1)
breaking in the early Universe

• Network of long strings and
closed loops in scaling regime

• Parameters: string tension Gµ

and loop size at production –

Gravitational waves (GWs):

• Loop oscillations + GW bursts
from cusps and kinks on loops

Assumption: Energy loss via particle emission o� closed loops is negligible
[Matsunami, Pogosian, Saurabh, Vachaspati: 1903.05102] [Hindmarsh, Lizarraga, Urio, Urrestilla: 2103.16248]

1
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Cosmic	string	network	of	long	strings	and	closed	loopscosmic strings

Gµ ~ v2/MPl2

https://www.ligo.org/science/Publication-S5S6CosmicStrings/index.php

Oscillation	of	closed	loops	create	GWs

GW	spectrum	is	characterized	by		 


GW	spectrum	is	obtained	by	Lattice	Simulations

Gμ ∼
v2

ϕ

M2
Pl
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3

conventional estimate relies on Nambu–Goto string, an
approximation where the string is infinitely thin with
no couplings to particles [21]. In this case, the numer-
ical simulations are tractable over a large range of dis-
tance scales and hence frequencies of gravitational waves.
There is additional uncertainty in the loop length (li) at
the time of formation (ti) which is normally taken to
be a linear relation: li = ↵ti. The parameter ↵ has a
peaked distribution in both radiation and matter domi-
nation ranging from 0.01� 0.1 [22].

Unfortunately, there has been major disagreements
whether the particle production dominates the energy
loss over that from gravitational wave emission. Simula-
tions based on Nambu–Goto strings cannot address this
question. If particle production dominates [23], the re-
sulting stochastic gravitational wave background is sup-
pressed by the quadratic power in Gµ [20] (where G is
Newton’s constant and µ is the string tension and roughly
given by the square of the symmetry breaking scale,
µ ⇠ v2). Recent work in [24] did extensive numerical
simulations with the abelian Higgs model and found that
the particle production is only important for extremely
small loops, and hence the gravitational wave is the dom-
inant mechanism for most situations. The present study
is only for the BPS string (the critical point where the
gauge boson mass is equal to the Higgs mass of the sym-
metry breaking scalar) but we suspect there is no quali-
tative change for non-BPS strings, as both the Higgs and
gauge bosons are massive. On the other hand, the grav-
itational wave emission may be further enhanced if the
di↵erence between the gravitational radiation scale and
gravitational back reaction scale is considered (see, e.g.,
[25]). This possibility is under active study [26]. We as-
sume the dominance of the gravitational wave emission
in this paper, but emphasize that the discrepancy among
various estimates needs to be settled before concrete pre-
dictions can be made. To estimate the gravitational wave
emission we follow the strategy employed in [27] which as-
sumes large loops are produced with a spectrum sharply
peaked at a given ↵, which we fix to be 0.05, and a frac-
tion of energy released in the form of GW of F↵ ' 0.1.
The energy density (⌦GW) per unit log f (where f is the
frequency) can be derived for each string normal-mode,
k (see [27] for more details),

⌦GW =
1X

k=1

⌦(k)
GW(f) , (6)

⌦(k)
GW = ⌦(k)

0 (f)

Z ⌧0

1
d⌧

Ce↵(⌧i)

⌧4i

a2(⌧)a3(⌧i)

a50
⇥(⌧i � ⌧F ) ,

(7)

⌦(k)
0 (f) =

1

⇢c

2k

f

F↵�(k)Gµ2

↵2t3F
, (8)

⌧i(⌧) =
1

↵


2k

ftF

a(⌧)

a0
+ �Gµ⌧

�
, (9)

Figure 1: The predicted GW background from cosmic strings
for di↵erent symmetry breaking scales, assuming the particle
production is subdominant. For comparison we also display
the sensitivity of current (solid) and future (dashed) experi-
ments (from left to right) of Square Kilometer Array (SKA),
NANOGRAV (NANO), Laser Interferometer Space Antenna
(LISA), Big Bang Observer (BBO), DECi-hertz Interferom-
eter Gravitational wave Observatory (DECIGO), Einstein
Telescope (ET), Cosmic Explorer (CE), and Laser Interferom-
eter Gravitational-Wave Observatory (LIGO). Here, we made
an approximation for the string tension µ = v2 where v is the
symmetry breaking scale.

where ⌧a ⌘ ta/tF , tF is the time the cosmic string net-
work reaches the scaling regime (shortly after symmetry
breaking), Ce↵ = 0.5 (5.7) in matter (radiation) dom-
ination, �(k)

' �k�4/3/3.6 is a dimensionless constant
which parameterizes the emission rate per mode, � ' 50,
⇥ is the Heaviside theta function which restricts string
production till after formation of the scaling regime, a is
the scale factor, and ⇢c is the critical density.

