Twin Quark Dark Matter from Cogenesis

Can Kilic, Christopher B. Verhaaren and Taewook Youn

arxiv: 2109.03248

Taewook Youn The University of Texas at Austin

Pheno 2022, May 9th 2022

Motivation

Quark Dark Matter

In many models with confining \mathcal{G} , DM candidate is composite (+ asymmetric)

If $\mathscr{G} \to \mathscr{G}' \times \cdots$, singlets χ under the residual confining \mathscr{G}' can be DM

 χ can be symmetric or asymmetric

Having χ from $\mathcal{G}_c \to SU(3)_c \times \cdots$ in SM is non-trivial

We study the (fraternal) twin Higgs model as a benchmark

Well-motivated from neutral naturalness

 $SU(3)_c \rightarrow SU(2)_c$ in the twin sector BB, WH, CV [arXiv:2004.10761]

(Fraternal) Twin Higgs

ZC, HG, RH [hep-ph/0506256]

NC, AK, MS, RS [arXiv:1501.05310]

(Little) Hierarchy problem

Twin Higgs Model provides a solution to "little" hierarchy problem between the cutoff of about TeV scale to the weak scale by introducing \mathbb{Z}_2 symmetric (twin) sector

Twin Higgs Model is phenomenologically rich

Top quark partner (twin top quark) is not charged under SM $SU(3)_{\cal C}$

Fraternal: only keep the first generation of fermions

Yukawa couplings except for twin top are not restricted (if $y_{i\neq t}\ll 1$)

DM in the original FTH model: twin bottom baryon ($b_B b_B b_B$) and/or twin tau

Breaking Twin Color

BB, WH, CV [arXiv:2004.10761]

Extends both sectors by introducing new colored triplet scalars $\phi_{A,B}$

$$\langle \phi_A \rangle = 0$$
 $\langle \phi_B \rangle^T = \begin{pmatrix} 0 & 0 & f_\phi + \varphi_B \end{pmatrix}$ $SU(3)_A \to SU(3)_A$ $SU(3)_B \to SU(2)_B$

$$q_B \rightarrow \hat{q}_B (SU(2)_B \text{ doublet}) + q_{3B} (SU(2)_B \text{ singlet})$$

Stable states: $\hat{b}_B\hat{b}_B$ ($SU(2)_B$ baryon), b_{3B} ($SU(2)_B$ singlet)

 b_{3B} is (twin) quark dark matter

Can be symmetric or asymmetric (directly connected to M/AM asymmetry in the visible sector — cogenesis)

MF, AM, CS [arXiv:1604.08211]

Introduce additional fermion $N_{A,B}$

N is singlet under SM and twin gauge groups and serves as an additional portal

$$\mathcal{L} \supset -\lambda_A \phi_A q_A q_A - \kappa_A \phi_A q_A N_A - \frac{1}{2} M_N \overline{N}_A N_B + (A \leftrightarrow B)$$

Ingredients for cogenesis (Twin Baryogenesis) from $N_{\!A.B}$ decays

Diagonal baryon number $B_B = Q_A^B - Q_B^B$

	q_A	ϕ_A	$\overline{N}_{\!A}$	q_B	ϕ_B	N_B
B_B	1/3	2/3	-1	-1/3	-2/3	1

With Twin Color Breaking

Twin gluon and photon mixes

$$B_B' = B_B + \sqrt{3}B_\phi T^8$$

$$Q_B^{'EM} = \frac{1}{2}\sigma^3 + Y + \sqrt{3}Y_{\phi}T^8$$

 \hat{q}_{B} ($SU(2)_{B}$ doublet) loses B_{B} charge

CP-asymmetry only in q_{3B} (or quark dark matter)

