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▪ Rich phenomenology beyond the WIMP paradigm
▪ Bound state effects of mediator particle    important
   ⇒ Large impact on signature at LHC
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Chemical equilibrium is a commonly made assumption in the freeze-out calculation of co-
annihilating dark matter. We explore the possible failure of this assumption and find a new
conversion-driven freeze-out mechanism. Considering a representative simplified model inspired
by supersymmetry with a neutralino- and sbottom-like particle we find regions in parameter space
with very small couplings accommodating the measured relic density. In this region freeze-out takes
place out of chemical equilibrium and dark matter self-annihilation is thoroughly ine�cient. The
relic density is governed primarily by the size of the conversion terms in the Boltzmann equations.
Due to the small dark matter coupling the parameter region is immune to direct detection but
predicts an interesting signature of disappearing tracks or displaced vertices at the LHC.

INTRODUCTION

The origin and the nature of the dark matter (DM)
in the Universe is one of the most pressing questions in
particle- and astrophysics. Despite impressive e�orts to
uncover its interactions with the Standard Model (SM)
of particle physics in (in)direct detection and accelerator
based experiments, DM remains elusive and, so far, our
understanding is essentially limited to its gravitational
interactions (see e.g. [1, 2]). It is therefore of utmost
interest to investigate mechanisms for the generation of
DM in the early Universe that go beyond the widely stud-
ied paradigm of thermal freeze-out, and that can point
towards non-standard signatures.

In this spirit we subject the well-known co-annihilation
scenario [3] to further scrutiny and investigate the im-
portance of the commonly made assumption of chem-
ical equilibrium (CE) between the DM and the co-
annihilation partner. This requires solving the full set of
coupled Boltzmann equations which has been performed
in the context of specific supersymmetric scenarios [4, 5].
Here we consider a simplified DM model and explore the
break-down of CE in detail finding a new, conversion
driven solution for DM freeze-out which points towards
a small interaction strength of the DM particle with the
SM bath. While the smallness of the coupling renders
most of the conventional signatures of DM unobservable,
new opportunities for collider searches arise. In partic-
ular we find that searches for long-lived particles at the
LHC are very powerful tools for testing conversion-driven
freeze-out.

The structure of the paper is as follows: We begin by
introducing a simplified model for co-annihilations before
we present the Boltzmann equations which govern the
DM freeze-out. Next, we investigate conversion-driven
solutions to the Boltzmann equations and confront the
regions of parameter which allow for a successful gener-

ation of DM with LHC searches. Finally, we summarize
our results and conclude.

SIMPLIFIED MODEL FOR CO-ANNIHILATION

While the precise impact of the breakdown of CE be-
tween the DM and its co-annihilation partner will in gen-
eral depend on the details of the considered model, the
key aspects of the phenomenology can be expected to be
universal. As a representative case we choose a simpli-
fied model for DM interacting with quarks. We extend
the matter content of the SM minimally by a Majorana
fermion ⇤, being a singlet under the SM gauge group,
and a scalar quark-partner �q, mediating the interactions
with the SM and acting as the co-annihilation partner.
The interactions of the new particles among themselves
and with the SM are given by [6]

Lint = |Dµ�q|2 � ⇥⇤�qq̄
1� �5

2
⇤+ h.c., (1)

where q is a SM quark field, Dµ denotes the covariant
derivative, which contains the interactions of �q with the
gauge bosons as determined by its quantum numbers,
and ⇥⇤ is a Yukawa coupling. Here we choose q = b and
Y = � 1

3 . For the coupling ⇥⇤ = 1
3

⇧
2 e
cos �W

⇥ 0.17 our
simplified model makes contact with the Minimal Super-
symmetric SM where �b can be identified with a right-
handed sbottom and ⇤ with a bino-like neutralino. How-
ever, we will vary ⇥⇤ in our analysis. Nevertheless, we
will refer to the scalar mediator as sbottom, denoted by
�b, even though it does not share all the properties of a
super-partner of the b-quark. Note that choosing a top-
partner instead yields similar results although quantita-
tive di�erences arise due to the large top mass.

⇒ Yukawa-type interaction:
Rates for standard coupling (� = �0)
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
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that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.

