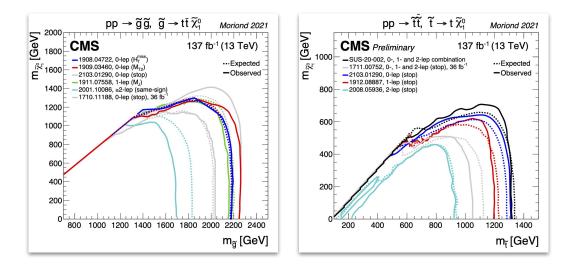
Searches for SUSY in hadronic final states at CMS

Phenomenology Symposium 2022 University of Pittsburgh

9-11 May 2021

Vinay Hegde on behalf of CMS collaboration

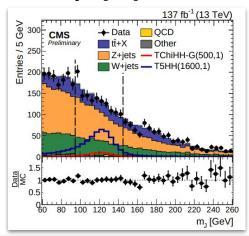

Texas Tech University

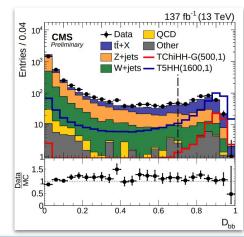
Introduction

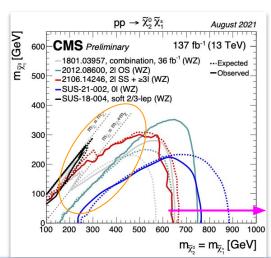
- Several searches for strongly produced SUSY have been performed by CMS.
- Some of the most stringent limits on gluino/squark production have been placed by hadronic searches.
- Hadronic searches:
 - Benefit from larger branching fractions in the decay of $W/Z/H/\tau$ to hadrons.
 - Suffer from higher SM backgrounds compared to the leptonic searches.
 - More common in recent times due to large LHC dataset and new analysis techniques.

Searches covered today....

- Most recent searches with hadronic final state are covered.
- WX + p_T^{miss} (SUS-21-002) HH + p_T^{miss} (SUS-20-004)


Electroweakino searches


- Stau lepton search (SUS-21-001)
- Electroweak searches are important:
 - Stringent constraints on strong production of SUSY. Ο
 - Naturalness condition \rightarrow light charginos and neutralinos. Ο
 - Stau-neutralino coannihilation models \rightarrow stau is NLSP. 0


All other SUSY searches at CMS can be found here.

EWKino searches - Mass spectra and analysis techniques

- In the wino NLSP (χ_1^{\pm}/χ_2^0) scenario, if the mass difference between LSP (χ_1^0) and NLSP is small & m_{NLSP} is low
 - Good sensitivity from leptonic searches.
- For large mass difference and high m_{NLSP},
 - $\circ \quad \text{High momentum LSP} \rightarrow \text{high } p_{\text{T}}^{\text{miss}}.$
 - $\circ \quad \text{High } p_{_{T}} \text{ bosons} \rightarrow \text{collimated decay products.}$
 - Large radius jet with mass near the boson mass and <u>DNNs</u> using jet properties.

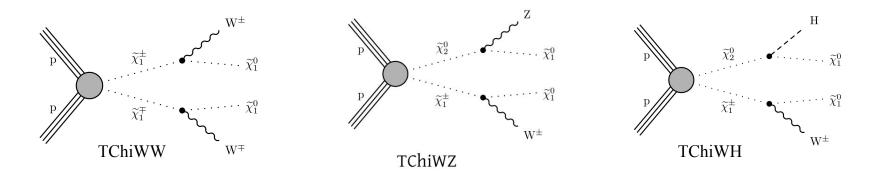
B

 \tilde{W}

 $\tilde{\chi}_1^{\pm}$ -(C1)

 $\tilde{\chi}_2^0$

(N2)


(N1)

NLSP

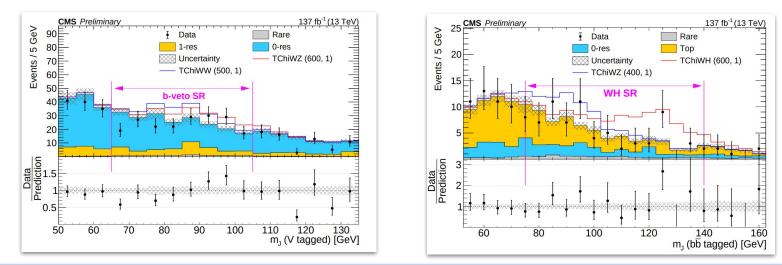
Vinay Hegde (Texas Tech University)

