# Systematics of U-spin Amplitude Sum Rules

MARGARITA GAVRILOVA Cornell University PHENO 22

with YUVAL GROSSMAN and STEFAN SCHACHT

#### Motivation

- probing EW physics with hadrons in the presence of non-perturbative QCD is challenging
- U-spin symmetry can be utilized to write approximate relations between decay amplitudes (and observables) → reduce the number of unknown hadronic parameters

Example:  $\overline{D} \rightarrow P^+P^-$ 

$$\begin{aligned} \epsilon^{0} \colon \quad & \frac{\mathcal{A}(\bar{D}^{0} \to \pi^{+}K^{-})}{V_{cd}V_{us}^{*}} = \frac{\mathcal{A}(\bar{D}^{0} \to K^{+}\pi^{-})}{-V_{cs}V_{ud}^{*}} = \frac{\mathcal{A}(\bar{D}^{0} \to \pi^{+}\pi^{-})}{V_{cs}V_{us}^{*}} = \frac{\mathcal{A}(\bar{D}^{0} \to K^{+}K^{-})}{V_{cs}V_{us}^{*}} \\ \epsilon^{1} \colon \quad & \frac{\mathcal{A}(\bar{D}^{0} \to \pi^{+}K^{-})}{V_{cd}V_{us}^{*}} + \frac{\mathcal{A}(\bar{D}^{0} \to K^{+}\pi^{-})}{-V_{cs}V_{ud}^{*}} = \frac{\mathcal{A}(\bar{D}^{0} \to \pi^{+}\pi^{-})}{V_{cs}V_{us}^{*}} + \frac{\mathcal{A}(\bar{D}^{0} \to K^{+}K^{-})}{V_{cs}V_{us}^{*}} \end{aligned}$$

Brod, Grossman, Kagan, Zupan, arXiv:1203.6659 [hep-ph]

# U-spin

- approximate symmetry of QCD
- SU(2) subgroup of SU(3) flavour
- fundamental doublets are

$$\begin{bmatrix} d \\ s \end{bmatrix} = \begin{bmatrix} \left| \frac{1}{2}, +\frac{1}{2} \right\rangle \\ \left| \frac{1}{2}, -\frac{1}{2} \right\rangle \end{bmatrix}, \qquad \begin{bmatrix} \bar{s} \\ -\bar{d} \end{bmatrix} = \begin{bmatrix} \left| \frac{1}{2}, +\frac{1}{2} \right\rangle \\ \left| \frac{1}{2}, -\frac{1}{2} \right\rangle \end{bmatrix}$$

U-spin symmetry  $\rightarrow$  algebraic relations between decay amplitudes  $\equiv$  sum rules

# U-spin set

- U-spin set is a set of amplitudes (processes) that are related by U-spin
- U-spin set is defined via U-spin properties of:
  - initial/final state
  - and the Hamiltonian
- U-spin limit Hamiltonian:

$$\mathcal{H}_{\text{eff}}^{(0)} = \sum_{m} f_{u,m} H_m^u$$

Example: 
$$\overline{D}^0 \to P^+P^-$$

#### Initial and final state multiplets:

$$\bar{D}^{0} = |u\bar{c}\rangle = |0,0\rangle, \qquad P^{+} = \begin{bmatrix} K^{+} \\ \pi^{+} \end{bmatrix} = \begin{bmatrix} |u\bar{s}\rangle \\ -|u\bar{d}\rangle \end{bmatrix} = \begin{bmatrix} \left|\frac{1}{2}, +\frac{1}{2}\rangle \\ \frac{1}{2}, -\frac{1}{2}\rangle \end{bmatrix}, \qquad P^{-} = \begin{bmatrix} \pi^{-} \\ K^{-} \end{bmatrix} = \begin{bmatrix} |d\bar{u}\rangle \\ |s\bar{u}\rangle \end{bmatrix} = \begin{bmatrix} \left|\frac{1}{2}, +\frac{1}{2}\rangle \\ \frac{1}{2}, -\frac{1}{2}\rangle \end{bmatrix}$$