In general,     is a free parameter here [see Ibarra et al. 2009 for SUSY realization] 
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enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
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see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
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even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.
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out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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How does the relic density work out?
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Figure 2. The two basic mechanisms for DM production: the freeze-out (left panel) and freeze-in
(right panel), for three di⇥erent values of the interaction rate between the visible sector and DM
particles ⇥ in each case. The arrows indicate the e⇥ect of increasing the rate � of the two processes.
In the left panel x = m⇥/T and gray dashed line shows the equilibrium density of DM particles. In
the right panel x = m�/T , where � denotes the particle decaying into DM, and the gray dashed line
shows the equilibrium density of �. In both panels Y = n⇥/s, where s is the entropy density of the
baryon-photon fluid.

n = 0 for s-wave annihilation, n = 1 for p-wave annihilation, and so on. Here we assumed
that the freeze-out occurs when DM is non-relativistic.

Eq. (3.6) has an important feature: the present abundance is inversely proportional to
the DM annihilation cross section. This can be understood by recalling that in the freeze-out
scenario DM particles are initially in thermal equilibrium with the visible sector and the
stronger the interaction between them is, the longer the DM particles remain in equilibrium
and thus the more their abundance gets diluted before the eventual freeze-out. This can also
be seen in the left panel of Fig. 2.

3.3 Freeze-in

The above discussion was based on the assumption that the DM initially reached thermal
equilibrium with the visible sector. However, if the coupling between the visible sector and
DM particles is very small, typically y ⇤ O(10�7) or less [258, 259], interactions between them
are not strong enough for DM to reach thermal equilibrium and freeze-out cannot happen.
Instead, the observed DM abundance can be produced by the freeze-in mechanism [15, 19].
In this case, the particle undergoing the freeze-in is referred to as a FIMP (Feebly Interacting
Massive Particle) [19], as opposed to the WIMP.

In the simplest case, the initial number density of DM particles is either zero or negligibly
small, and the observed abundance is produced by bath particle decays, for instance by
� ⇥ ⇥⇥, where � is a particle in the visible sector heat bath [15, 17–19, 240, 260–265].
The freeze-in yield is active until the number density of � becomes Boltzmann-suppressed,
n� ⌅ exp(�m�/T ). The comoving number density of DM particles ⇥ then becomes a constant
and the DM abundance freezes in. This is depicted in the right panel of Fig. 2.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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is the only e�cient annihilation channel. Hence the min-
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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n = 0 for s-wave annihilation, n = 1 for p-wave annihilation, and so on. Here we assumed
that the freeze-out occurs when DM is non-relativistic.

Eq. (3.6) has an important feature: the present abundance is inversely proportional to
the DM annihilation cross section. This can be understood by recalling that in the freeze-out
scenario DM particles are initially in thermal equilibrium with the visible sector and the
stronger the interaction between them is, the longer the DM particles remain in equilibrium
and thus the more their abundance gets diluted before the eventual freeze-out. This can also
be seen in the left panel of Fig. 2.
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equilibrium with the visible sector. However, if the coupling between the visible sector and
DM particles is very small, typically y ⇤ O(10�7) or less [258, 259], interactions between them
are not strong enough for DM to reach thermal equilibrium and freeze-out cannot happen.
Instead, the observed DM abundance can be produced by the freeze-in mechanism [15, 19].
In this case, the particle undergoing the freeze-in is referred to as a FIMP (Feebly Interacting
Massive Particle) [19], as opposed to the WIMP.

In the simplest case, the initial number density of DM particles is either zero or negligibly
small, and the observed abundance is produced by bath particle decays, for instance by
� ⇥ ⇥⇥, where � is a particle in the visible sector heat bath [15, 17–19, 240, 260–265].
The freeze-in yield is active until the number density of � becomes Boltzmann-suppressed,
n� ⌅ exp(�m�/T ). The comoving number density of DM particles ⇥ then becomes a constant
and the DM abundance freezes in. This is depicted in the right panel of Fig. 2.
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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Figure 2. The two basic mechanisms for DM production: the freeze-out (left panel) and freeze-in
(right panel), for three di⇥erent values of the interaction rate between the visible sector and DM
particles ⇥ in each case. The arrows indicate the e⇥ect of increasing the rate � of the two processes.
In the left panel x = m⇥/T and gray dashed line shows the equilibrium density of DM particles. In
the right panel x = m�/T , where � denotes the particle decaying into DM, and the gray dashed line
shows the equilibrium density of �. In both panels Y = n⇥/s, where s is the entropy density of the
baryon-photon fluid.

n = 0 for s-wave annihilation, n = 1 for p-wave annihilation, and so on. Here we assumed
that the freeze-out occurs when DM is non-relativistic.

