Systematics of U-spin Amplitude Sum Rules

MARGARITA GAVRILOVA
Cornell University
PHENO 22

with YUVAL GROSSMAN and STEFAN SCHACHT

Motivation

- probing EW physics with hadrons in the presence of non-perturbative QCD is challenging
- U-spin symmetry can be utilized to write approximate relations between decay amplitudes (and observables) \rightarrow reduce the number of unknown hadronic parameters

$$
\text { Example: } \bar{D} \rightarrow P^{+} P^{-}
$$

$$
\begin{aligned}
& \epsilon^{0}: \quad \frac{\mathcal{A}\left(\bar{D}^{0} \rightarrow \pi^{+} K^{-}\right)}{V_{c d} V_{u s}^{*}}=\frac{\mathcal{A}\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-}\right)}{-V_{c s} V_{u d}^{*}}=\frac{\mathcal{A}\left(\bar{D}^{0} \rightarrow \pi^{+} \pi^{-}\right)}{V_{c s} V_{u s}^{*}}=\frac{\mathcal{A}\left(\bar{D}^{0} \rightarrow K^{+} K^{-}\right)}{V_{c s} V_{u s}^{*}} \\
& \epsilon^{1}: \quad \frac{\mathcal{A}\left(\bar{D}^{0} \rightarrow \pi^{+} K^{-}\right)}{V_{c d} V_{u s}^{*}}+\frac{\mathcal{A}\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-}\right)}{-V_{c s} V_{u d}^{*}}=\frac{\mathcal{A}\left(\bar{D}^{0} \rightarrow \pi^{+} \pi^{-}\right)}{V_{c s} V_{u s}^{*}}+\frac{\mathcal{A}\left(\bar{D}^{0} \rightarrow K^{+} K^{-}\right)}{V_{c s} V_{u s}^{*}}
\end{aligned}
$$

U-spin

- approximate symmetry of QCD
- $S U(2)$ subgroup of $S U(3)$ flavour
- fundamental doublets are

$$
\left[\begin{array}{c}
d \\
s
\end{array}\right]=\left[\begin{array}{c}
\left|\frac{1}{2},+\frac{1}{2}\right\rangle \\
\left.\frac{1}{2},-\frac{1}{2}\right\rangle
\end{array}\right], \quad\left[\begin{array}{c}
\bar{s} \\
-\bar{d}
\end{array}\right]=\left[\begin{array}{l}
\left|\frac{1}{2},+\frac{1}{2}\right\rangle \\
\left.\frac{1}{2},-\frac{1}{2}\right\rangle
\end{array}\right]
$$

U-spin symmetry \rightarrow algebraic relations between decay amplitudes \equiv sum rules

U-spin set

- U-spin set is a set of amplitudes (processes) that are related by U-spin
- U-spin set is defined via U-spin properties of:
- initial/final state
- and the Hamiltonian
- U-spin limit Hamiltonian:

$$
\mathcal{H}_{\mathrm{eff}}^{(0)}=\sum_{m} f_{u, m} H_{m}^{u}
$$

Example: $\bar{D}^{0} \rightarrow P^{+} P^{-}$

Initial and final state multiplets:

$$
\bar{D}^{0}=|u \bar{c}\rangle=|0,0\rangle, \quad P^{+}=\left[\begin{array}{c}
K^{+} \\
\pi^{+}
\end{array}\right]=\left[\begin{array}{c}
|u \bar{s}\rangle \\
-|u \bar{d}\rangle
\end{array}\right]=\left[\begin{array}{c}
\left|\frac{1}{2},+\frac{1}{2}\right\rangle \\
\left.\frac{1}{2},-\frac{1}{2}\right\rangle
\end{array}\right], \quad P^{-}=\left[\begin{array}{c}
\pi^{-} \\
K^{-}
\end{array}\right]=\left[\begin{array}{l}
|d \bar{u}\rangle \\
|s \bar{u}\rangle
\end{array}\right]=\left[\begin{array}{c}
\left.\frac{1}{2},+\frac{1}{2}\right\rangle \\
\left.\frac{1}{2},-\frac{1}{2}\right\rangle
\end{array}\right]
$$

