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® Allows to probe the kinematic
region of sub-MeV DM
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Phonons from Coherent Atomic Scattering
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Further Considerations

* Comparisons with DM signal shape and possibility of discrimination:

Scalar mediators vs dark photon
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Further Considerations

 Possibility of veto: Photons creating a phonon background may also create a

high energy deposition through Compton scattering or Photoabsorption
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Conclusions

* Phonon excitations by DM offer a possibility of probing sub-MeV DM

* Impurities 1in detector can emit gamma rays that can excite phonons that

could mimic a potential DM signal

* We estimate that this background could be as high as ~ 100 events per
kg.year

* Could be mitigated by further improving passive shielding or using an

additional active veto



