

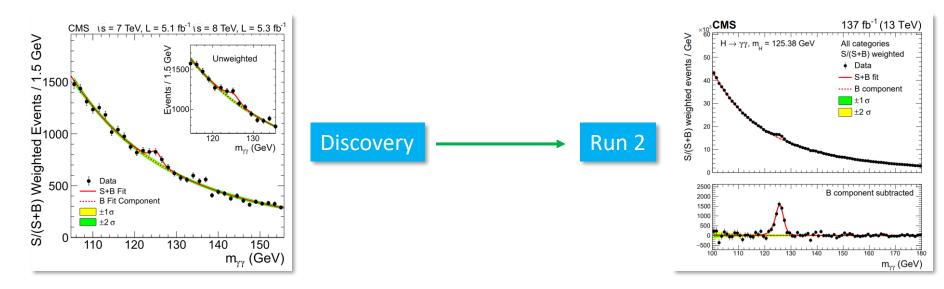
DEGLI STUDI

FIRENZE

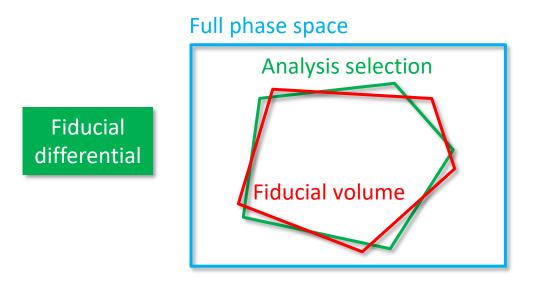
Higgs Differential and STXS cross sections in CMS

ROBERTO SEIDITA

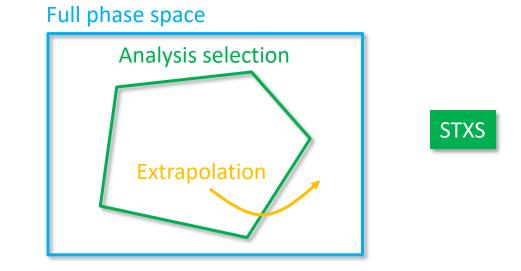
UNIVERSITÀ DEGLI STUDI DI FIRENZE E INFN


ON BEHALF OF THE CMS COLLABORATION

10 years!

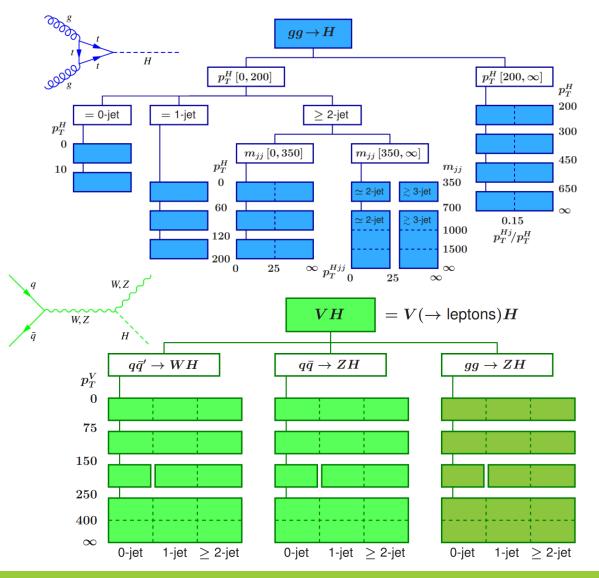


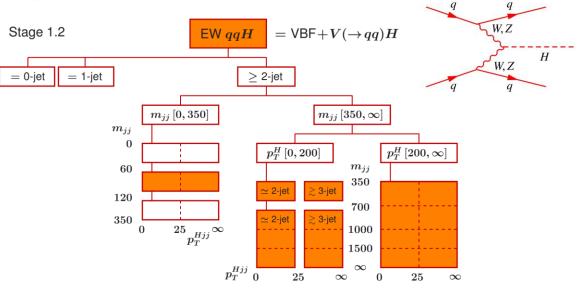
- It's been (almost) 10 years since the discovery of the Higgs boson by ATLAS and CMS
- We've not been standing still during this time!
- With run 2 of the LHC especially, we have definitively entered the precision era for Higgs physics
- Enough data for differential and STXS cross sections



Going differential

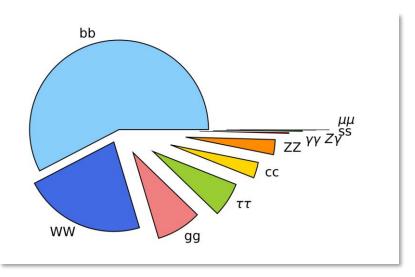
- Differential cross section measurements are stringent tests of the Standard Model (SM)
- Reduce dependence from model assumption/modelling uncertainties
- Presenting 2 complementary approaches: fiducial differential and Simplified Template Cross Sections (STXS)




- Measurement limited to a subset of phase space
- Small extrapolation uncertainty
- X Fiducial volume is **analysis-dependent**

Differential measurement in pre-defined bins
 Straightforward combination between channels
 Potentially large extrapolation uncertainties

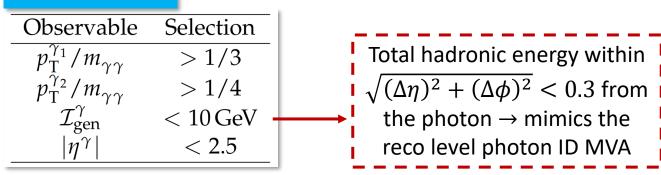
Definition of STXS bins (stage 1.2)