 $Y(\phi_{A,B}) = + 2/3$ is chosen for b_{3B} to be twin electric charged

	$ \widehat{Q}_B $	Q_{3B}	$\widehat{\overline{U}}_B$	\overline{U}_{3B}	$\widehat{\overline{D}}_B$	\overline{D}_{3B}	$arphi_B$	\overline{N}_B
B_B	$\frac{1}{3}$	$\frac{\frac{1}{3}}{1}$ (0,-1)	$-\frac{1}{3}$	$-\frac{1}{3}$	$-\frac{1}{3}$	$-\frac{1}{3}$	$-\frac{2}{3}$	1
B_B'	0	1	0	-1	0	-1	0	1
$Q_B^{\prime {\rm EM}}$	(1,0)	(0,-1)	-1	0	0	1	0	0

Cogenesis

When $M_N > m_\phi$ and $T_B \lesssim m_\phi/25$

$$\Delta B_B = +1$$

$N_{B}^{k} \longrightarrow N_{A}^{k} \longrightarrow N_{A}^{k'} \longrightarrow N_{B}^{k'} \longrightarrow N_{B}$

$$\Delta B_B = -1$$

Visible sector

Twin sector

$$B_B^\prime$$
 charge conservation $\to \eta_A = \eta_B$

$$Q_B^{'{
m EM}}$$
 charge conservation $o m_{b_B}+m_{ au_B}=m_prac{\Omega_{
m DM}}{\Omega_B}=5~{
m GeV}$

Full Lagrangian

$$\mathscr{L}_{\text{visible}} \supset -Y_L H_A^{\dagger} L_A \overline{E}_A - Y_U Q_A H_A \overline{U}_A - Y_D H_A^{\dagger} Q_A \overline{D}_A - \frac{\lambda}{2} \phi_A^{\dagger} \overline{D}_A \overline{D}_A + \text{H.c.}$$

$$\mathscr{L}_{\mathsf{twin}} \supset -y_{\tau} H_B^{\dagger} L_B \overline{E}_B - y_t Q_B H_B \overline{U}_B - y_b H_B^{\dagger} Q_B \overline{D}_B + \mathsf{H.c.}$$

$$\mathscr{L}_{\mathsf{portal}} \supset -M_N \overline{N}_A N_B - \kappa_A \phi_A \overline{U}_A \overline{N}_A - \kappa_B \phi_B \overline{U}_B N_B + \mathsf{H.c.}$$
,

$$\lambda_A \phi_A^\dagger \overline{D}_A \overline{D}_A \quad \kappa_A \phi_A \overline{U}_A \overline{N}_A \quad \kappa_B \phi_B \overline{U}_B N_B \quad rac{\kappa_A \kappa_B f_\phi}{\sqrt{2} M_N} \phi_A \overline{U}_A \overline{t}_{3B}$$

 N_A and t_{3B} mixing from $\langle \phi_B \rangle = f_{\phi}$

$\lambda_A \phi_A^{\dagger} \overline{D}_A \overline{D}_A \quad \kappa_A \phi_A \overline{U}_A \overline{N}_A \quad \kappa_B \phi_B \overline{U}_B N_B \quad \frac{\kappa_A \kappa_B f_{\phi}}{\sqrt{2} M_N} \phi_A \overline{U}_A \overline{t}_{3B}$

Signature

Collider searches

 ϕ_A pair production: $\phi_A \to jj$ or $\phi_A \to j(t_A)t_B$ (identical to "stop/squark")

Current constraint: $m_{\phi} \gtrsim 1.2\,\,{\rm TeV}$, HL-LHC projection: $m_{\phi} \lesssim 1.8\,\,{\rm TeV}$

ATLAS [arXiv:1909.03460]

XV et al [arXiv:1812.07831]

Direct detection

 $m_{\gamma_R} \sim 1~{
m GeV}$ to annihilate the symmetric part + evade dark photon constraint