Eq. (3.6) has an important feature: the present abundance is inversely proportional to
the DM annihilation cross section. This can be understood by recalling that in the freeze-out
scenario DM particles are initially in thermal equilibrium with the visible sector and the
stronger the interaction between them is, the longer the DM particles remain in equilibrium
and thus the more their abundance gets diluted before the eventual freeze-out. This can also
be seen in the left panel of Fig. 2.

3.3 Freeze-in

The above discussion was based on the assumption that the DM initially reached thermal
equilibrium with the visible sector. However, if the coupling between the visible sector and
DM particles is very small, typically y ⇤ O(10�7) or less [258, 259], interactions between them
are not strong enough for DM to reach thermal equilibrium and freeze-out cannot happen.
Instead, the observed DM abundance can be produced by the freeze-in mechanism [15, 19].
In this case, the particle undergoing the freeze-in is referred to as a FIMP (Feebly Interacting
Massive Particle) [19], as opposed to the WIMP.

In the simplest case, the initial number density of DM particles is either zero or negligibly
small, and the observed abundance is produced by bath particle decays, for instance by
� ⇥ ⇥⇥, where � is a particle in the visible sector heat bath [15, 17–19, 240, 260–265].
The freeze-in yield is active until the number density of � becomes Boltzmann-suppressed,
n� ⌅ exp(�m�/T ). The comoving number density of DM particles ⇥ then becomes a constant
and the DM abundance freezes in. This is depicted in the right panel of Fig. 2.
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
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are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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Figure 2. The two basic mechanisms for DM production: the freeze-out (left panel) and freeze-in
(right panel), for three di⇥erent values of the interaction rate between the visible sector and DM
particles ⇥ in each case. The arrows indicate the e⇥ect of increasing the rate � of the two processes.
In the left panel x = m⇥/T and gray dashed line shows the equilibrium density of DM particles. In
the right panel x = m�/T , where � denotes the particle decaying into DM, and the gray dashed line
shows the equilibrium density of �. In both panels Y = n⇥/s, where s is the entropy density of the
baryon-photon fluid.

n = 0 for s-wave annihilation, n = 1 for p-wave annihilation, and so on. Here we assumed
that the freeze-out occurs when DM is non-relativistic.

Eq. (3.6) has an important feature: the present abundance is inversely proportional to
the DM annihilation cross section. This can be understood by recalling that in the freeze-out
scenario DM particles are initially in thermal equilibrium with the visible sector and the
stronger the interaction between them is, the longer the DM particles remain in equilibrium
and thus the more their abundance gets diluted before the eventual freeze-out. This can also
be seen in the left panel of Fig. 2.

3.3 Freeze-in

The above discussion was based on the assumption that the DM initially reached thermal
equilibrium with the visible sector. However, if the coupling between the visible sector and
DM particles is very small, typically y ⇤ O(10�7) or less [258, 259], interactions between them
are not strong enough for DM to reach thermal equilibrium and freeze-out cannot happen.
Instead, the observed DM abundance can be produced by the freeze-in mechanism [15, 19].
In this case, the particle undergoing the freeze-in is referred to as a FIMP (Feebly Interacting
Massive Particle) [19], as opposed to the WIMP.

In the simplest case, the initial number density of DM particles is either zero or negligibly
small, and the observed abundance is produced by bath particle decays, for instance by
� ⇥ ⇥⇥, where � is a particle in the visible sector heat bath [15, 17–19, 240, 260–265].
The freeze-in yield is active until the number density of � becomes Boltzmann-suppressed,
n� ⌅ exp(�m�/T ). The comoving number density of DM particles ⇥ then becomes a constant
and the DM abundance freezes in. This is depicted in the right panel of Fig. 2.

– 10 –

Be
rn

al
+ 

20
17

How does the relic density work out?

X1

SM
X2X2

X1

SM

X1

SMSM

X2X2 X1

SM SM

~ 1

4

re
la

ti
ve

ra
te

�
/H

mX1/T

X2X2 ⇥ SM

X2 ⇥ X1 SM

ab
un

da
nc

e

mX1/T

X1X2

neq

FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ ⇥ �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq
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⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 6. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.

For the solutions providing the right relic density, dur-
ing typical freeze-out (i.e. when T � m�/30) the con-
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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is the only e�cient annihilation channel. Hence the min-
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provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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is the only e�cient annihilation channel. Hence the min-
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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Simplified t-channel mediator models:
Top-philic                                    Bottom-philic
[Garny, JH, Hufnagel,Lülf 2018]                                       [Garny, JH, Lülf,  Vogl 2017] 
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FIG. 5. Dependence on the initial conditions for Y� at x = 1.
We show solutions for the choices Y�(1) = [0, 1, 100]⇥Y eq

� (1),
and otherwise the same parameters as in Fig. 3.