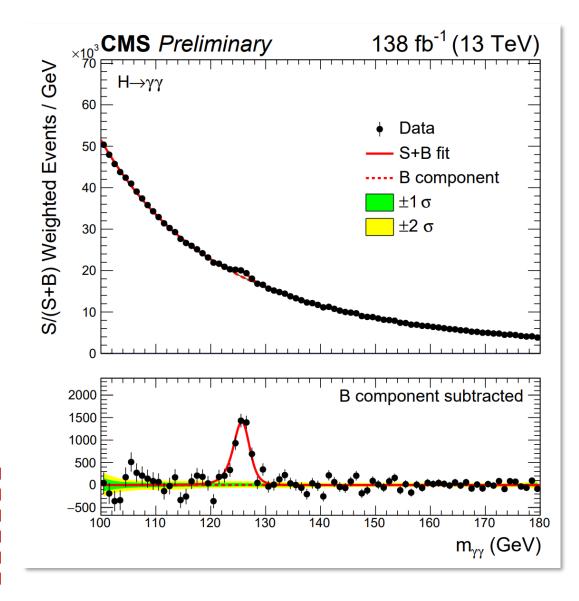

- Bins defined independently for the different Higgs production modes
- Different analyses will be sensitive to different bins
- Bins can be "merged" (i.e., measured as a single bin)

Results from CMS

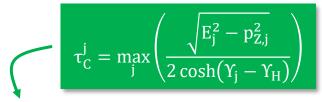
Channel	Fiducial differential	STXS						
$H \rightarrow WW$	<u>10.1007/JHEP03(2021)003</u>	<u>CMS-PAS-HIG-20-013</u>						
$H \to \tau\tau$	<u>10.1103/PhysRevLett.128.081805</u>	arXiv:2204.12957 (sub to EPJC)						
$H\to\gamma\gamma$	<u>CMS-PAS-HIG-19-016</u>	<u>10.1007/JHEP07(2021)027</u>						
$H \rightarrow ZZ$	<u>10.1140/epjc/s1</u>	<u>10052-021-09200-x</u>						
$H \rightarrow bb$	10.1007/JHEP12(2020)085	_						

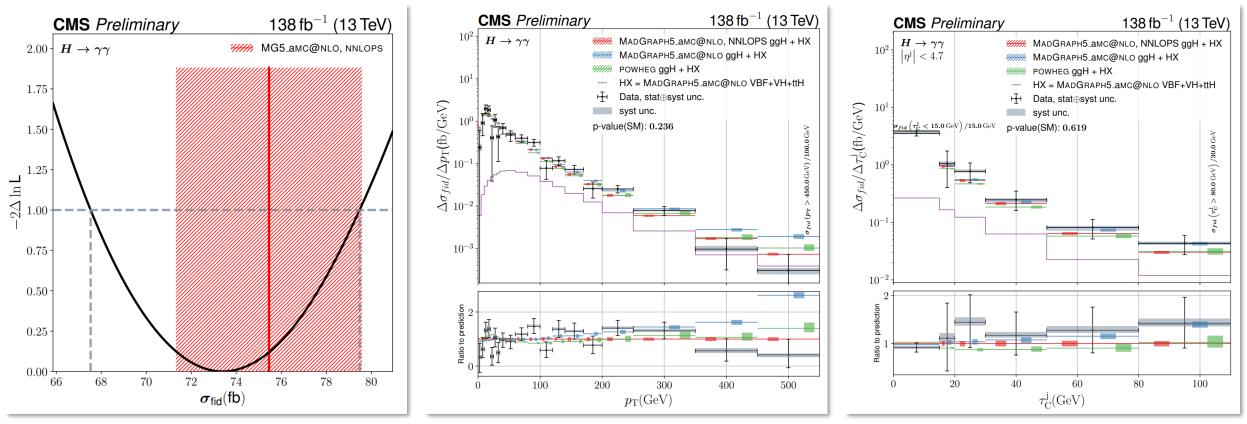
Covered in this talk


- CMS has produced an extensive set of measurements covering a variety of decay modes
- All results are on the full LHC Run 2 data set of 138 fb⁻¹ at 13 TeV

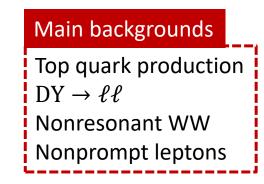


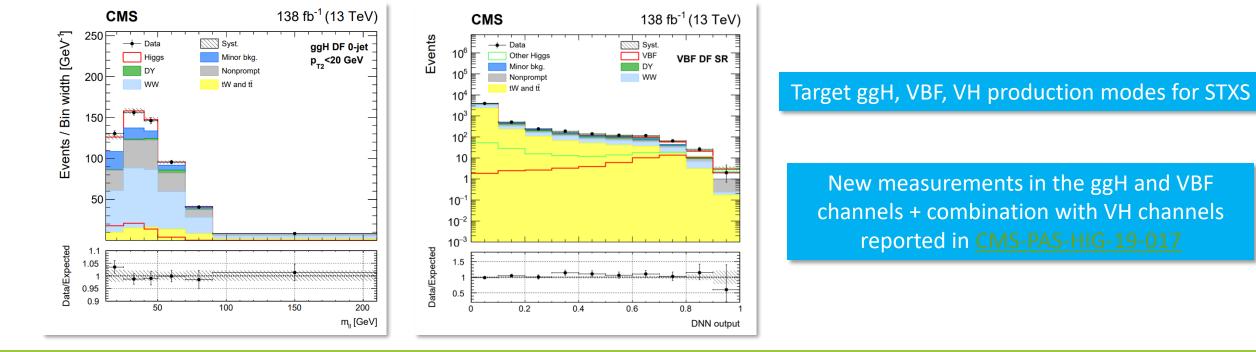
$H \rightarrow \gamma \gamma - overview$


- Low branching ratio is offset by a very clean final state
- Access to the full invariant mass of the system m_H
- One of the primary channels for precision physics in the Higgs sector!
- Extensive set of results:
 - Inclusive fiducial cross sections
 - Differential fiducial cross sections as a function of 20 observables, some also in VBF-enriched selections
 - 2 double differential cross sections