Hamiltonian:

$$\mathcal{H}_{\text{eff}}^{(0)} = \sum_{m=-1}^{1} f_{1,m} H_m^1$$
$$f_{1,1} = V_{cd}^* V_{us}, \qquad f_{1,-1} = -V_{cs}^* V_{ud}, \qquad f_{1,0} = \frac{V_{cs}^* V_{us} - V_{cd}^* V_{ud}}{\sqrt{2}} \approx \sqrt{2} \ (V_{cs}^* V_{us})$$

U-spin set of processes:

 $\bar{D}^0 \to \pi^+ K^-, \qquad \bar{D}^0 \to K^+ \pi^-, \qquad \bar{D}^0 \to \pi^+ \pi^-, \qquad \bar{D}^0 \to K^+ K^-$ 

# Expansion in the U-spin breaking

- On the fundamental level the U-spin breaking comes from the mass difference between strange and down quarks
- The small parameter is  $\epsilon = \frac{m_s m_d}{\Lambda_{QCD}} \sim 0.3$
- The breaking is realized via (1,0)-operator  $H_{\epsilon}$

$$\mathcal{H}_{\text{eff}} = \sum_{m,b} f_{u,m} \left( H_m^u \otimes H_{\epsilon}^{\otimes b} \right)$$
$$H_{\varepsilon}^{\otimes b} \equiv \underbrace{H_{\varepsilon} \otimes \cdots \otimes H_{\varepsilon}}_{b}$$

 $\mathcal{A}_j = f_{u,m} \sum C_{j\alpha} X_{\alpha}$ 

Reduced matrix element (RME)