Hamiltonian:

$$
\mathcal{H}_{\mathrm{eff}}^{(0)}=\sum_{m=-1}^{1} f_{1, m} H_{m}^{1}
$$

$$
f_{1,1}=V_{c d}^{*} V_{u s}, \quad f_{1,-1}=-V_{c s}^{*} V_{u d}, \quad{ }_{1,0}^{m=-1}=\frac{V_{c s}^{*} V_{u s}-V_{c d}^{*} V_{u d}}{\sqrt{2}} \approx \sqrt{2}\left(V_{c s}^{*} V_{u s}\right)
$$

U-spin set of processes:

$$
\bar{D}^{0} \rightarrow \pi^{+} K^{-}, \quad \bar{D}^{0} \rightarrow K^{+} \pi^{-}, \quad \bar{D}^{0} \rightarrow \pi^{+} \pi^{-}, \quad \bar{D}^{0} \rightarrow K^{+} K^{-}
$$

Expansion in the U-spin breaking

- On the fundamental level the U-spin breaking comes from the mass difference between strange and down quarks
- The small parameter is $\epsilon=\frac{m_{s}-m_{d}}{\Lambda_{Q C D}} \sim 0.3$
- The breaking is realized via (1,0)-operator H_{ϵ}

$$
\begin{gathered}
\mathcal{H}_{\mathrm{eff}}=\sum_{m, b} f_{u, m}\left(H_{m}^{u} \otimes H_{\epsilon}^{\otimes b}\right) \\
H_{\varepsilon}^{\otimes b} \equiv \underbrace{H_{\varepsilon} \otimes \cdots \otimes H_{\varepsilon}}_{b}
\end{gathered}
$$

$$
\mathcal{A}_{j}=f_{u, m} \sum C_{j \alpha} X_{\alpha} \quad \begin{aligned}
& \text { Reduced matrix } \\
& \text { element (RME) }
\end{aligned}
$$

Example: $C_{b} \rightarrow L_{b} P^{+} P^{-}$

- Below is the matrix $C_{j \alpha}$ up to $b=2$
- To find the sum rules one needs to find the null space of the matrix