Fiducial volume

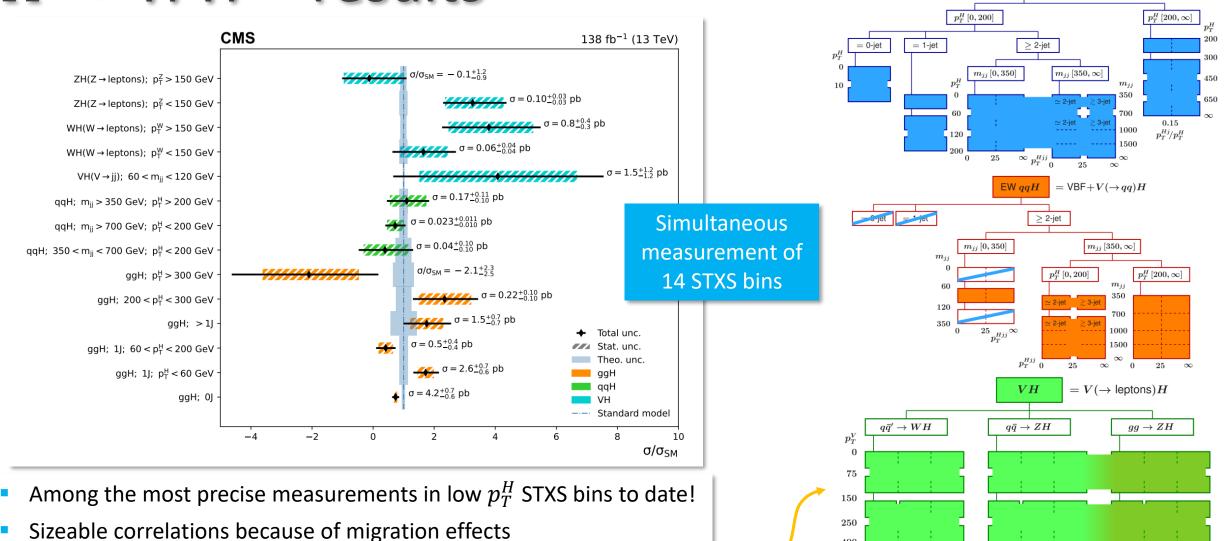
 $H \rightarrow \gamma \gamma - results$




 $\sigma_{\rm fid} = 73.40^{+5.4}_{-5.3}(\rm stat)^{+2.4}_{-2.2}(\rm syst) \ \rm fb$

- Showing just a few examples from the extensive set!
- Measuring variables sensitive to couplings, BSM (p_T^H) and QCD effects (τ_C^J)

$H \rightarrow WW - overview$


- $H \rightarrow WW$ has the second highest BR
- Gives access to leptonic final states → lower background
- Require at least one of the W bosons from the Higgs to decay leptonically $(W \rightarrow \ell \nu_{\ell})$
- Leptonic final state also has neutrinos
- Cannot reconstruct invariant mass m_H , rely on other variables for the fit

5/10/2022

$H \rightarrow WW - results$

Some bins merged together for lack of sensitivity

 $400 \\ \infty$

0-jet

1-jet \geq 2-jet

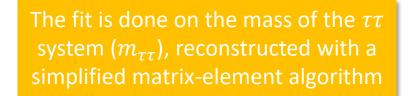
0-jet

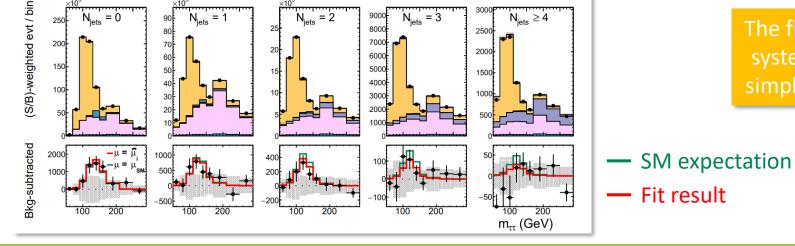
1-jet > 2-jet

0-jet

1-jet > 2-jet

 $gg \rightarrow H$

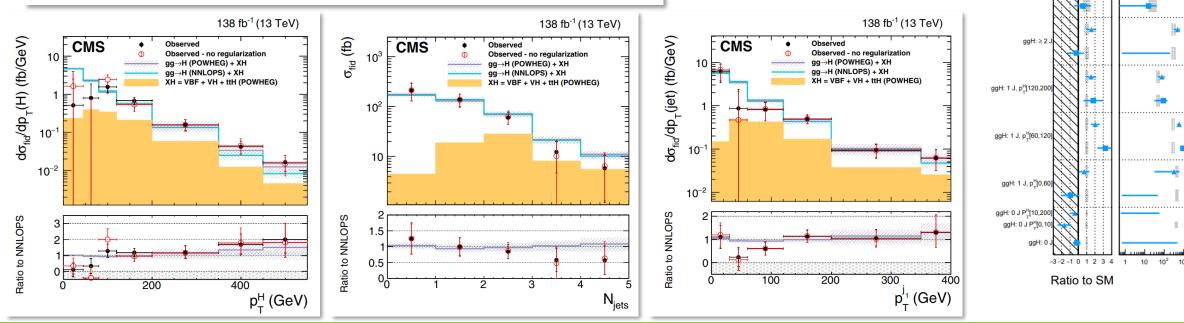

$H \rightarrow \tau \tau$ fiducial differential – overview

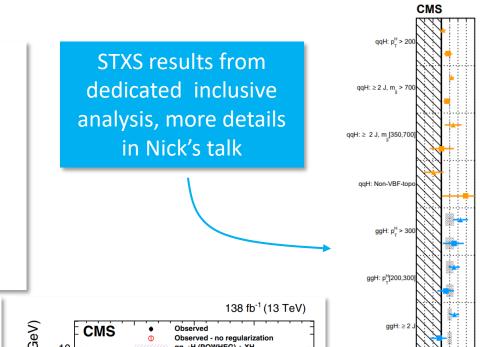

- The analysis measures p_T^H , N_{jets} and $p_T^{j_1}$ distributions
- Relatively large BR (~ 6%) makes this channel competitive, especially in the high p_T^H , N_{jets} regions
- All decay combinations of the $\tau\tau$ system considered, apart from $ee + 4\nu$ and $\mu\mu + 4\nu$
- First differential measurement in this channel!