Example:  $C_b \rightarrow L_b P^+ P^-$ 

Below is the matrix  $C_{j\alpha}$  up to b = 2٠

To find the sum rules one needs to find the null space of the matrix

| Decay amplitude                                      | $X_1$                | $X_2$                                                                      | X <sub>3</sub>        | $X_4$                               | $X_5$                  | $X_6$                  | $X_7$                 | X <sub>8</sub>                                                              | $X_9$                 | X10                     | X <sub>11</sub>                   | X <sub>12</sub>                                                                           | X <sub>13</sub>                               | X14                    | X <sub>15</sub> | X16            | X17                    | X <sub>18</sub>                                                   | X19                                           | X <sub>20</sub>        |  |  |  |
|------------------------------------------------------|----------------------|----------------------------------------------------------------------------|-----------------------|-------------------------------------|------------------------|------------------------|-----------------------|-----------------------------------------------------------------------------|-----------------------|-------------------------|-----------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------|-----------------|----------------|------------------------|-------------------------------------------------------------------|-----------------------------------------------|------------------------|--|--|--|
|                                                      |                      |                                                                            | <u>^3</u>             | Λ <u>4</u>                          | A5                     |                        | Λ7                    | <u> </u>                                                                    | 79                    | A10                     | A11                               | A12                                                                                       | A13                                           | A14                    | A15             | A16            |                        | A18                                                               | A19                                           | A20                    |  |  |  |
| $A\left(\Lambda_c^+ \to \Sigma^+ K^- K^+\right)$     | $\frac{1}{3}$        | $-\frac{2}{3}$                                                             | 0                     | $\frac{1}{\sqrt{10}}$               | $-\frac{1}{3\sqrt{2}}$ | $\frac{\sqrt{2}}{3}$   | 0                     | 0                                                                           | 0                     | $-\frac{1}{2\sqrt{15}}$ | $-\frac{1}{2\sqrt{15}}$           | $\frac{1}{\sqrt{15}}$                                                                     | 0                                             | $-\frac{1}{2\sqrt{5}}$ | $\frac{1}{6}$   | $-\frac{1}{3}$ | 0                      | 0                                                                 | 0                                             | 0                      |  |  |  |
| $A\left(\Xi_c^+ \to p\pi^-\pi^+\right)$              | $\frac{1}{3}$        | $-\frac{2}{3}$                                                             | 0                     | $\left -\frac{1}{\sqrt{10}}\right $ | $\frac{1}{3\sqrt{2}}$  | $-\frac{\sqrt{2}}{3}$  | 0                     | 0                                                                           | 0                     | $-\frac{1}{2\sqrt{15}}$ | $-\frac{1}{2\sqrt{15}}$           | $\frac{1}{\sqrt{15}}$                                                                     | 0                                             | $-\frac{1}{2\sqrt{5}}$ | $\frac{1}{6}$   | $-\frac{1}{3}$ | 0                      | 0                                                                 | 0                                             | 0                      |  |  |  |
| $A\left(\Lambda_c^+ \to \Sigma^+ \pi^- \pi^+\right)$ | $\frac{1}{3}$        | $\frac{1}{3}$                                                              | $-\frac{1}{\sqrt{3}}$ | $\frac{1}{\sqrt{10}}$               | $-\frac{1}{3\sqrt{2}}$ | $-\frac{1}{3\sqrt{2}}$ | $\frac{1}{\sqrt{6}}$  | 0                                                                           | 0                     | $-\frac{1}{2\sqrt{15}}$ | $-\frac{1}{2\sqrt{15}}$           | $-\frac{1}{2\sqrt{15}}$                                                                   | $\frac{1}{2\sqrt{5}}$                         | $-\frac{1}{2\sqrt{5}}$ | $\frac{1}{6}$   | $\frac{1}{6}$  | $-\frac{1}{2\sqrt{3}}$ | 0                                                                 | 0                                             | 0                      |  |  |  |
| $A\left(\Xi_c^+ \to pK^-K^+\right)$                  | $\frac{1}{3}$        | $\frac{1}{3}$                                                              | $-\frac{1}{\sqrt{3}}$ | $\left -\frac{1}{\sqrt{10}}\right $ | $\frac{1}{3\sqrt{2}}$  | $\frac{1}{3\sqrt{2}}$  | $-\frac{1}{\sqrt{6}}$ | 0                                                                           | 0                     | $-\frac{1}{2\sqrt{15}}$ | $-\frac{1}{2\sqrt{15}}$           | $\frac{1}{2\sqrt{15}}$ $\frac{1}{3}\sqrt{\frac{2}{15}}$                                   | $\frac{1}{2\sqrt{5}}$                         | $-\frac{1}{2\sqrt{5}}$ | $\frac{1}{6}$   | $\frac{1}{6}$  | $-\frac{1}{2\sqrt{3}}$ | 0                                                                 | 0                                             | 0                      |  |  |  |