For the solutions providing the right relic density, dur-
ing typical freeze-out (i.e. when T � m�/30) the con-
version rates have to be on the edge of being e⇥cient,
cf. Eq. (5). From this simple relation (and assuming that
the decay width, �eb, is similar in size as the other con-
version rates) we can already infer that the decay length
of �b is of the order of 1–100 cm for a DM particle with a
mass of a few hundred GeV which predicts the signature
of disappearing tracks or displaced vertices at the LHC.

The decay length in our model is shown as the gray
dotted lines in Fig. 7. It ranges from 25 cm to below
2.5 cm for increasing mass di�erence (the dependence on
the absolute mass scale is more moderate).

In proton collisions at the LHC pairs of �bs could be
copiously produced. They will hadronize to form R-
hadrons [16] which will, for the relevant decay length,
either decay inside or traverse the sensitive parts of the
detector. Accordingly, the signatures of displaced ver-
tices and (disappearing) highly ionizing tracks provide
promising discovery channels. Similar searches have, e.g.,
been performed for a gluino R-hadron (decaying into en-
ergetic jets) [17] or a purely electrically charged heavy
stable particle [18, 19] but have not been performed for
the model under consideration (see also [20, 21] for a
recent account on simplified DM models providing dis-
placed vertices). However, there are two types of searches
that already impose constraints on the model.

On the one hand, searches for detector-stable R-
hadrons [22–25] can be reinterpreted for finite decay
lengths by convoluting the signal e⇥ciency with the frac-
tion of R-hadrons that decay after traversing the relevant
parts of the detector. This reinterpretation provides lim-
its down to a decay length of c� ⇥ 0.1m for a R-hadron
mass around 100GeV [13] and can be used to estimate
excluded parameter regions in our model. The result-
ing limits obtained from the 8 TeV [22] and 13TeV [23]
LHC data are superimposed in Fig. 7. For mass split-
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FIG. 6. Viable parameter space in the plane spanned by
m� and �m�eb = meb � m�. We adjust �� such that ⇥h2 =
0.12. Above the thick black curve CE holds, while below this
curve CE breaks down and the freeze-out is conversion-driven.
The corresponding coupling ��/10

�7 (decay length c⇥) of the
sbottom is denoted by the thin green (gray) dotted lines. The
blue dashed (dot-dashed) curve shows our estimates for the
limits from R-hadrons searches at 8 (13)TeV. The Constraints
from monojet searches is shown as the red dot-dot-dashed
curve.

tings below mb (below gray dashed curve) the 2-body
decay is not allowed and the resulting R-hadrons can be
considered detector-stable. Towards large mass splittings
(smaller life-times) the limits fall o� significantly provid-
ing no constraint above ⇥m�eb ⇥ 13GeV.

On the other hand, a large number of experimen-
tal results for a sbottom-neutralino simplified model ex-
ist assumong a prompt sbottom decay, see e.g. [26–29].
While most of these searches are not applicable to non-
prompt decays, monojet searches, targeting small mass
splittings, have been performed that do not rely on the
prompt decay of the sbottom [30, 31]. We superimpose
the (stronger) limit from [31] that uses 3.2 fb�1 of 13 TeV
data.

CONCLUSION

In this work we have considered the possibility that
the common assumption of chemical equilibrium during
DM freeze-out does not hold. For definiteness, we have
focused on a simplified model with particle content in-
spired by supersymmetry, comprising a neutral Majorana
fermion as DM candidate and a colored scalar particle
that mediates a coupling to bottom quarks. For small
mass splitting between the mediator and the DM parti-
cle, the freeze-out is dominated by self-annihilation of the

4

where y
2
t = 2m2

t /v
2, r = m

2
et /m

2
t and

F (r) = 3
1 + 2r ln(r) � r

2

(1 � r)3
,

G(r) =
1 � 6r2(3 + r) ln(r) � 9(r + r

2) + 17r3

6(1 � r)5
,

H(r) = 2
1 + 6(r + r

2) ln(r) + 9(r � r
2) � r

3

(1 � r)5
. (10)

Note that the effective coupling is regular for r ! 1, and
the expansion is in 1/mt for r ! 0 and in 1/met for r !