eµ, et, $\mu\tau_{\rm L}$, $\tau_{\rm h}\tau_{\rm h}$: all categories

Main backgrounds

- $Z \rightarrow \tau \tau, t \bar{t}$, di-boson production
 - Events with two τ leptons estimated with embedded samples
 - Di-muon events in data with muons replaced with simulated τ leptons
- Jets misidentified as au_h
 - Misidentification probability estimated in data


+ Obs. $\tau \tau$ bkg. $Z \rightarrow ee/\mu\mu$ tt + jets τ mis-ID Others Unc. H $\rightarrow \tau \tau$


CMS Preliminary

138 fb⁻¹ (13 TeV)

$H \rightarrow \tau \tau - results$

- Measurement inclusive in production modes
- Great sensitivity in high p_T^H and N_{jets} bins!
- Good agreement with SM expectation:
 - $p(p_T^H) = 17\%, p(N_{jets}) = 71\%, p(p_T^{j_1}) = 45\%$
- Fiducial cross section extracted from fit to *N_{jets}*:
 - $\sigma^{fid} = 426 \pm 102 \text{ fb} \left(\sigma^{fid}_{SM} = 408 \pm 27 \text{ fb} \right)$

138 fb⁻¹ (13 TeV)

1.74 +3.37-3.26

7.77 +5.11-4.49

58.0 +14.9-14.5

31.3 +18.4-18.2

48.9 +35.3-34.9

0.964 +51.5-48.8

-193 +251-242

613 +681-601

16.5 +6.5-6.42

10.8 +8.63-9.43

42.3 +18.4-18.3

15.3 +26.8-28.8

480 +173-172

-84.5 +285-322

76.7 +30.0-29.9

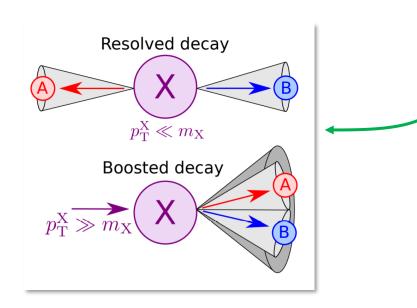
89.2 +58.3-58.

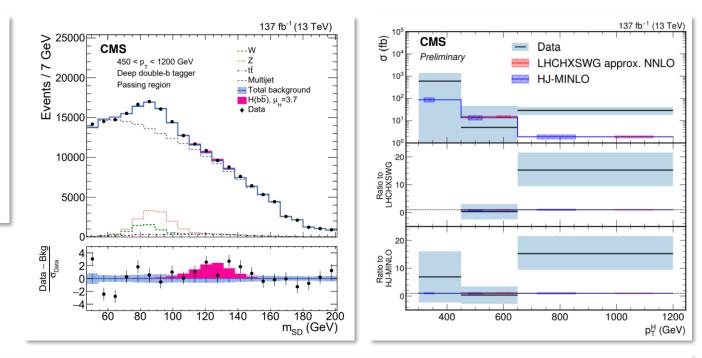
585 +148-147

929 +274-274

317 +286-285

-440 +488-496

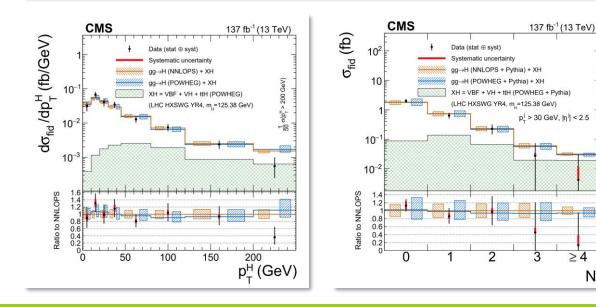

-707 +348-350

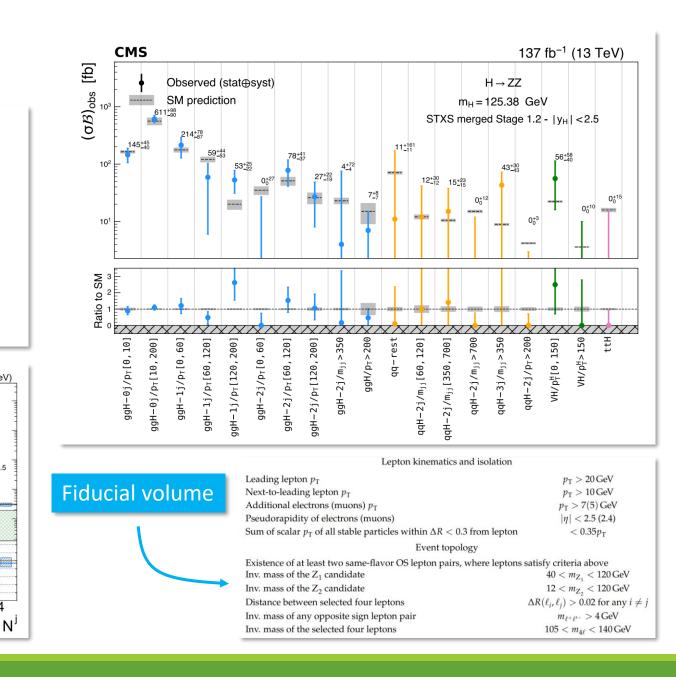

-342 +820-815

^{10³} 10⁴ 10⁵ 10 **σB (fb)**

$H \rightarrow bb$

- Very high multijet (QCD) background
- $BR(H \rightarrow b\bar{b}) = 58\% \rightarrow highest in the SM$
- Mitigates natural cross section decrease at high p_T^H
- Target the boosted jet topology i.e., a large radius jet with a 2 sub-jet structure