Hadronic SUSY at CMS

$WX + p_T^{miss}$ final state search

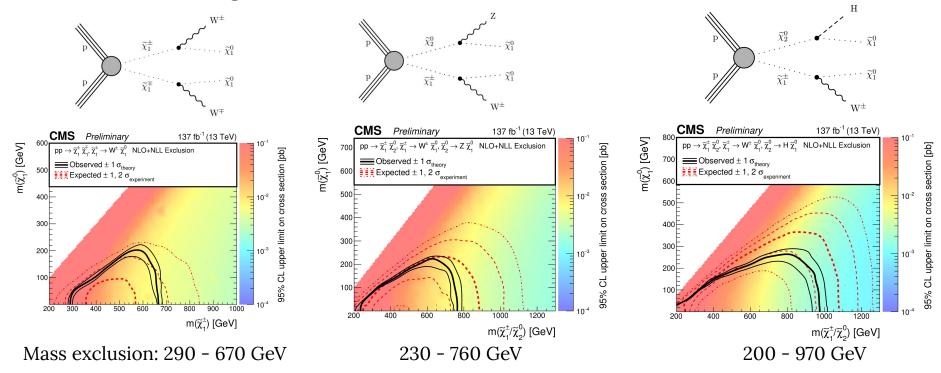
- 2 bosons decay hadronically, giving 2 AK8 jets.
- Search regions are designed based on the number of b-jet tags.

• **0 b**-tags

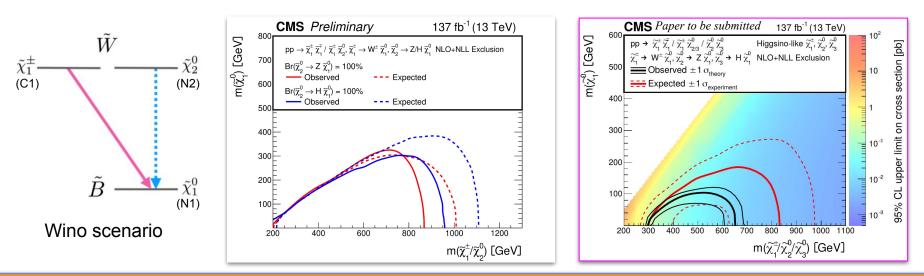

• **0 b-tags** when $Z \rightarrow qq$

• $\geq 1 b$ -tags when $Z \rightarrow bb$

▶ **≥1 b-tags** from $H \rightarrow bb$


Backgrounds and results

- Deep neural networks to discriminate QCD jets vs W/Z/H to qq decays.
- Z(vv), W(lv) and tt are the dominant SM backgrounds estimation from leptonic regions and inverting the DNN discriminator.
- No significant deviations from SM predictions.


Simplified model interpretations

• For wino cross section scenarios with m_{LSP} ~ 0, the search places some of the most stringent limits.

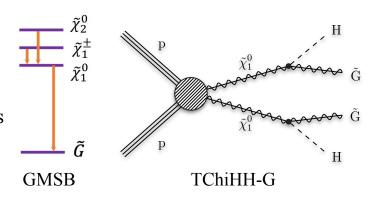
Interpretations - beyond simplified models

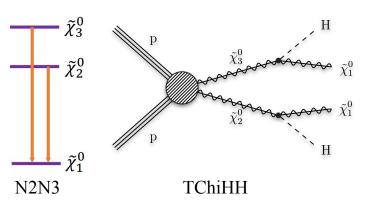
- Realistic wino scenarios involve $\chi_1^{\pm}\chi_1^{\pm}$ and $\chi_1^{\pm}\chi_2^{0}$ production. Two cases $\chi_2^{0} \rightarrow Z + \chi_1^{0}$ with 100% BR or $\chi_2^{0} \rightarrow H + \chi_1^{0}$ with 100% BR are considered.
- Search is also sensitive to higgsino models with $\chi_2^0 \rightarrow \chi_1^0 + Z, \chi_3^0 \rightarrow \chi_1^0 + H$.