1. This approximate form of the coupling is accurate
to better than 5% for all values

p
s/2, m� < 100GeV,

met > m�, and better than 30% for
p

s/2, m� < mt,
met > m� + 30GeV. For the relic density computation
we use the full expressions for the loop-induced coupling
gh��, evaluated at

p
s = max(mh, 2m�). Analytical ex-

pressions for the limit s ! 0 of the Passarino-Veltman
functions entering in (8) (relevant for direct detection
rates discussed in Sec. IV A) are given in Appendix A
of Ref. [49] with C0(et) = C0(0, m2

�, mt, mt, met), and
C

+
1 (et) = C

+
1 (p1, p2, mt, mt, met) for p

2
1 = p

2
2 = m

2
� and

(p1 � p2)2 = s ! 0 can be found in Appendix C of
Ref. [50].

For each pair of masses (m�, met) we fix the coupling
�� such that the relic density resulting from freeze-out
matches the measured DM density ⌦h

2 = 0.1198 ±

0.0015 [1]. In Fig. 1 we show the resulting contour lines of
constant coupling ��, where we use the DM mass and the
mass splitting �m = met � m� as independent parame-
ters. We also indicate explicitly the contour for which ��

matches the bino-stop-top coupling within the MSSM. If
we restrict the coupling to be less than 4⇡, the relic den-
sity exceeds the measured value within the grey-shaded
region, and we therefore disregard it in the following.
Below the thick black line coannihilations are so efficient
that the relic density resulting from the freeze-out com-
putation described above would lie below the measured
value. This parameter domain is discussed in detail be-
low. The remaining part of parameter space corresponds
to the “WIMP region”.

The kinematic threshold for tt̄ annihilation is clearly
visible in the contours shown in Fig. 1, and leads to the
sharp drop for m� ⇠ mt. For m�

<
⇠ mt the annihilation

channel �� ! Wbt as well as the Boltzmann tail of the
DM distribution allowing for �� ! tt̄ yield a sizeable
contribution, and slightly smoothen the step-like behav-
ior of the contour lines. Coannihilations start to play a
role for �m <

⇠ m�/10, and allow for larger DM masses
for a given coupling. Additionally, for very small masses,
the contours feature a ‘spike’ at m� ⇠ mh/2 as well as a
‘bump’ for m� + met ' mt. The ‘spike’ can be explained
by the Higgs resonance in the loop-induced annihilation
channels �� ! h

(⇤)
! bb̄, WW

⇤
, . . . , and the ‘bump’ at

slightly higher mass is related to a top resonance in the
coannihilation process �et ! Wb.
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FIG. 1. Viable parameter space in the plane spanned by m�

and �m = met � m�. For each point we adjust �� such that
⌦h

2 = 0.12. Above the thick black curve chemical equilibrium
holds (WIMP region), while below this curve chemical equi-
librium breaks down and solutions for the conversion-driven
freeze-out exist. The green solid curves denote contours in
the coupling ��. For comparison, the black dotted curve
shows the allowed parameter slice for a realization of a super-
WIMP scenario within the model (see comment at the end of
Sec. III B).

B. Conversion-driven freeze-out solutions

As mentioned above, up to a DM mass of around
2 TeV we encounter a region in parameter space with
small �m where the effective, thermally averaged cross
section for mediator-pair annihilation alone – which is
fixed for a given DM mass and mass splitting – is so
large that one undershoots the measured relic density,
seemingly regardless of the coupling ��. However, this
conclusion hinges on the assumption of chemical equilib-
rium between DM and the mediator, i.e. the condition
n�/n

eq
� = net/n

eq
et , which does not hold once �� decreases

beyond a certain value. In fact, dropping this assumption
one can find solutions with small �� where the relic den-
sity is governed by the mechanism of conversion-driven
freeze-out [30]. In the following we will first outline the
computational steps of the relic density calculation be-
fore we discuss the phenomenological aspects in the cor-
responding region in parameter space.

1. Boltzmann equation and conversion rate

In the absence of chemical equilibrium between DM
and the mediator the computation of the relic density re-
quires us to solve the coupled set of Boltzmann equations

CDFO region

Conversion-driven freeze-out / co-scattering 
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Non-perturbative effects

dominant contribution arises from the processes that annihilate XX:, with total cross-

section �XX: , such that

x�e↵ vrely “ 2Y eq
X Y eq

X: x�XX: vrely
Ỹ 2
eq

“ x�XX: vrely
˜

2g2Xp1 ` �q3 e´2x �

“
g� ` 2gXp1 ` �q3{2 e´x �

‰2

¸
. (3.6)

Both the direct annihilation and the BSF processes contribute to �XX: , as we discuss in

the following.