| $A\left(\Lambda_c^+ \to \Sigma^+ \pi^- K^+\right)$   | $\frac{\sqrt{2}}{3}$ | $\left -\frac{1}{3\sqrt{2}}\right $                                        | $-\frac{1}{\sqrt{6}}$ | $\frac{2}{3\sqrt{5}}$               | 0                      | 0                      | 0                     | $\frac{1}{3\sqrt{2}}$                                                       | $\frac{1}{\sqrt{6}}$  | 0                       | $-\frac{2}{3}\sqrt{\frac{2}{15}}$ | $\frac{1}{3}\sqrt{\frac{2}{15}}$                                                          | $\frac{1}{3}\sqrt{\frac{2}{5}}$               | 0                      | 0               | 0              | 0                      | $-\frac{1}{3}\sqrt{\frac{2}{3}}$                                  |                                               | $\frac{1}{3\sqrt{2}}$  |  |  |  |
| $A\left(\Xi_c^+ \to pK^-\pi^+\right)$                | $\frac{\sqrt{2}}{3}$ | $-\frac{1}{3\sqrt{2}}$                                                     | $-\frac{1}{\sqrt{6}}$ | $\left -\frac{2}{3\sqrt{5}}\right $ | 0                      | 0                      | 0                     | $\left -\frac{1}{3\sqrt{2}}\right $                                         | $-\frac{1}{\sqrt{6}}$ | 0                       | $-\frac{2}{3}\sqrt{\frac{2}{15}}$ | $\frac{1}{3}\sqrt{\frac{2}{15}}$                                                          | $\frac{1}{3}\sqrt{\frac{2}{5}}$               | 0                      | 0               | 0              | 0                      | $-\frac{1}{3}\sqrt{\frac{2}{3}}$                                  | $\frac{1}{3\sqrt{6}}$                         | $\frac{1}{3\sqrt{2}}$  |  |  |  |
| $A\left(\Lambda_c^+ \to pK^-\pi^+\right)$            | $\frac{1}{3}$        | $\frac{1}{3}$                                                              | $\frac{1}{\sqrt{3}}$  | $\frac{1}{\sqrt{10}}$               | $-\frac{1}{3\sqrt{2}}$ | $-\frac{1}{3\sqrt{2}}$ | $-\frac{1}{\sqrt{6}}$ | 0                                                                           | 0                     | $-\frac{1}{2\sqrt{15}}$ | $-\frac{1}{2\sqrt{15}}$           | $-\frac{1}{2\sqrt{15}}$                                                                   | $-\frac{1}{2\sqrt{5}}$                        | $-\frac{1}{2\sqrt{5}}$ | $\frac{1}{6}$   | $\frac{1}{6}$  | $\frac{1}{2\sqrt{3}}$  | 0                                                                 | 0                                             | 0                      |  |  |  |
| $A\left(\Xi_c^+ \to \Sigma^+ \pi^- K^+\right)$       | $\frac{1}{3}$        | $\frac{1}{3}$                                                              | $\frac{1}{\sqrt{3}}$  | $\left -\frac{1}{\sqrt{10}}\right $ | $\frac{1}{3\sqrt{2}}$  | $\frac{1}{3\sqrt{2}}$  | $\frac{1}{\sqrt{6}}$  | 0                                                                           | 0                     | $-\frac{1}{2\sqrt{15}}$ | $-\frac{1}{2\sqrt{15}}$           | $-\frac{1}{2\sqrt{15}}$                                                                   | $-\frac{1}{2\sqrt{5}}$                        | $-\frac{1}{2\sqrt{5}}$ | $\frac{1}{6}$   | $\frac{1}{6}$  | $\frac{1}{2\sqrt{3}}$  | 0                                                                 | 0                                             | 0                      |  |  |  |
| $A\left(\Lambda_c^+ \to pK^-K^+\right)$              | $\frac{\sqrt{2}}{3}$ | $-\frac{1}{3\sqrt{2}}$                                                     | $\frac{1}{\sqrt{6}}$  | $\frac{2}{3\sqrt{5}}$               | 0                      | 0                      | 0                     | $\frac{1}{3\sqrt{2}}$                                                       | $-\frac{1}{\sqrt{6}}$ | 0                       | $-\frac{2}{3}\sqrt{\frac{2}{15}}$ | $-\frac{1}{2\sqrt{15}}$ $\frac{1}{3}\sqrt{\frac{2}{15}}$ $\frac{1}{3}\sqrt{\frac{2}{15}}$ | $\left -\frac{1}{3}\sqrt{\frac{2}{5}}\right $ | 0                      | 0               | 0              | 0                      | $-\frac{1}{3}\sqrt{\frac{2}{3}}$                                  |                                               | $-\frac{1}{3\sqrt{2}}$ |  |  |  |
| $A\left(\Xi_c^+ \to \Sigma^+ \pi^- \pi^+\right)$     | $\frac{\sqrt{2}}{3}$ | $\begin{vmatrix} -\frac{1}{3\sqrt{2}} \\ \frac{\sqrt{2}}{3} \end{vmatrix}$ | $\frac{1}{\sqrt{6}}$  | $\left -\frac{2}{3\sqrt{5}}\right $ | 0                      | 0                      | 0                     | $\begin{vmatrix} -\frac{1}{3\sqrt{2}} \\ -\frac{\sqrt{2}}{3} \end{vmatrix}$ | $\frac{1}{\sqrt{6}}$  | 0                       | $-\frac{2}{3}\sqrt{\frac{2}{15}}$ | $\frac{1}{3}\sqrt{\frac{2}{15}}$                                                          | $\left -\frac{1}{3}\sqrt{\frac{2}{5}}\right $ | 0                      | 0               | 0              | 0                      | $-\frac{1}{3}\sqrt{\frac{2}{3}}$                                  | $\frac{1}{3\sqrt{6}}$                         | $-\frac{1}{3\sqrt{2}}$ |  |  |  |