 $m_{\gamma_R}=0~{
m GeV}$ with increased $\alpha_B^{
m EM}$ is another option

 b_{3B} and au_{B} can scatter off nucleons due to the kinetic mixing

Current constraint: $\varepsilon < 10^{-3}$, Near future sensitivity: $\varepsilon \sim 10^{-4}$

$$b_{3B}, au_B = 0$$
 γ_B
 $q_A, e_A = 0$
 q_A, e_A

Signatures

DM decay indirect detection

If
$$|m_{b_{3R}} - m_{\tau_R}| < m_p$$
, DM is stable

If
$$|m_{b_{3B}} - m_{\tau_B}| \ge m_p$$

$$b_{3B}$$
 has $B_B' = -1$: $b_{3B} \rightarrow \bar{q}\bar{q}\bar{q}$

From Fermi-LAT: $\tau_\chi \gtrsim 5 \times 10^{27}~{\rm sec}~(\bar{u}u)$ — highly conservative

Fermi-LAT [arXiv:1410.3696]

$$\lambda_A \phi_A^{\dagger} \overline{D}_A \overline{D}_A \quad \kappa_A \phi_A \overline{U}_A \overline{N}_A \quad \kappa_B \phi_B \overline{U}_B N_B \quad \frac{\kappa_A \kappa_B f_{\phi}}{\sqrt{2} M_N} \phi_A \overline{U}_A \overline{t}_{3B}$$

Conclusion

Summary and Outlook

(Dark) Quark itself can be DM by spontaneous color breaking, without confinement

As a concrete example, we extend the fraternal Twin Higgs model

Colored scalars in the SM and twin sectors

Twin colored scalar can acquire a vev and spontaneously break the twin color group down to $SU(2)_B$

Gauge singlet fermions that provide a new portal btw the two sectors

Initiates the baryogenesis in both sectors

After the twin color breaking, singlet quarks under the residual $SU(2)_{\it B}$ becomes (asymmetric) quark dark matter

Conclusion

Summary and Outlook

3 puzzles are addressed — naturalness puzzle, M/AM puzzle and the DM puzzles

There exist large areas of parameter space where this model can address the puzzles in question, while remaining consistent with all existing experimental constraints

Di-jet and "stop/squark" collider searches, dark photon, direct detection, decaying DM, etc.

Future searches will have sensitivity to the available parameter space of the model

Thank you for listening!

Supplements

With Twin Color Breaking

Additional diagrams due to twin color breaking, suppressed by $m_{t_{R}}/M_{N}$

Visible sector

$$t_{B3}$$
 decays into b_{3B} and $\tau_B o m_{b_B} + m_{\tau_B} = m_p \frac{\Omega_{\rm DM}}{\Omega_B} = 5~{
m GeV}$

Full Lagrangian

$$Y(\phi_{A,B}) = +\frac{2}{3}$$

$$\mathscr{L}_{\text{visible}} \supset -Y_L H_A^\dagger L_A \overline{E}_A - Y_U Q_A H_A \overline{U}_A - Y_D H_A^\dagger Q_A \overline{D}_A - \frac{\lambda}{2} \phi_A^\dagger \overline{D}_A \overline{D}_A + \text{H.c.}$$

$$\mathscr{L}_{\mathsf{twin}} \supset -y_{\tau} H_B^{\dagger} L_B \overline{E}_B - y_t Q_B H_B \overline{U}_B - y_b H_B^{\dagger} Q_B \overline{D}_B + \mathsf{H.c.}$$

$$\mathscr{L}_{\mathsf{portal}} \supset -M_N \overline{N}_A N_B - \kappa_A \phi_A \overline{U}_A \overline{N}_A - \kappa_B \phi_B \overline{U}_B N_B + \mathsf{H.c.}$$
,

Collider signatures

Collider searches: possible at the LHC

 ϕ_A pair production: $\phi_A \rightarrow jj$ or $\phi_A \rightarrow j(t_A)t_B$

 $m_{\phi} \gtrsim 1.2 \text{ TeV (ATLAS, CMS)}$

 $m_{\phi} \gtrsim 1.8 \text{ TeV (HL-LHC)}$

Dijet resonance: $\lambda \lesssim 0.1$ for $m_{\phi} \approx 2$ TeV

Displaced vertex: $m_{\phi} \gtrsim 1.8 \text{ TeV}$

N needs to wait until 100 TeV FCC.