H

 $\tilde{\chi}_1^{\pm}$

(C1)

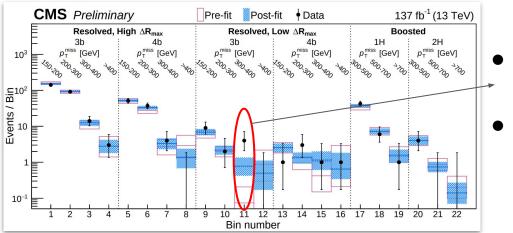

 $ilde{\chi}^0_3$ (N3)


 $\tilde{\chi}_2^0$ (N2)

 $ilde{\chi}^0_1$ (N1)

$HH+p_T^{miss}$ search - models targeted

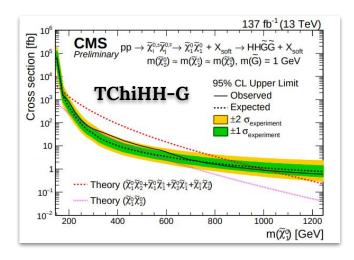
- Search for pair produced neutralinos with H(bb)H(bb) and p_T^{miss} final state.
- GMSB scenario:
 - Higher $\chi_1^0 \chi_1^0$ production since χ_1^{\pm} , χ_1^0 and χ_2^0 are mass degenerate with $\chi_1^{\pm} / \chi_2^0 \to \chi_1^0$ + soft particles.
 - χ_{1}^{0} is NLSP and goldstino, G~ is LSP.
- N2N3 scenario:
 - Only $\chi_{2}^{0}\chi_{3}^{0}$ production, χ_{1}^{\pm} is not accessible; $\chi_{2}^{0}\&\chi_{3}^{0}$ are mass degenerate.
 - $\chi_{2}^{0} / \chi_{3}^{0}$ are co-NLSP and χ_{1}^{0} is LSP.
- 100% BR for NLSP \rightarrow H + LSP.

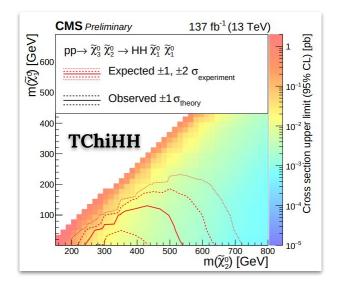


<u>US-20-004</u>

Analysis strategy and results

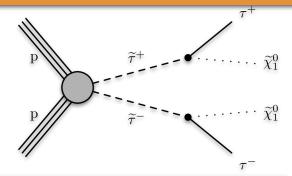
- Two types of search regions:
 - Resolved: targets low p_T Higgs boson scenarios.
 - \circ Boosted: targets high $p_{_{\rm T}}$ Higgs boson scenarios with AK8 jet mass and a DNN based bb tagger.
- tt and $Z(\nu\nu)$ are the dominant backgrounds.

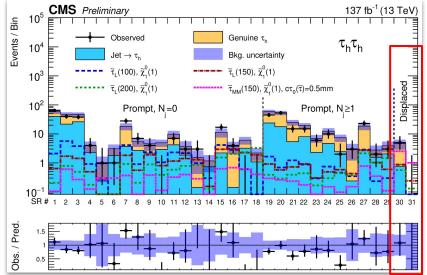

~3.2 σ local significance in one resolved category bin.
A typical SUSY signal would populate several search bins - very


unlikely to be a signal.