| $A\left(\Lambda_c^+ \to p\pi^-\pi^+\right)$          | $\frac{\sqrt{2}}{3}$ | $\frac{\sqrt{2}}{3}$                                                       |                       | $\frac{2}{3\sqrt{5}}$               | 0                      | 0                      | 0                     | $\left  -\frac{\sqrt{2}}{3} \right $                                        | 0                     | 0                       | $-\frac{2}{3}\sqrt{\frac{2}{15}}$ | $-\frac{2}{3}\sqrt{\frac{2}{15}}$                                                         | 0                                             | 0                      | 0               | 0              | 0                      | $-\frac{1}{3}\sqrt{\frac{2}{3}}$ $-\frac{1}{3}\sqrt{\frac{2}{3}}$ | $-\frac{1}{3}\sqrt{\frac{2}{3}}$              | 0                      |  |  |  |
| $A\left(\Xi_c^+ \to \Sigma^+ K^- K^+\right)$         | $\frac{\sqrt{2}}{3}$ | $\frac{\sqrt{2}}{3}$                                                       | 0                     | $\left -\frac{2}{3\sqrt{5}}\right $ | 0                      | 0                      | 0                     | $\frac{\sqrt{2}}{3}$                                                        | 0                     | 0                       | $-\frac{2}{3}\sqrt{\frac{2}{15}}$ | $-\frac{2}{3}\sqrt{\frac{2}{15}}$                                                         | 0                                             | 0                      | 0               | 0              | 0                      | $-\frac{1}{3}\sqrt{\frac{2}{3}}$                                  | $\left -\frac{1}{3}\sqrt{\frac{2}{3}}\right $ | 0                      |  |  |  |
| $A\left(\Lambda_c^+ \to p\pi^- K^+\right)$           | 1                    | 0                                                                          | 0                     | $\frac{1}{\sqrt{10}}$               | $\frac{1}{\sqrt{2}}$   | 0                      | 0                     | 0                                                                           | 0                     | $\frac{1}{2\sqrt{15}}$  | $-\frac{1}{2}\sqrt{\frac{3}{5}}$  | 0                                                                                         | 0                                             | $\frac{1}{2\sqrt{5}}$  | $\frac{1}{2}$   | 0              | 0                      | 0                                                                 | 0                                             | 0                      |  |  |  |
| $A\left(\Xi_c^+ \to \Sigma^+ K^- \pi^+\right)$       | 1                    | 0                                                                          | 0                     | $\left -\frac{1}{\sqrt{10}}\right $ | $-\frac{1}{\sqrt{2}}$  | 0                      | 0                     | 0                                                                           | 0                     | $\frac{1}{2\sqrt{15}}$  | $-\frac{1}{2}\sqrt{\frac{3}{5}}$  | 0                                                                                         | 0                                             | $\frac{1}{2\sqrt{5}}$  | $\frac{1}{2}$   | 0              | 0                      | 0                                                                 | 0                                             | 0                      |  |  |  |
|                                                      |                      |                                                                            |                       |                                     |                        |                        |                       |                                                                             |                       |                         |                                   |                                                                                           |                                               |                        |                 |                |                        |                                                                   |                                               |                        |  |  |  |
|                                                      |                      | b = 0 $b = 1$                                                              |                       |                                     |                        |                        |                       |                                                                             |                       | h - 2                   |                                   |                                                                                           |                                               |                        |                 |                |                        |                                                                   |                                               |                        |  |  |  |
|                                                      |                      | b = 0 $b = 1$                                                              |                       |                                     |                        |                        |                       |                                                                             | b=2                   |                         |                                   |                                                                                           |                                               |                        |                 |                |                        |                                                                   |                                               |                        |  |  |  |