- Signal extracted by fitting the (soft drop groomed) jet mass distribution
- Require $p_T^{j_1} > 450$ GeV, dedicated MVA tagger
- Target gluon fusion, other modes treated as background
- 2.6 σ excess in highest p_T^H bin, reduced to 1.8 σ when considering all bins simultaneously

$H \rightarrow ZZ$

- Low BR but clean final state with 4 charged leptons
- Main backgrounds: nonresonant $ZZ/Z\gamma$, Z + jets, $t\bar{t}$, WZ production
- Extensive set of results: 19 STXS bins, 4 differential cross sections $(p_T^H, N_{jets}, |y_H|, p_T^{j_1})$
- Fit on the invariant mass of the 4-lepton system

 ≥ 4

Conclusions

- 10 years after its discovery, we have entered the era of precision characterization of the Higgs boson
- The LHC and its experiments continue to exceed expectation in their potential for precision physics
- CMS delivered a comprehensive set of STXS and fiducial differential cross section measurement on Run 2, with more to come
- WW, ZZ, $\gamma\gamma$, $\tau\tau$ and bb decays covered
- Looking forward for Run 3 starting this summer, and HL-LHC further down the line!

Backup

Unfolding

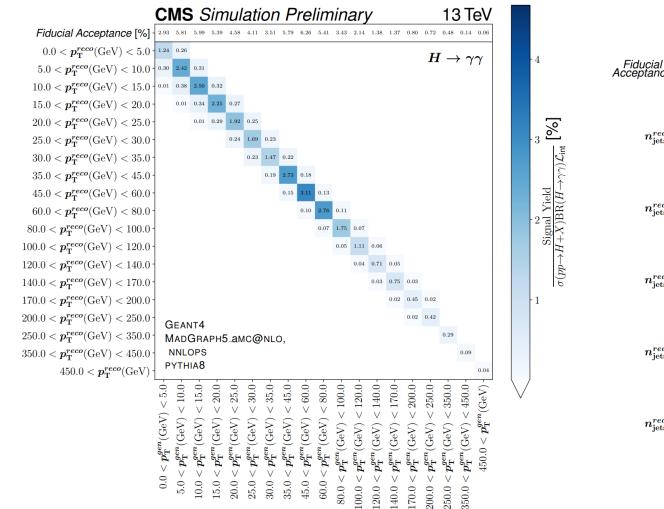
Results unfolded to particle level within likelihood fit

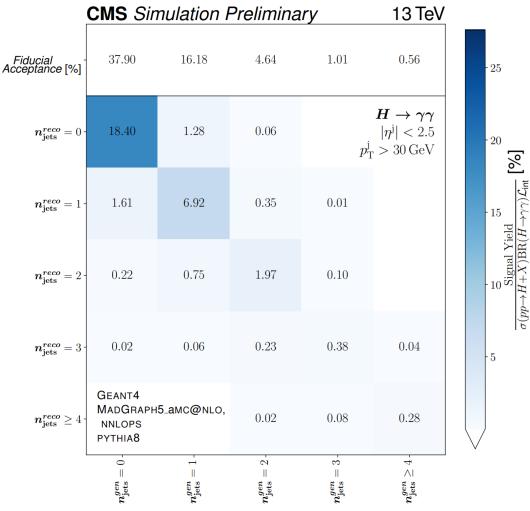
True for all analyses discussed in this talk

$$\mathcal{L} = \prod_{i} Poisson\left(n_{i}; \sum_{j} R_{ij}(\theta) \mu_{j} + b_{i}\right) \cdot \mathcal{C}(\theta) \cdot \mathcal{K}(\mu)$$

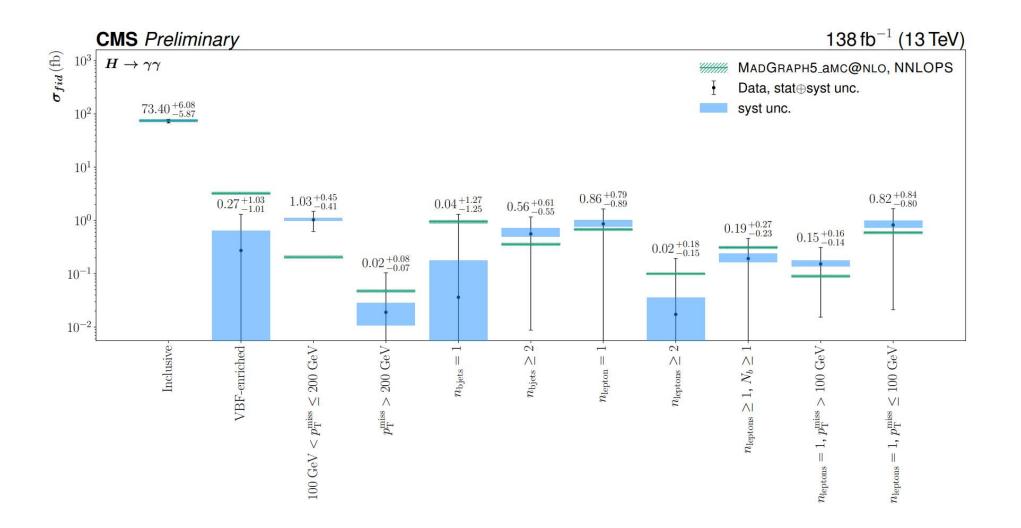
Regularization term (optional),
Migration matrix Particle level signal strength