In this work, we shall neglect thermal e↵ects. The thermal bath may a↵ect the DM

freeze-out in a variety of ways, including, on one hand, screening of the long-range interac-

tions and, on the other hand, frequent (non-radiative) scattering processes that precipitate

DM depletion via BSF [49]. In the context of DM coannihilation with coloured partners,

the latter have been considered in Ref. [51]. The inclusion of thermal corrections for the

radiative BSF processes considered here requires a comprehensive study that we leave for

future work.

3.2 Colour states and the running of the coupling

The X ´ X: colour interaction may be decomposed as

3 b 3̄ “ 1 ‘ 8 . (3.7)

In each irreducible representation R̂, the gluon exchange gives rise to the Coulomb potential

of eq. (2.13) with the coupling ↵g given by eq. (2.14). The quadratic Casimir invariants

for the SUp3q representations of interest are C2p1q “ 0, C2p3q “ C2p3̄q “ 4{3, C2p8q “ 3,

therefore

↵g ” ↵s ˆ
#

4{3, R̂ “ 1,

´1{6, R̂ “ 8.
(3.8)

As discussed in section 2.2, the strong coupling ↵s depends on the momentum transfer

Q. In table 2, we list the average Q for the various vertices appearing in the annihilation

and BSF processes, in this model. For the bound states, the momentum transfer depends

itself on the strong coupling, Q “ Qp↵sq. In this case, we determine ↵s by solving the

numerically the equation

↵spQp↵̃qq “ ↵̃ , (3.9)

for ã. We discuss further the e↵ect of the ↵s running in the following.

3.3 Direct annihilation

XX: pairs annihilate dominantly into gluons (cf. fig. 2), with cross-section [68]

�XX:Ñggvrel “ 14

27

⇡p↵ann
s q2

m2
X

ˆ
ˆ
2

7
S0,r1s ` 5

7
S0,r8s

˙
, (3.10)

where S0,r1s and S0,r8s are the s-wave Sommerfeld factors of the colour-singlet and colour-

octet states,

S0,r1s ” S0

ˆ
4↵S

s

3vrel

˙
and S0,r8s ” S0

ˆ
´ ↵S

s

6vrel

˙
. (3.11)
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Figure 1a. The amplitude for the radiative capture consists of the (non-perturbative) initial and
final state wavefunctions, and the perturbative 5-point function that includes the radiative vertices.

i

j

⌘1K ` q

⌘2K ´ q

a, ⌫
b, ⇢

c, µ

Pg

⌘1P ` p

⌘2P ´ p

i1

j1

` `

Figure 1b. The leading order diagrams contributing to C⌫ . The external-momentum, colour-index
and space-time-index assignments are the same in all three diagrams.

Emission from the mediator

ipC⌫
medqaii1,jj1 “

“ S1p⌘1P ` pq
”
´igspT b

1 qi1i p⌘1K ` ⌘1P ` q ` pq⇢
ı
S1p⌘1K ` qq ´i

p⌘1K ` q ´ ⌘1P ´ pq2

ˆ S2p⌘2P ´ pq
“
´igs pT c

2 qj1j p⌘2K ` ⌘2P ´ q ´ pqµ
‰
S2p⌘2K ´ qq ´i

p⌘2K ´ q ´ ⌘2P ` pq2
ˆ p´gBSF

s fabcq tg⇢µrp⌘1K ` q ´ ⌘1P ´ pq ´ p⌘2K ´ q ´ ⌘2P ` pqs⌫

`g⌫⇢r´Pg ´ p⌘1K ` q ´ ⌘1P ´ pqsµ ` gµ⌫rp⌘2K ´ q ´ ⌘2P ` pq ` Pgs⇢u , (2.21a)

Emission from X1

ipC⌫
1 qaii1,jj1 “ �j1j S2p⌘2K ´ qq ˆ S1p⌘1P ` pqS1p⌘1K ` qq

ˆ
“
´igBSF

s pT a
1 qi1i p⌘1K ` ⌘1P ` q ` pq⌫ p2⇡q4�4p⌘1K ` q ´ ⌘1P ´ p ´ Pgq

‰
,

(2.21b)

Emission from X2

ipC⌫
2 qaii1,jj1 “ �i1i S1p⌘1K ` qq ˆ S2p⌘2P ´ pqS2p⌘2K ´ qq

ˆ
“
´igBSF

s pT a
2 qj1j p⌘2K ` ⌘2P ´ q ´ pq⌫ p2⇡q4�4p⌘2K ´ q ´ ⌘2P ` p ´ Pgq

‰
.