Decay amplitude	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}	X_{8}	X_{9}	X_{10}	X_{11}	X_{12}	X_{13}	X_{14}	X_{15}	X_{16}	X_{17}	X_{18}	X_{19}	X_{20}
$A\left(\Lambda_{c}^{+} \rightarrow \Sigma^{+} K^{-} K^{+}\right)$	$\frac{1}{3}$	$-\frac{2}{3}$	0	$\frac{1}{\sqrt{10}}$	$-\frac{1}{3 \sqrt{2}}$	$\frac{\sqrt{2}}{3}$	0	0	0	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$\frac{1}{\sqrt{15}}$	0	$-\frac{1}{2 \sqrt{5}}$	$\frac{1}{6}$	$-\frac{1}{3}$	0	0	0	0
$A\left(\Xi_{c}^{+} \rightarrow p \pi^{-} \pi^{+}\right)$	$\frac{1}{3}$	$-\frac{2}{3}$	0	$-\frac{1}{\sqrt{10}}$	$\frac{1}{3 \sqrt{2}}$	$-\frac{\sqrt{2}}{3}$	0	0	0	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$\frac{1}{\sqrt{15}}$	0	$-\frac{1}{2 \sqrt{5}}$	$\frac{1}{6}$	$-\frac{1}{3}$	0	0	0	0
$A\left(\Lambda_{c}^{+} \rightarrow \Sigma^{+} \pi^{-} \pi^{+}\right)$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{10}}$	$-\frac{1}{3 \sqrt{2}}$	$-\frac{1}{3 \sqrt{2}}$	$\frac{1}{\sqrt{6}}$	0	0	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$\frac{1}{2 \sqrt{5}}$	$-\frac{1}{2 \sqrt{5}}$	$\frac{1}{6}$	$\frac{1}{6}$	$-\frac{1}{2 \sqrt{3}}$	0	0	0
$A\left(\Xi_{c}^{+} \rightarrow p K^{-} K^{+}\right)$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{\sqrt{3}}$	$-\frac{1}{\sqrt{10}}$	$\frac{1}{3 \sqrt{2}}$	$\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	0	0	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$\frac{1}{2 \sqrt{5}}$	$-\frac{1}{2 \sqrt{5}}$	$\frac{1}{6}$	$\frac{1}{6}$	$-\frac{1}{2 \sqrt{3}}$	0	0	0
$A\left(\Lambda_{c}^{+} \rightarrow \Sigma^{+} \pi^{-} K^{+}\right)$	$\frac{\sqrt{2}}{3}$	$-\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	$\frac{2}{3 \sqrt{5}}$	$3 \sqrt{2}$ 0	$3 \sqrt{2}$ 0	0	$\frac{1}{3 \sqrt{2}}$	$\frac{1}{\sqrt{6}}$	(0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{5}}$	0	0	0	2 0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$\frac{1}{3 \sqrt{6}}$	$\frac{1}{3 \sqrt{2}}$
$A\left(\Xi_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)$	$\frac{\sqrt{2}}{3}$	$-\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	$-\frac{2}{3 \sqrt{5}}$	0	0	0	$-\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{5}}$	0	0	0	0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$\frac{1}{3 \sqrt{6}}$	$\frac{1}{3 \sqrt{2}}$
$A\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{10}}$	$-\frac{1}{3 \sqrt{2}}$	$-\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	0	0	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{5}}$	$-\frac{1}{2 \sqrt{5}}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{2 \sqrt{3}}$	0	0	0
$A\left(\Xi_{c}^{+} \rightarrow \Sigma^{+} \pi^{-} K^{+}\right)$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{\sqrt{3}}$	$-\frac{1}{\sqrt{10}}$	$\frac{1}{3 \sqrt{2}}$	$\frac{1}{3 \sqrt{2}}$	$\frac{1}{\sqrt{6}}$	0	0	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{5}}$	$-\frac{1}{2 \sqrt{5}}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{2 \sqrt{3}}$	0	0	0
$A\left(\Lambda_{c}^{+} \rightarrow p K^{-} K^{+}\right)$	$\frac{\sqrt{2}}{3}$	$-\frac{1}{3 \sqrt{2}}$	$\frac{1}{\sqrt{6}}$	$\frac{2}{3 \sqrt{5}}$	$3 \sqrt{2}$ 0	$3 \sqrt{2}$ 0	1 0	$\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{15}}$	$-\frac{1}{3} \sqrt{\frac{2}{5}}$	0	0	0	$2 \sqrt{3}$ 0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$\frac{1}{3 \sqrt{6}}$	$-\frac{1}{3 \sqrt{2}}$
$A\left(\Xi_{c}^{+} \rightarrow \Sigma^{+} \pi^{-} \pi^{+}\right)$	$\frac{\sqrt{2}}{3}$	$-\frac{1}{3 \sqrt{2}}$	$\frac{1}{\sqrt{6}}$	$-\frac{2}{3 \sqrt{5}}$	0	0	0	$-\frac{1}{3 \sqrt{2}}$	$\frac{1}{\sqrt{6}}$	0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{15}}$	$-\frac{1}{3} \sqrt{\frac{2}{5}}$	0	0	0	0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$\frac{1}{3 \sqrt{6}}$	$-\frac{1}{3 \sqrt{2}}$
$A\left(\Lambda_{c}^{+} \rightarrow p \pi^{-} \pi^{+}\right)$	$\frac{\sqrt{2}}{3}$	$\frac{3 \sqrt{2}}{3}$	ل 0 0	$3 \sqrt{5}$ $\frac{2}{3 \sqrt{5}}$	0	0	0		$\sqrt{6}$ 0	0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	(0	0	0	0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	- ${ }^{3} \sqrt{\frac{2}{3}}$	3 0
$A\left(\Xi_{c}^{+} \rightarrow \Sigma^{+} K^{-} K^{+}\right)$	$\frac{\sqrt{2}}{3}$	$\frac{\sqrt{2}}{3}$	0	$-\frac{2}{3 \sqrt{5}}$	0	0	0	$\frac{\sqrt{2}}{3}$	0	0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	0	0	0	0	0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	0
$A\left(\Lambda_{c}^{+} \rightarrow p \pi^{-} K^{+}\right)$	1	0	0	$\frac{1}{\sqrt{10}}$	$\frac{1}{\sqrt{2}}$	0	0	0	0	$\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2} \sqrt{\frac{3}{5}}$	0	0	$\frac{1}{2 \sqrt{5}}$	$\frac{1}{2}$	0	0	0	0	0
$A\left(\Xi_{c}^{+} \rightarrow \Sigma^{+} K^{-} \pi^{+}\right)$	1	0	0	- $\frac{1}{\sqrt{10}}$	- $\frac{1}{\sqrt{2}}$	0	0	0	0	$\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2} \sqrt{\frac{3}{5}}$	0	0	$\frac{1}{2 \sqrt{5}}$	$\frac{1}{2}$	0	0	0	0	0
																				」