We present the stochastic gravitational wave back-
ground for di↵erent symmetry breaking scales assum-
ing a simple radiation domination to matter domination
cosmology in Fig. 1. The flat scale invariant contribu-
tion arises from radiation domination and remains all
the way up to frequencies beyond expected future capa-
bilities. The additional bump at lower frequencies arises
during matter-domination. Interestingly, for lower break-
ing scales future detectors tend to be most sensitive to
this second, often neglected, contribution. For compar-
ison we show current sensitivity from gravitional wave
experiments from NANOGRAV [28] and Laser Interfer-
ometer Gravitational-Wave Observatory (LIGO) [29] as
well as projected sensitivity from planned gravitational
wave searches using the Square Kilometer Array pulsar
set [30]4, Laser Interferometer Space Antenna [33], Big

4
Supermassive black hole (SMBH) mergers may make it challeng-

Dror,	Hiramatsu,	Kohri,	Murayama	&	White,	1908.03227

vϕ

• Spectrum	of	GWs	from	cosmic	strings	is	flat

• Strength	is	going	down	as	the	VEV	is	decreases:	 	
is	necessary	for	detections


• If	this	is	U(1)	B-L	string																																																																											
—>	Probing	the	seesaw	scale	with	GWs	from	Cosmic	Strings!	

vϕ ≳ 1010 GeV



35

Ex)	Minimal	B-L	Model	

		GWs	from			1st	order	PT													VS.												Cosmic	strings
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LISA

aLIGO
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FIG. 4: The predicted GW spectra for the benchmark points are shown. Green, blue and red

curves from left to right correspond to points A, B, and C, respectively. The future experimental

sensitivity curves of LISA [55], DECIGO and BBO [56], aLIGO [57], and Cosmic Explore (CE) [58]

are also shown in black.

constant. The B − L phase transition at an energy scale far beyond the LHC reach can

be observed through GWs in the future. We have also found, for a sensible value of the

gauge coupling constant, the existence of a lower bound on the Higgs self-coupling constant

λ2 ! 10−4 in order not to realize an unwanted second inflation. We stress that, although our

analysis has been done based on the U(1)B−L model, our results in this paper are general

and applicable for any U(1) gauge theory with a minimal Higgs sector, as long as Yukawa

coupling effects on the effective Higgs potential are negligible.
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conventional estimate relies on Nambu–Goto string, an
approximation where the string is infinitely thin with
no couplings to particles [21]. In this case, the numer-
ical simulations are tractable over a large range of dis-
tance scales and hence frequencies of gravitational waves.
There is additional uncertainty in the loop length (li) at
the time of formation (ti) which is normally taken to
be a linear relation: li = ↵ti. The parameter ↵ has a
peaked distribution in both radiation and matter domi-
nation ranging from 0.01� 0.1 [22].

Unfortunately, there has been major disagreements
whether the particle production dominates the energy
loss over that from gravitational wave emission. Simula-
tions based on Nambu–Goto strings cannot address this
question. If particle production dominates [23], the re-
sulting stochastic gravitational wave background is sup-
pressed by the quadratic power in Gµ [20] (where G is
Newton’s constant and µ is the string tension and roughly
given by the square of the symmetry breaking scale,
µ ⇠ v2). Recent work in [24] did extensive numerical
simulations with the abelian Higgs model and found that
the particle production is only important for extremely
small loops, and hence the gravitational wave is the dom-
inant mechanism for most situations. The present study
is only for the BPS string (the critical point where the
gauge boson mass is equal to the Higgs mass of the sym-
metry breaking scalar) but we suspect there is no quali-
tative change for non-BPS strings, as both the Higgs and
gauge bosons are massive. On the other hand, the grav-
itational wave emission may be further enhanced if the
di↵erence between the gravitational radiation scale and
gravitational back reaction scale is considered (see, e.g.,
[25]). This possibility is under active study [26]. We as-
sume the dominance of the gravitational wave emission
in this paper, but emphasize that the discrepancy among
various estimates needs to be settled before concrete pre-
dictions can be made. To estimate the gravitational wave
emission we follow the strategy employed in [27] which as-
sumes large loops are produced with a spectrum sharply
peaked at a given ↵, which we fix to be 0.05, and a frac-
tion of energy released in the form of GW of F↵ ' 0.1.
The energy density (⌦GW) per unit log f (where f is the
frequency) can be derived for each string normal-mode,
k (see [27] for more details),

⌦GW =
1X

k=1

⌦(k)
GW(f) , (6)

⌦(k)
GW = ⌦(k)