(2.21c)

We are interested only in the spatial components of C⌫ , ⌫ “ 1, 2, 3,

Ca
ii1,jj1 “ pCmedqaii1,jj1 ` pC1qaii1,jj1 ` pC2qaii1,jj1 . (2.22)
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one obtains

dYB
dx

=
1

3Hs

ds
dx
⇥
�eff

ion
�
YB � Y eq

B y2
�
+ �eff

dec (YB � Y eq

B )
⇤
,

(29)
with effective ionization and decay rates

�eff
break/dec =

P
i �

i
break/dec Y

eq

B,i

Y eq

B
(30)

Setting again the left-hand side of the Boltzmann equa-
tion (29) to zero, and inserting the resulting algebraic
expression together with eq. (28) into eq. (10) yields

⌦
�q̃q̃†v

↵
eff =

⌦
�q̃q̃†v

↵
+
⌦
�BSFv

↵
sum

�eff
dec

�eff
ion + �eff

dec
, (31)

where
⌦
�BSFv

↵
sum =

P
i

⌦
�BSF,iv

↵
. The result is similar

in form to the case of a single bound state, eq. (15), but
with the ionization and decay rates replaced by a ther-
mal average over all bound states, and the recombination
cross section by the sum.

It turns out that obtaining this result directly from the
general expression eq. (23) is tedious. The reason is that
naively neglecting the ionization and decay rates in the
total width would lead to a singular matrix Mij . How-
ever, by carefully expanding the abundances around the
chemical equilibrium solution yi =const., and treating
�i

ion/�
i and �i

dec/�
i as small, one ultimately arrives at

the same expression eq. (31).
We also note that using the Milne relation, eq. (11),

for each bound state, one finds

�eff
ion =

s

4

Y eq 2

q̃

Y eq

B

⌦
�BSFv

↵
sum , (32)

i.e. the summed recombination cross section and the ef-
fective ionization rate satisfy a generalized Milne rela-
tion. This implies that, in analogy to the case of a single
bound state, within the regime of ionization equilibrium
(�eff

ion � �eff
dec), the effective cross section becomes in-

dependent of the recombination cross section, and only
depends on the effective decay rate. In the opposite limit
�eff

ion ⌧ �eff
dec of almost instantaneous decay, the decay

rate drops out, and the effective cross section depends
only on

⌦
�BSFv

↵
sum.

3. Ionization equilibrium

The limit of ionization equilibrium is somewhat orthog-
onal to the two limiting cases considered above. When
ionization and recombination processes are assumed to
be efficient enough to establish ionization equilibrium,
the effective cross section approaches the universal form

⌦
�q̃q̃†v

↵
eff !

⌦
�q̃q̃†v

↵
+
X

i

gBi

g2q̃

 
2⇡mBi

Tm2

q̃

!3/2

eEBi/T �i
dec ,

(33)

which is a straightforward generalization of eq. (16) and
independent of ionization rates �i

ion as well as transition
rates �i!j

trans. The reason is that efficient ionization and
recombination processes establish chemical equilibrium
with the unbound q̃ particles in that case for each bound
state. This means, in turn, that they are in chemical
equilibrium among each other, such that the transition
processes play no role for their relative abundances in
that limit. This result agrees with the finding in [35],
where a set of bound states in ionization equilibrium was
considered.

Indeed, it is easy to see that eq. (33) follows from both
the effective cross section in either the limiting case of no
transitions or the case of efficient transitions when assum-
ing in addition that �i

ion � �i
dec. Moreover, the fact that

eq. (33) is even valid independently of the size of tran-
sition rates can be seen by noticing that the derivation
presented in Sec. III B 2 relies only on the assumption of
chemical equilibrium among the bound states, which is
satisfied in ionization equilibrium.

Therefore, as long as ionization equilibrium holds, the
effective cross section is only sensitive to the bound state
decay rates, independently of the size of transition and
ionization rates.

In a realistic setup, the limiting assumptions made
above may be too restrictive, and at best hold only for a
subset of bound states, and a subset of the corresponding
ionization, decay or transition processes. In this case, the
effective cross section can be computed using the general
result, eq. (23).

IV. RATES

While the discussion in the previous section was
generic, we focus on the set of bound states and ion-
ization, decay and transition rates that are relevant for
the scalar mediator q̃ that carries hypercharge and trans-
forms under the fundamental representation of SU(Nc)
with Nc = 3 in the following.