Collider signatures

Collider searches: possible at the LHC

 ϕ_A pair production: $\phi_A \to jj$ or $\phi_A \to j(t_A)t_B$

 $m_{\phi} \gtrsim 1.2 \text{ TeV (ATLAS, CMS)}$

 $m_{\phi} \gtrsim 1.8 \text{ TeV (HL-LHC)}$

Dijet resonance: $\lambda \lesssim 0.1$ for $m_{\phi} \approx 2$ TeV

Displaced vertex: $m_{\phi} \gtrsim 1.8 \text{ TeV}$

N needs to wait until 100 TeV FCC.

Collider signatures

Collider searches: possible at the LHC

$$\phi_A$$
 pair production: $\phi_A \to jj$ or $\phi_A \to j(t_A)t_B$

$$m_{\phi} \gtrsim 1.2 \text{ TeV (ATLAS, CMS)}$$

$$m_{\phi} \gtrsim 1.8 \text{ TeV (HL-LHC)}$$

Dijet resonance: $\lambda \lesssim 0.1$ for $m_{\phi} \approx 2$ TeV

Displaced vertex: $m_{\phi} \gtrsim 1.8 \text{ TeV}$

N needs to wait until 100 TeV FCC.

Precision measurement

$$\mathcal{L}_{\text{FCNC}} \supset -\tilde{C}^{uc}(\bar{c}\bar{\sigma}_{\mu}u)(\bar{u}\bar{\sigma}^{\mu}c) + \text{H.c.}$$

$$\tilde{C}^{uc} \simeq \frac{\kappa_{A,1\bar{I}} \kappa_{A,2I}^* \kappa_{A,2\bar{J}} \kappa_{A,1\bar{J}}^*}{8\pi^2 M_N^2}$$

$$\kappa \lesssim \mathcal{O}(0.1)$$

Precision measurement

$$\mathcal{L}_{\text{CP}} = -\frac{1}{3} \tilde{C}_G f^{ABC} e^{\mu\nu\rho\sigma} G^A_{\mu\lambda} G^{B\lambda}_{\nu} G^C_{\rho\sigma}$$

$$\frac{3g_S^3}{(16\pi^2)^3} \frac{\kappa^4}{M_N^2}$$

$$\kappa \lesssim \mathcal{O}(1)$$

Dark Photon

To annihilate the symmetric part, $m_{\gamma_B} \sim 1 \text{ GeV}$

For γ_B to decay before BBN ~ 10 MeV the kinetic mixing ε ~ 5 × 10⁻⁹

Dark Photon

To annihilate the symmetric part, $m_{\gamma_R} \sim 1 \text{ GeV}$

For γ_B to decay before BBN ~ 10 MeV the kinetic mixing $\varepsilon \sim 5 \times 10^{-9}$

In Twin Higgs modes, $\varepsilon \sim 10^{-11}$, induced at the four loop

$$\varepsilon_{\text{portal}} \sim \frac{e^2 \kappa^4}{(16\pi^2)^3} \approx 2.5 \times 10^{-8} \kappa^4$$

Direct Detection

 b_{3B} and $au_{\!B}$ can scatter off nucleons due to the kinetic mixing

Current constraint: $\varepsilon < 10^{-3}$

Near future sensitivity: $\varepsilon \sim 10^{-4}$

$$\lambda_A \phi_A^{\dagger} \overline{D}_A \overline{D}_A \quad \kappa_A \phi_A \overline{U}_A \overline{N}_A \quad \kappa_B \phi_B \overline{U}_B N_B \quad \frac{\kappa_A \kappa_B f_{\phi}}{\sqrt{2} M_N} \phi_A \overline{U}_A \overline{t}_{3B}$$

$$b_{3B}, au_B = 0$$
 γ_B
 $q_A, e_A = q_A, e_A$

$\lambda_A \phi_A^{\dagger} \overline{D}_A \overline{D}_A \quad \kappa_A \phi_A \overline{U}_A \overline{N}_A \quad \kappa_B \phi_B \overline{U}_B N_B \quad \frac{\kappa_A \kappa_B f_{\phi}}{\sqrt{2} M_N} \phi_A \overline{U}_A \overline{t}_{3B}$