$H \rightarrow WW$ migrations and correlations


	смз	Preli	minar	/								138	fb ⁻¹ (1	3 TeV)
VBF; $m_{jj} > 700$; $p_T^H < 200^{-1}$	0.03	0.00	0.00	0.00	0.00	0.00	0.09	-0.05	-0.14	0.01	0.04	-0.05	-0.15	
VBF; $m_{jj} > 350; p_T^H > 200$	-0.04	0.01	0.00	0.00	0.01	0.01	0.00	0.01	0.03	-0.10	-0.28	-0.02		-0.15
VBF; $350 < m_{jj} < 700; p_T^H < 200^{-1}$	0.11	0.00	0.01	0.01	0.00	0.00	0.09	-0.02	-0.22	-0.03	0.00		-0.02	-0.05
ggH; $p_T^H > 300^{-1}$	-0.01	-0.05	-0.01	-0.01	0.00	0.00	-0.02	0.02	0.03	-0.38		0.00	-0.28	0.04
ggH; 200 < p_T^H < 300 -	-0.14	0.02	0.01	0.00	0.00	0.01	0.04	-0.04	-0.02		-0.38	-0.03	-0.10	0.01
ggH; 2j -	-0.48	0.01	-0.01	0.00	0.01	0.06	-0.18	-0.18		-0.02	0.03	-0.22	0.03	-0.14
ggH; 1j; 60 < p_T^H < 200 -	0.03	0.01	-0.01	0.00	0.00	0.11	-0.30		-0.18	-0.04	0.02	-0.02	0.01	-0.05
ggH; 1j; p_T^H < 60 -	0.04	0.02	-0.02	0.01	0.02	-0.18		-0.30	-0.18	0.04	-0.02	0.09	0.00	0.09
ggH; 0j -	0.01	0.03	0.01	0.03	0.02		-0.18	0.11	0.06	0.01	0.00	0.00	0.01	0.00
ZH; $p_T^V < 150^{-1}$	0.00	0.01	0.01	0.04		0.02	0.02	0.00	0.01	0.00	0.00	0.00	0.01	0.00
ZH; $p_T^V > 150^{-1}$	0.00	0.02	0.00		0.04	0.03	0.01	0.00	0.00	0.00	-0.01	0.01	0.00	0.00
WH; $p_T^V < 150^{-1}$	-0.01	-0.35		0.00	0.01	0.01	-0.02	-0.01	-0.01	0.01	-0.01	0.01	0.00	0.00
WH; $p_{T}^{V} > 150^{-1}$	0.00		-0.35	0.02	0.01	0.03	0.02	0.01	0.01	0.02	-0.05	0.00	0.01	0.00
VH2j ·		0.00	-0.01	0.00	0.00	0.01	0.04	0.03	-0.48	-0.14	-0.01	0.11	-0.04	0.03
	- VH2j	WH; $p_T^V > 150$ -	WH; $p_{T}^{V} < 150$ -	ZH; μ ^V > 150 -	ZH; <i>p</i> ^V ₇ < 150 -	- j0 ;Hgg	ggH; 1j; $p_T^H < 60$ -	ggH; 1j; 60 < p_T^H < 200 -	99H; 2j -	ggH; 200 < p_T^H < 300 -	ggH; $p_T^H > 300$	VBF; $350 < m_{jj} < 700$; $p_T^H < 200$ -	VBF; m_{jj} > 350; p_T^H > 200 -	VBF; $m_{ij} > 700; p_T^H < 200$


	CMS	5 Sim	ulatio	n Pre	limina	ary											
ZH; $p_T^V > 150$																	0.97
ZH; $p_T^V < 150$																0.99	0.03
WH; $p_T^V > 150$														0.09	0.57		
WH; $p_T^V < 150$														0.91	0.43		
ggH; <i>p</i> ^{<i>H</i>} ₇ > 300	0.05	0.16										0.06	0.61				
ggH; 200 < p_T^H < 300	0.13	0.23	0.02	0.02					0.08	0.01	0.02	0.61	0.13				
ggH; 2j; m_{jj} < 350; 120 < p_T^H < 200	0.04			0.02			0.02	0.05	0.51	0.05	0.01	0.06					
ggH; 2j; <i>m_{jj}</i> < 350; 60 < <i>p_T^H</i> < 120	0.07			0.03		0.01	0.05	0.33	0.12	0.06	0.02						
ggH; 2j; $m_{jj} < 350; p_T^H < 60$	0.03			0.01		0.03	0.01	0.19		0.03	0.01						
ggH; 1j; $120 < p_T^H < 200$			0.03	0.03			0.14		0.05	0.03	0.03	0.07					
ggH; 1j; 60 <i><p< i="">^H₇ < 120</p<></i>			0.06			0.13	0.51	0.11	0.03	0.06	0.08						
ggH; 1j; <i>p</i> _{T}^{H} < 60	0.04		0.04	0.06	0.09	0.61	0.18	0.10		0.08							
ggH; 0j; 10 < p_T^H < 200					0.68	0.17	0.04	0.02			0.01						
ggH; 0j; <i>p</i> ^H _T < 10					0.21	0.01			-			-					
ggH/VBF 2j; 350 < m_{jj} < 700; p_T^H < 200		0.01	0.02	0.61			0.01	0.02	0.02	0.58	0.04	0.01					
ggH/VBF 2j; $m_{jj} > 700; p_T^H < 200$		0.08	0.79	0.13			0.01			0.06	0.65						
ggH/VBF 2j; $m_{jj} > 350; p_T^H > 200$		0.51	0.02	0.01						0.02	0.02	0.13	0.21				
VH2j-like	0.59					0.02	0.02	0.16	0.19	0.01	0.02	0.05	0.04				
	VH2j	00	00	00	, Oj	< 60	20	00	60	20	00	00	00	50	50	50	50
	5	VBF; m_{jj} > 350; p_{T}^{H} > 200	VBF; $m_{jj} > 700; p_T^H < 200$	$350 < m_{jj} < 700; p_T^H < 200$	ggH; 0j	V IL	ggH; 1j; 60 < p_T^H < 120	ggH; 1j; 120 < p_T^H < 200	ggH; 2j; m_{jj} < 350; p_T^H < 60	ggH; 2j; m_{jj} < 350; 60 < p_T^H < 120	ggH; 2j; m_{jj} < 350; 120 < p_T^H < 200	ggH; $200 < p_T^H < 300$	ggH; $p_T^H > 300$	WH; $p_{T}^{V} < 150$	WH; <i>p</i> _T ^V > 150	ZH; <i>p^V</i> < 150	ZH; $p_T^V > 150$
		р ^Н	p_T^H	р ^н	б	ggH; 1j; p_T^H	p_{T}^{H}	р ^Н	d :	p_{T}^{H}	р ^Н	р ^Н	р ^Н	p_{7}^{\vee}	p_{7}^{V}	p_T^V	p_T^{\vee}
		50;	:00	00;			V 0	V O	350	V O	V O	V O	;Hg	ΥH;	ΥH;	ZH;	ZH;
		Ň	~ ~	Ň		JgF	j; 6	12	V	; 6	12	20	g	>	>		
		'n	'n	u _{ii} .		0.	÷.	1j;	Ē	350	50;	gH;					
		Ë, '	i,	V			ggŀ	ЭН;	, 2j;	V	м V	ð					
		VΒ	ΛB	350			0.	g	gH;	Ē	'n						
				VBF;					D	. 2j	2j;						
				<pre></pre>						gН	Ξ						
										σ	<u> 6</u> 6						
								(GEN								