Systematics of U-spin sum rules

1) Any U-spin system can be constructed from doublets
2) The movement of irreps between initial/final state and the Hamiltonian doesn't change the structure of sum rules

Without loss of generality, we consider a system with the following U-spin structure

$$
0 \rightarrow\left(\frac{1}{2}\right)^{\otimes n}, \quad u=0
$$

U-spin pairs

$$
\pm \frac{1}{2} \rightarrow \pm
$$

Amplitude

U-spin conjugate

$$
\bar{A}_{j}:
$$

$\bar{A}_{j}=(-1)^{p} \sum_{\alpha}(-1)^{b} C_{j \alpha} X_{\alpha}$

a- and s-type amplitudes

$$
\begin{aligned}
& A_{j}=\sum_{\alpha} C_{j \alpha} X_{\alpha} \\
& \bar{A}_{j}=(-1)^{p} \sum_{\alpha}(-1)^{b} C_{j \alpha} X_{\alpha}
\end{aligned} \quad \Longrightarrow \quad a_{j} \equiv A_{j}-(-1)^{p} \bar{A}_{j}, \quad s_{j} \equiv A_{j}+(-1)^{p} \bar{A}_{j}
$$

- all sum rules of the system can be written in terms of a- and s-type amplitudes
- $\boldsymbol{a}_{\boldsymbol{j}}$ contain only the terms that are odd in breaking \boldsymbol{b}
- $\boldsymbol{s}_{\boldsymbol{j}}$ contain only the terms that are even in breaking \boldsymbol{b}
- a-type sum rules that are valid up to odd order \boldsymbol{b} also hold at $\boldsymbol{b}+\mathbf{1}$
- s-type sum rules that are valid up to even order b also hold at $b+1$
- for any system there are $n / 2$ trivial a-type sum rules at $b=0: a_{j}=0$
- all sum rules at any order b have the form:

$$
\sum a_{j}=0 \quad \text { and } \quad \sum s_{j}=0
$$

Diagrammatic approach: $n=6$ example

$$
d=\frac{n}{2}-1=2
$$

- each node corresponds to a U-spin pair
- each node is a trivial a-type sum rule valid up to $b=0$
- the sums of nodes in lines are s-type sum rules valid up to $b=1$
- the sum of all nodes of the lattice is an a-type sum rule valid up to $b=2$

Backup slides

Outline

- U-spin symmetry
- U-spin set of processes
- U-spin breaking
- Standard approach to U-spin sum rules
- Systematics of U-spin sum rules

Standard approach to writing sum rules

1) Basis rotation: from physical to U-spin basis
2) Wigner-Eckart theorem

Amplitude in the physical basis (states and the Hamiltonian are given by tensor products):

Wigner-Eckart theorem:

$$
\left.\mathcal{A}_{j}=\langle\text { out }| \mathcal{H}_{\mathrm{eff}} \mid \text { in }\right\rangle_{j}
$$

$$
\left\langle u_{2} ; m_{2}\right| O(u, m)\left|u_{1} ; m_{1}\right\rangle=C_{\substack{u_{1}, m_{1} \\ u, m}}^{u_{2}, m_{2}}\left\langle u_{2}\right| O(u)\left|u_{1}\right\rangle
$$

Reduced matrix

$$
\mathcal{A}_{j}=f_{u, m} \sum_{\alpha} C_{j \alpha} X_{\alpha}
$$