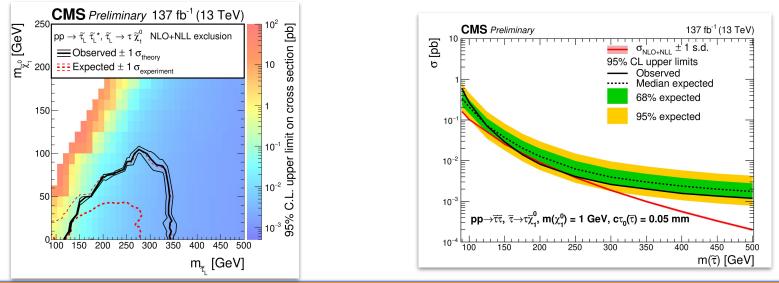
10

Interpretations

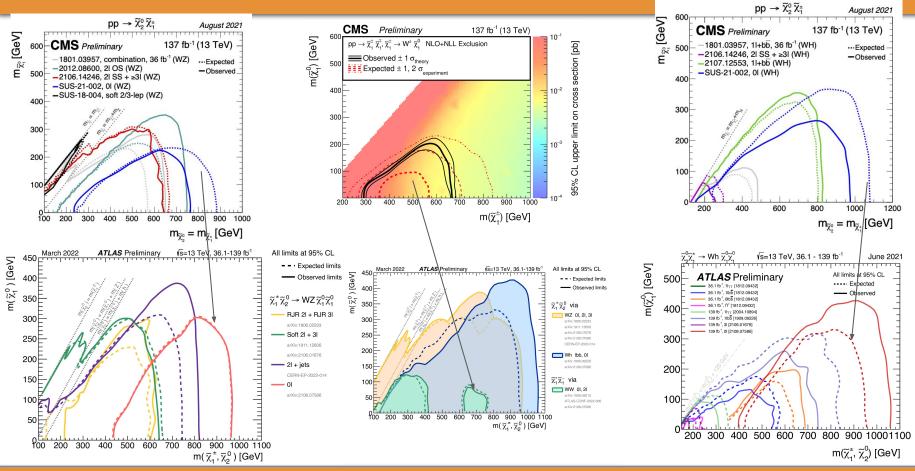

- GMSB scenario, TChiHH-G: mass exclusion 175 1025 GeV.
- N2N3 scenario, TChiHH: Starting to be sensitive to a large region of higgsino masses, even if there is no observed exclusion.



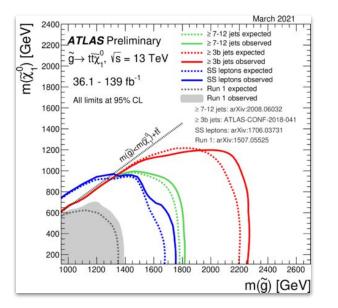
Stau pair search

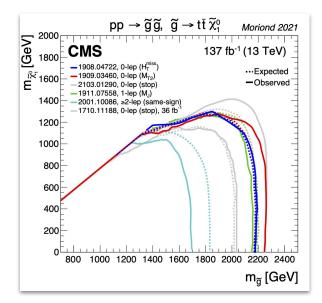

- Direct pair production of staus (NSLP) with hadronic ditau final state.
- Promptly decaying stau and GMSB motivated long lived stau scenarios are considered.
- m_T and m_{T2} are used to define search regions.
- Main background processes: DY→ ττ, W(*lv*), tt & QCD. DeepTau tagger is used to enhance signal to background discrimination.
- Observations are consistent with predictions from SM.

Interpretations

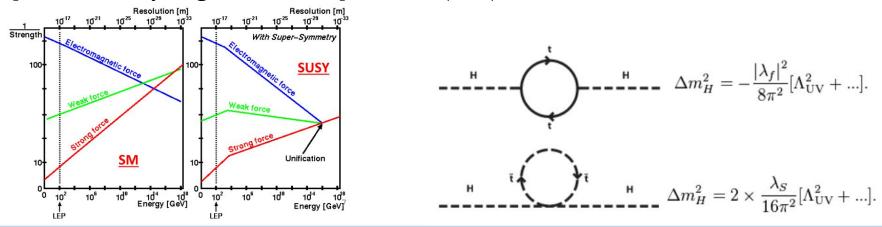

- Results are interpreted using left handed stau and degenerate stau scenarios.
 - Improvement from barely excluded stau-left results (using 77 fb⁻¹) to exclusion up to 350 GeV.
- Starting to exclude long lived stau scenarios as well.

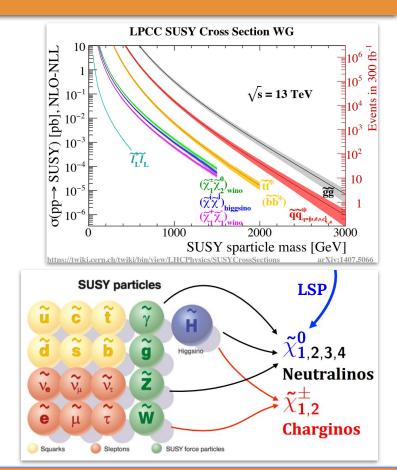
- With the help of new analysis techniques and large LHC dataset, CMS is expanding its hadronic final state searches.
- Expected chargino-neutralino limits for low m_{LSP} are
 - 880 GeV for WZ scenario (> 200 GeV better than leptonic searches).
 - 1100 GeV for WH scenario (~300 GeV better than leptonic searches).
- Significant improvements in sensitivity to higgsino scenarios and stau searches in the latest searches based on the full Run 2 dataset.
- Several new techniques have been developed in Run 2 and we'll improve them and *hope we discover* SUSY *in Run* 3!