Master Plot

$$Y_{B_A} = Y_{B_B} = \eta Y_N \simeq 10^{-10}$$

$$Y_N \sim T_{\rm reh}/m_{\rm reh} \lesssim 10^{-1}$$

$$T_{\rm reh} \gtrsim \mathcal{O}(100) \text{ GeV}$$

$$(M_N)_{\bar{I}J} = M_0 \left(\delta_{\bar{I}J} + \xi \ \sigma_{\bar{I}J}^3 \right) + \frac{c_\Delta M_0}{16\pi^2} \left(\sum_i \kappa_{A,i\bar{I}} \kappa_{A,iJ}^* + \kappa_{B,\bar{I}}^* \kappa_{B,J} \right)$$

$$M_0 = f_\phi = 4$$
 TeV, $m_\phi = 2$ TeV, $c_\Lambda = 1$

$\lambda_A \phi_A^{\dagger} \overline{D}_A \overline{D}_A \quad \kappa_A \phi_A \overline{U}_A \overline{N}_A \quad \kappa_B \phi_B \overline{U}_B N_B \quad \frac{\kappa_A \kappa_B f_{\phi}}{\sqrt{2} M_N} \phi_A \overline{U}_A \overline{t}_{3B}$

Master Plot

$$Y_{B_A} = Y_{B_B} = \eta Y_N \simeq 10^{-10}$$

$$Y_N \sim T_{\rm reh}/m_{\rm reh} \lesssim 10^{-1}$$

$$T_{\rm reh} \gtrsim \mathcal{O}(100) \text{ GeV}$$

$$(M_N)_{\bar{I}J} = M_0 \left(\delta_{\bar{I}J} + \xi \ \sigma_{\bar{I}J}^3 \right) + \frac{c_\Delta M_0}{16\pi^2} \left(\sum_i \kappa_{A,i\bar{I}} \kappa_{A,iJ}^* + \kappa_{B,\bar{I}}^* \kappa_{B,J} \right)$$

$$M_0 = f_\phi = 4$$
 TeV, $m_\phi = 2$ TeV, $c_\Lambda = 1$

$\lambda_A \phi_A^{\dagger} \overline{D}_A \overline{D}_A \quad \kappa_A \phi_A \overline{U}_A \overline{N}_A \quad \kappa_B \phi_B \overline{U}_B N_B \quad \frac{\kappa_A \kappa_B f_{\phi}}{\sqrt{2} M_N} \phi_A \overline{U}_A \overline{t}_{3B}$

Master Plot

$$Y_{B_A} = Y_{B_B} = \eta Y_N \simeq 10^{-10}$$

$$Y_N \sim T_{\rm reh}/m_{\rm reh} \lesssim 10^{-1}$$

$$T_{\rm reh} \gtrsim \mathcal{O}(100) \text{ GeV}$$

$$(M_N)_{\bar{I}J} = M_0 \left(\delta_{\bar{I}J} + \xi \ \sigma_{\bar{I}J}^3 \right) + \frac{c_\Delta M_0}{16\pi^2} \left(\sum_i \kappa_{A,i\bar{I}} \kappa_{A,iJ}^* + \kappa_{B,\bar{I}}^* \kappa_{B,J} \right)$$

$$M_0 = f_\phi = 4$$
 TeV, $m_\phi = 2$ TeV, $c_\Lambda = 1$