# Systematics of U-spin sum rules

- 1) Any U-spin system can be constructed from doublets
- 2) The movement of irreps between initial/final state and the Hamiltonian doesn't change the structure of sum rules

Without loss of generality, we consider a system with the following U-spin structure

$$0 \to \left(\frac{1}{2}\right)^{\otimes n}, \qquad u = 0$$

# U-spin pairs

$$\pm \frac{1}{2} \rightarrow \pm$$
Amplitude
$$A_j: \qquad (\underbrace{-, -, +, -, +, \dots, +}_n) \qquad \qquad A_j = \sum_{\alpha} C_{j\alpha} X_{\alpha}$$
U-spin conjugate
$$\bar{A}_j: \qquad (\underbrace{+, +, -, +, -, \dots, -}_n) \qquad \qquad \bar{A}_j = (-1)^p \sum_{\alpha} (-1)^b C_{j\alpha} X_{\alpha}$$

# a- and s-type amplitudes

$$A_{j} = \sum_{\alpha} C_{j\alpha} X_{\alpha}$$
  
$$\bar{A}_{j} = (-1)^{p} \sum_{\alpha} (-1)^{b} C_{j\alpha} X_{\alpha}$$
$$a_{j} \equiv A_{j} - (-1)^{p} \bar{A}_{j}, \qquad s_{j} \equiv A_{j} + (-1)^{p} \bar{A}_{j}$$

- all sum rules of the system can be written in terms of a- and s-type amplitudes
- *a<sub>j</sub>* contain only the terms that are **odd in breaking** *b*
- s<sub>i</sub> contain only the terms that are even in breaking b
- a-type sum rules that are valid up to odd order b also hold at b + 1
- s-type sum rules that are valid up to even order b also hold at b + 1
- for any system there are n/2 trivial a-type sum rules at b = 0:  $a_j = 0$
- all sum rules at any order *b* have the form:

$$\sum a_j = 0$$
 and  $\sum s_j = 0$ 

# Diagrammatic approach: n = 6 example

$$d = \frac{n}{2} - 1 = 2$$

- each node corresponds to a U-spin pair
- each node is a trivial a-type sum rule valid up to b = 0
- the sums of nodes in lines are s-type sum rules valid up to b = 1
- the sum of all nodes of the lattice is an a-type sum rule valid up to b = 2



# Backup slides

# Outline

- U-spin symmetry
- U-spin set of processes
- U-spin breaking
- Standard approach to U-spin sum rules
- Systematics of U-spin sum rules

# Standard approach to writing sum rules

1) Basis rotation: from physical to U-spin basis

2) Wigner-Eckart theorem

Amplitude in the **physical basis** (states and the Hamiltonian are given by tensor products):

Wigner-Eckart theorem:

the 
$$\mathcal{A}_{j} = \langle \operatorname{out} | \mathcal{H}_{eff} | \operatorname{in} \rangle_{j}$$
  
 $\langle u_{2}; m_{2} | O(u, m) | u_{1}; m_{1} \rangle = C_{u_{1}, m_{1}}^{u_{2}, m_{2}} \langle u_{2} | O(u) | u_{1} \rangle$   
 $u, m$   
 $\mathcal{A}_{j} = f_{u,m} \sum_{\alpha} C_{j\alpha} X_{\alpha}$   
Reduced matrix element (RME)