$H \rightarrow \gamma \gamma$ fiducial selections


Phase Space Region	Observable	Bin boundaries										
	$p_{\mathrm{T}}^{\gamma\gamma}$	0	5	10	15	20	25	30	35			
	•	45	60	80	100	120	140	170	200			
		250	350	450	∞							
	n _{jets}	0	1	2	3	≥ 4						
	$ y^{\gamma \gamma} $	0.0	0.1	0.2	0.3	0.45	0.6	0.75	0.90			
Baseline		2.5	0.07	0.45			0.45	. ==	0.55			
$p_{\rm T}^{\gamma_1}/m_{\gamma\gamma} > 1/3$	$ \cos{(heta^*)} $	$0.0 \\ 1.0$	0.07	0.15	0.22	0.35	0.45	0.55	0.75			
$p_{\rm T}^{\gamma_2}/m_{\gamma\gamma} > 1/4$	$ \phi^*_\eta $	0.0	0.05	0.1	0.2	0.3	0.4	0.5	0.7			
$ \eta^{\gamma} < 2.5$	$ \Psi\eta $	1.0	1.5	0.1	0.2	0.0	0.4	0.0	0.7			
$\mathcal{I}_{ m gen}^{\gamma} < 10 m GeV$		2.5	4.0	∞								
8	$p_{\mathrm{T}}^{\gamma\gamma}$, $n_{jets}=0$	0	5	10	15	20	25	30	35			
		45	60	\sim								
	$p_{\mathrm{T}}^{\gamma\gamma}, n_{jets} = 1 \ p_{\mathrm{T}}^{\gamma\gamma}, n_{jets} > 1$	0	30	60	100	170	∞					
	$p_{\rm T}^{\dot{\gamma}\gamma}, n_{\rm jets} > 1$	0	100	170	250	350	∞					
	n ^b _{jets}	0	1	≥ 2								
	n _{leptons}	0	1	≥ 2								
	$p_{\rm miss}^{\rm miss}$	0	30	50	100	200	∞					
	$p_{\mathrm{T}}^{\mathbf{j}_{1}}$	30	40	55	75	95	120	150	200			
	1. 1. 1	~	0.2	0.6	0.0	10	1.0	2.0	2 5			
1-jet	$ y^{j_1} $	0.0 0.0	0.3 2.0	0.6 2.6	0.9 2.85	1.2 3.0	1.6 3.07	$\frac{2.0}{\pi}$	2.5			
Baseline + \geq 1 jet	$ \Delta \phi_{\gamma\gamma,j_1} $	0.0	0.3	2.6 0.6	2.85 1.0	3.0 1.4	3.07 1.9	2.5	∞			
$p_{\rm T}^{\rm j} > 30 {\rm GeV}$	$ \Delta y_{\gamma\gamma,j_1} $								80			
$ \eta^{j} < 2.5$	$ au_{C_{\gamma\gamma}}^{j}, au_{C_{j}} < 15 \text{ GeV}$	< 15	15	20	30	50	80	∞				
	$p_{T}^{\gamma}, \tau_{Cj} < 15 \text{ GeV}$	0	45	120	∞							
	$p_{\rm T}^{\gamma\gamma}$, 15 GeV $\leq \tau_{\rm C}^{\rm j} < 25$ GeV	0	45	120	∞							
	$p_{\rm T}^{\gamma\gamma}$, 25 GeV $\leq \tau_{\rm C}^{\rm J} < 40$ GeV	0	120	~								
	$p_{\rm T}^{\gamma\gamma}$, 40 GeV $\leq \tau_{\rm C}^{\rm J}$	0	200	350	∞							
	$p_{\mathrm{T}}^{\mathrm{l_2}}$	30	40	65	90	150	∞					
2-jets	y ^j 2	0.0	0.6	1.2	1.8	2.5	3.5	5.0				
Baseline + ≥ 2 jets	$ \Delta \phi_{\mathbf{j}_1,\mathbf{j}_2} $	0.0	0.5	0.9	1.3	1.7	2.5	π				
$p_{\rm T}^{\rm j} > 30 { m GeV}$	$ \Delta \phi_{\gamma\gamma,j_1j_2} $	0.0	2.0	2.7	2.95	3.07	π					
$ \eta^{j} < 4.7$	$ \bar{\eta}_{\hat{j}_1\hat{j}_2} - \eta_{\gamma\gamma} = m^{1}$	0.0	0.2	0.5	0.85	1.2	1.7	∞				
	m ^{]]}	0	75	120	180	300	500	1000	∞			
	$ \Delta \eta_{j_1 j_2} $	0.0	0.7	1.6	3.0	5.0	~					
VBF-enriched	$\begin{array}{c c} p_{T}^{\gamma\gamma} \\ p_{T}^{\gamma\gamma} \\ p_{T}^{\gamma} \\ p_{T}^{2} \\ \Delta\phi_{j_{1},j_{2}} \\ \Delta\phi_{j_{1},j_$	0	30	60	120	200	∞					
$2\text{-jets} + n_{\text{jets}} \ge 2$	$p_{\mathrm{T}}^{\prime_2}$	30	40	65	90	150	∞					
$\Delta \eta^{jj} > 3.5$	$ \Delta \phi_{\mathbf{j}_1,\mathbf{j}_2} $	0.0	0.5	0.9	1.3	1.7	2.5	π				
$m^{jj} > 200 \mathrm{GeV}$	$ \Delta \phi_{\gamma \gamma, j_1 j_2} $	0.0	2.0	2.7	2.95	3.07	π					