Additional information

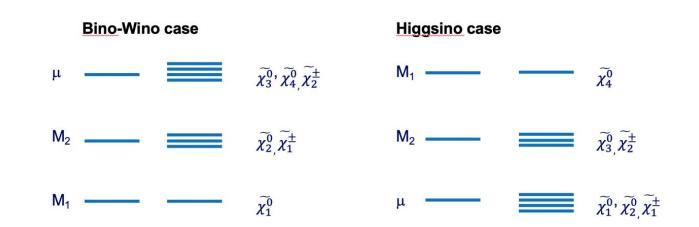

CMS vs ATLAS results - EW SUSY limits

Vinay Hegde (Texas Tech University)


CMS vs ATLAS - Strong SUSY limits

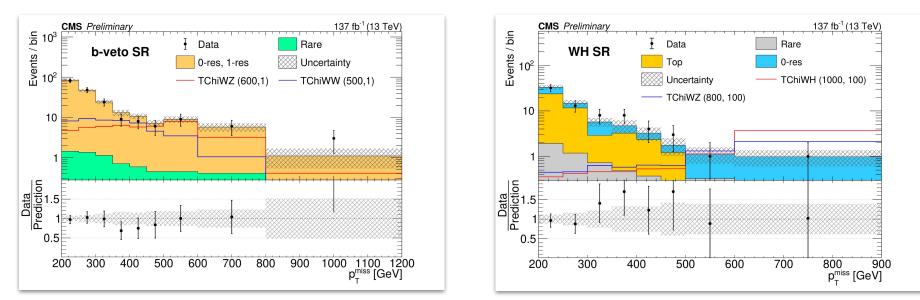

SUSY

- R-parity, $P_R = (-1)^{3(B-L)+2S}$, where B = baryon no., L = lepton no., S = spin. It is a multiplicative quantum number. SM particles have $P_R = +1$, SUSY particles have $P_R = -1$.
- RPC consequences = SUSY particles are pair produced and their decay must result in SUSY particles and SUSY particles cannot decay to SM particles only. Lightest SUSY particles (LSP) is stable.



Exploring EW searches

- Strong SUSY production
 - Explored extensively since the start of LHC.
 - No hints for SUSY so far and limits are quite <u>strong</u>.
- Search for electroweak production is challenging since the cross sections are low.
- Naturalness → higgsinos mass near the EW scale.
- Probing small cross section EWKino:
 - leptonic signatures
 - advanced analysis techniques
 - large LHC dataset

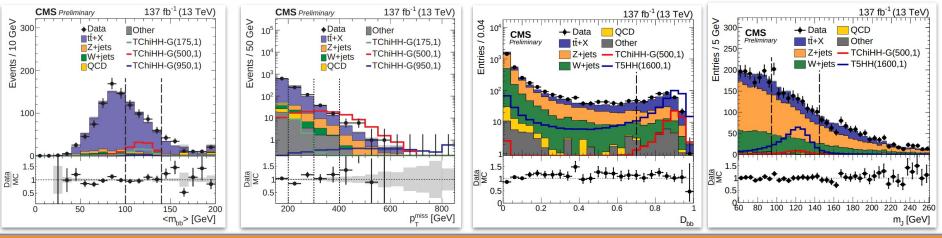


SUSY - mass splitting

Background estimation and results

- $Z(\nu\nu)$, $W(l\nu)$ and tt are the dominant SM backgrounds.
- Background estimation uses control regions defined by inverting the deepAK8 discriminator cuts and single & dilepton regions.
- No significant deviations from SM predictions.

Analysis strategy

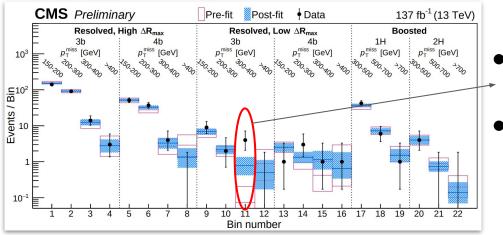

Resolved category

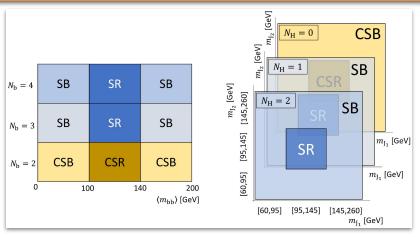
- Expect 4 AK4 jets from 2 low p_T H decays.
- Sensitive to low p_T^{miss} and $m_{NLSP}^{} \sim m_{LSP}^{}$ cases.
- Uses pairs of b-tagged jets to identify H candidates.

Boosted category

- Expect 2 AK8 jets from boosted H decays.
- Sensitive to high p_T^{miss} , high m_{NLSP} and $m_{\text{NLSP}} >> m_{\text{LSP}}$ cases.
- DeepAK8 bb-tagger to discriminate H candidates from background.