0 (f)

Z ⌧0

1
d⌧

Ce↵(⌧i)

⌧4i

a2(⌧)a3(⌧i)
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(7)

⌦(k)
0 (f) =

1

⇢c
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F↵�(k)Gµ2
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, (8)
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Figure 1: The predicted GW background from cosmic strings
for di↵erent symmetry breaking scales, assuming the particle
production is subdominant. For comparison we also display
the sensitivity of current (solid) and future (dashed) experi-
ments (from left to right) of Square Kilometer Array (SKA),
NANOGRAV (NANO), Laser Interferometer Space Antenna
(LISA), Big Bang Observer (BBO), DECi-hertz Interferom-
eter Gravitational wave Observatory (DECIGO), Einstein
Telescope (ET), Cosmic Explorer (CE), and Laser Interferom-
eter Gravitational-Wave Observatory (LIGO). Here, we made
an approximation for the string tension µ = v2 where v is the
symmetry breaking scale.

where ⌧a ⌘ ta/tF , tF is the time the cosmic string net-
work reaches the scaling regime (shortly after symmetry
breaking), Ce↵ = 0.5 (5.7) in matter (radiation) dom-
ination, �(k)

' �k�4/3/3.6 is a dimensionless constant
which parameterizes the emission rate per mode, � ' 50,
⇥ is the Heaviside theta function which restricts string
production till after formation of the scaling regime, a is
the scale factor, and ⇢c is the critical density.

We present the stochastic gravitational wave back-
ground for di↵erent symmetry breaking scales assum-
ing a simple radiation domination to matter domination
cosmology in Fig. 1. The flat scale invariant contribu-
tion arises from radiation domination and remains all
the way up to frequencies beyond expected future capa-
bilities. The additional bump at lower frequencies arises
during matter-domination. Interestingly, for lower break-
ing scales future detectors tend to be most sensitive to
this second, often neglected, contribution. For compar-
ison we show current sensitivity from gravitional wave
experiments from NANOGRAV [28] and Laser Interfer-
ometer Gravitational-Wave Observatory (LIGO) [29] as
well as projected sensitivity from planned gravitational
wave searches using the Square Kilometer Array pulsar
set [30]4, Laser Interferometer Space Antenna [33], Big

4
Supermassive black hole (SMBH) mergers may make it challeng-

• Mountain-like	shape

• Frequency	must	be	matched	

• vΦ ≲ 107 GeV

• Flat	shape

• Easy	to	overlap

• vΦ ≳ 1010 GeV
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4.	Summary

• GWs	are	messengers	from	very	early	universe


• GWs	as	a	probe	of	BSM	physics	


• We	have	discussed	3	major	sources:																											

Inflation,	1st	order	phase	transition	&	Cosmic	string


• As	a	simple	&	well-motivated	BSM,	we	consider	the	

minimal	B-L	extended	SM	
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Figure 1. Two types of phase transitions. (Upper) Case of the first-order phase transition; shapes of
the effective potential at T > TC, T = TC and T < TC [left panel] and the temperature evolution of the
VEV of scalar [right panel]. (Lower) Counterparts in the case of the second-order phase transition.

Before we discuss EWPT, we consider the f4 theory in order to see the symmetry behavior at
high-T. The Lagrangian is given by

L =
1
2

∂µ j∂µ j � V0(j), V0(j) = �
m2

2
j2 +

l

4!
j4, (7)

where l > 0 and m2
> 0. This model has the Z2 symmetry, j ! �j, but it is spontaneously

broken because of the �m2 term. The field-dependent scalar mass is derived by m̄2 = ∂2V0/∂j2 =
�m2 + lj2/2. The one-loop effective potential in the MS scheme takes the form

V1(j; T) =
m̄4

64p2

✓
ln

m̄2

µ̄2 �
3
2

◆
+

T4

2p2 IB(a2), (8)

where µ̄2 = 4pe�gE µ2 with gE being the Euler constant. Combining this with V0(j), one finds

Veff(j; T) = V0(j) + V1(j; T)

' �
p2T4

90
+

1
2

✓
�m2 +

l

24
T2

◆
j2

�
T

12p
(m̄2)3/2 +

l

4!
j4 +

m̄4

64p2

✓
ln

T2

µ̄2 + 2cB

◆
, (9)

where cB = ln aB/2 and HTE is used in the second line. One can find that the Z2 symmetry can be
restored at high temperature due to the positive contribution of the O(T2) term. Presence of the (m̄2)3/2

B-L	symmetry	is	restored	for	 

1st	order	phase	transition	at	

TR > Tc
Tn

GWs	creations	from	

Bubble	dynamics	&	Cosmic	strings	
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