$H \rightarrow \gamma \gamma$ migrations

$H \rightarrow \gamma \gamma$ fiducial cross sections

$H \rightarrow ZZ STXS$ selection

Reconstructed event category	1st categorization step	Number of jets	Kinematical requirements (GeV)	Targeted production bin
Untagged-0j- $p_{\rm T}^{4\ell}$ [0, 10]	Untagged	0	$0 < p_{\rm T}^{4\ell} < 10$	ggH-0j/p _T [0,10]
Untagged-0j- $p_{\rm T}^{4\ell}$ [10, 200]	Untagged	0	$10 < p_{\rm T}^{4\ell} < 200$	ggH-0j/p _T [10,200]
Untagged-1j- $p_{\rm T}^{4\ell}$ [0, 60]	Untagged	1	$0 < p_{\rm T}^{4\ell} < 60$	ggH-1j/p _T [0,60]
Untagged-1j- $p_{\rm T}^{4\ell}$ [60, 120]	Untagged	1	$60 < p_{\rm T}^{4\ell} < 120$	ggH-1j/p _T [60,120]
Untagged-1j- $p_{\rm T}^{4\ell}$ [120, 200]	Untagged	1	$120 < p_{\rm T}^{4\ell} < 200$	ggH-1j/p _T [120,200]
Untagged-2j- $p_{\rm T}^{4\ell}$ [0, 60]	Untagged	2	$0 < p_{\rm T}^{4\ell} < 60, m_{\rm jj} < 350$	ggH-2j/p _T [0,60]
Untagged-2j- $p_{\rm T}^{4\ell}$ [60, 120]	Untagged	2	$60 < p_{\rm T}^{4\ell} < 120, m_{\rm jj} < 350$	ggH-2j/p _T [60,120]
Untagged-2j- $p_{\rm T}^{4\ell}$ [120, 200]	Untagged	2	$120 < p_{\rm T}^{4\ell} < 200, m_{\rm jj} < 350$	ggH-2j/p _T [120,200]
Untagged- $p_{\rm T}^{4\ell} > 200$	Untagged	_	$p_{\mathrm{T}}^{4\ell} > 200$	$ggH/p_T > 200$
Untagged-2j- $m_{jj} > 350$	Untagged	2	$m_{jj} > 350$	ggH-2j/m _{jj} > 350
VBF-1jet-tagged	VBF-1jet-tagged	_	_	qqH-rest
VBF-2jet-tagged- <i>m</i> _{jj} [350, 700]	VBF-2jet-tagged	_	$p_{\rm T}^{4\ell} < 200, p_{\rm T}^{4\ell {\rm jj}} < 25,350 < m_{\rm jj} < 700$	qqH-2j/m _{jj} [350,700]
VBF-2jet-tagged- $m_{jj} > 700$	VBF-2jet-tagged	_	$p_{\rm T}^{4\ell} < 200, p_{\rm T}^{4\ell { m jj}} < 25, m_{ m jj} > 700$	qqH-2j/m _{jj} >700
VBF-3jet-tagged- $m_{jj} > 350$	VBF-2jet-tagged	_	$p_{\rm T}^{4\ell} < 200, p_{\rm T}^{4\ell { m jj}} > 25, m_{ m jj} > 350$	qqH-3j/m _{ij} > 350
VBF-2jet-tagged- $p_{\rm T}^{4\ell} > 200$	VBF-2jet-tagged	_	$p_{\rm T}^{4\ell} > 200, m_{\rm H} > 350$	qqH-2j/p _T > 200
VBF-rest	VBF-2jet-tagged	_	$m_{jj} < 350$	qqH-rest
VH-hadronic-tagged-m _{jj} [60, 120]	VH-hadronic-tagged	_	$60 < m_{jj} < 120$	qqH-2j/m _{jj} [60,120]
VH-rest	VH-hadronic-tagged	_	$m_{\rm jj} < 60 \text{ or } m_{\rm jj} > 120$	qqH-rest
VH-leptonic-tagged- $p_{\rm T}^{4\ell}[0, 150]$	VH-leptonic-tagged	_	$p_{\mathrm{T}}^{4\ell} < 150$	$VH-lep/p_{TH}[0, 150]$
VH-leptonic-tagged- $p_{\rm T}^{4\ell} > 150$	VH-leptonic-tagged	_	$p_{\mathrm{T}}^{4\ell} > 150$	$VH-lep/p_{T}H > 150$
ttH-leptonic-tagged	ttH-leptonic-tagged	_	_	ttH
ttH-hadronic-tagged	ttH-hadronic-tagged	-	_	ttH