22

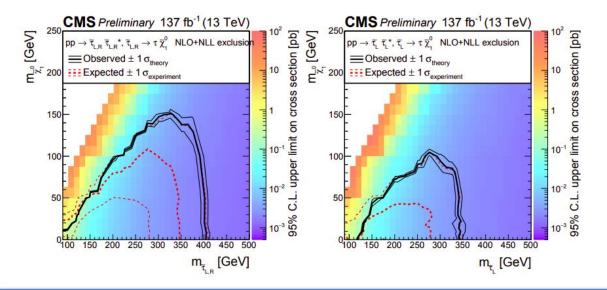



Vinay Hegde (Texas Tech University)

Hadronic SUSY at CMS

Background estimation and results

- tt and Z(vv) are the dominant backgrounds.
- Background estimation uses ABCD method using mass sidebands and tagging.

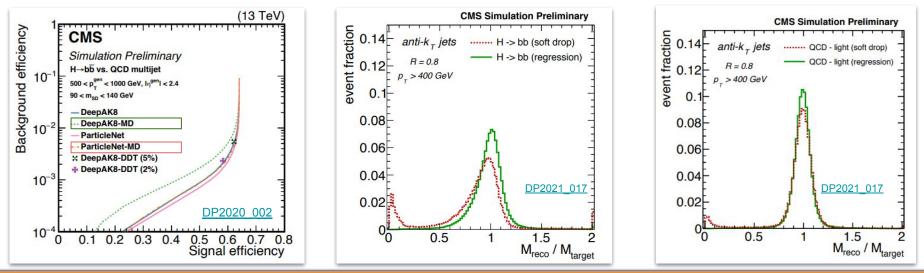


- $\sim 3.2 \sigma$ local significance in one resolved category bin.
- A typical SUSY signal would populate several search bins - very unlikely to be a signal.

23

Stau search

$$\Sigma m_{\rm T} = m_{\rm T}(\tau_{\rm h}^{(1)}, \vec{p}_{\rm T}^{\rm miss}) + m_{\rm T}(\tau_{\rm h}^{(2)}, \vec{p}_{\rm T}^{\rm miss}),$$
$$m_{\rm T2} = \min_{\vec{p}_{\rm T}^{\rm X(1)} + \vec{p}_{\rm T}^{\rm X(2)} = \vec{p}_{\rm T}^{\rm miss}} \left[\max\left(m_{\rm T}^{(1)}, m_{\rm T}^{(2)}\right) \right]$$


	Pror	npt SRs	
SR bin	$\Sigma m_{\rm T}$ [GeV]	m _{T2} [GeV]	$p_{\rm T}^{\tau_{\rm h} 1}$ [GeV]
	N		
1	200 - 250	25 - 50	< 90
2	200 - 250	25 - 50	> 90
3	200 - 250	50 - 75	< 90
4	200 - 250	50 - 75	> 90
5	200 - 250	> 75	
6	250 - 300	25 - 50	< 90
7	250 - 300	25 - 50	> 90
8	250 - 300	50 - 75	< 90
9	250 - 300	50 - 75	> 90
10	250 - 300	> 75	
11	300 - 350	25 - 50	
12	300 - 350	50 - 75	1.100
13	300 - 350	75 - 100	
14	300 - 350	> 100	
15	> 350	25 - 50	
16	> 350	50 - 75	
17	> 350	75 - 100	
18	> 350	> 100	
	N	$l_j \ge 1$	
19	200 - 250	25 - 50	-
20	200 - 250	> 50	
21	250 - 300	25 - 50	
22	250 - 300	50 - 75	
23	250 - 300	> 75	
24	300 - 350	25 - 50	
25	300 - 350	50 - 75	
26	300 - 350	> 75	
27	> 350	25 - 75	
28	> 350	75 - 100	
29	> 350	> 100	
	Displ	aced SRs	
SR bin		$p_{\rm T}^{\tau_{\rm h}2}$ [GeV]	
30		< 110	
31		> 110	

Hadronic SUSY at CMS

Vinay Hegde (Texas Tech University)

What can we expect from HL-LHC?

- Run 2 → DeepAK8 taggers which clearly an improvement over previous tagging techniques. Run 3 → <u>ParticleNet</u> algorithms (something else?) have shown improvements over DeepAK8.
- ParticleNet regression techniques \rightarrow improvement over soft-drop mass.
- As usual, we are going to have more data and better techniques! \bigcirc

Hadronic SUSY at CMS