A heavy (mq̃ � ⇤QCD), non-relativistic q̃q̃† pair can
be described by two wavefunctions  [R], one for the color
octet ([8]) and one for the color singlet ([1]) configura-
tion. They obey a Schrödinger equation with kinetic en-
ergy p2

rel/(2µ), where

µ = mq̃/2 , (34)

is the reduced mass, and potential in Coulomb approxi-
mation [26]

V[R](r) = �

↵eff
[R]

r
, (35)

with effective coupling strength

↵eff
[R]

= ↵s
C [3]

2
+ C [3]

2
� C [R]

2

2
. (36)

Coulomb limit: 

dominant contribution arises from the processes that annihilate XX:, with total cross-

section �XX: , such that

x�e↵ vrely “ 2Y eq
X Y eq

X: x�XX: vrely
Ỹ 2
eq

“ x�XX: vrely
˜

2g2Xp1 ` �q3 e´2x �

“
g� ` 2gXp1 ` �q3{2 e´x �

‰2

¸
. (3.6)

Both the direct annihilation and the BSF processes contribute to �XX: , as we discuss in

the following.

In this work, we shall neglect thermal e↵ects. The thermal bath may a↵ect the DM

freeze-out in a variety of ways, including, on one hand, screening of the long-range interac-

tions and, on the other hand, frequent (non-radiative) scattering processes that precipitate

DM depletion via BSF [49]. In the context of DM coannihilation with coloured partners,

the latter have been considered in Ref. [51]. The inclusion of thermal corrections for the

radiative BSF processes considered here requires a comprehensive study that we leave for

future work.

3.2 Colour states and the running of the coupling

The X ´ X: colour interaction may be decomposed as

3 b 3̄ “ 1 ‘ 8 . (3.7)

In each irreducible representation R̂, the gluon exchange gives rise to the Coulomb potential

of eq. (2.13) with the coupling ↵g given by eq. (2.14). The quadratic Casimir invariants

for the SUp3q representations of interest are C2p1q “ 0, C2p3q “ C2p3̄q “ 4{3, C2p8q “ 3,

therefore

↵g ” ↵s ˆ
#

4{3, R̂ “ 1,

´1{6, R̂ “ 8.
(3.8)

As discussed in section 2.2, the strong coupling ↵s depends on the momentum transfer

Q. In table 2, we list the average Q for the various vertices appearing in the annihilation

and BSF processes, in this model. For the bound states, the momentum transfer depends

itself on the strong coupling, Q “ Qp↵sq. In this case, we determine ↵s by solving the

numerically the equation

↵spQp↵̃qq “ ↵̃ , (3.9)

for ã. We discuss further the e↵ect of the ↵s running in the following.

3.3 Direct annihilation

XX: pairs annihilate dominantly into gluons (cf. fig. 2), with cross-section [68]

�XX:Ñggvrel “ 14

27

⇡p↵ann
s q2

m2
X

ˆ
ˆ
2

7
S0,r1s ` 5

7
S0,r8s

˙
, (3.10)

where S0,r1s and S0,r8s are the s-wave Sommerfeld factors of the colour-singlet and colour-

octet states,

S0,r1s ” S0

ˆ
4↵S

s

3vrel

˙
and S0,r8s ” S0

ˆ
´ ↵S

s

6vrel

˙
. (3.11)
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one obtains

dYB
dx

=
1

3Hs

ds
dx
⇥
�eff

ion
�
YB � Y eq

B y2
�
+ �eff

dec (YB � Y eq

B )
⇤
,

(29)
with effective ionization and decay rates

�eff
break/dec =

P
i �

i
break/dec Y

eq

B,i

Y eq

B
(30)

Setting again the left-hand side of the Boltzmann equa-
tion (29) to zero, and inserting the resulting algebraic
expression together with eq. (28) into eq. (10) yields

⌦
�q̃q̃†v

↵
eff =

⌦
�q̃q̃†v

↵
+
⌦
�BSFv

↵
sum

�eff
dec

�eff
ion + �eff

dec
, (31)

where
⌦
�BSFv

↵
sum =

P
i

⌦
�BSF,iv

↵
. The result is similar

in form to the case of a single bound state, eq. (15), but
with the ionization and decay rates replaced by a ther-
mal average over all bound states, and the recombination
cross section by the sum.

It turns out that obtaining this result directly from the
general expression eq. (23) is tedious. The reason is that
naively neglecting the ionization and decay rates in the
total width would lead to a singular matrix Mij . How-
ever, by carefully expanding the abundances around the
chemical equilibrium solution yi =const., and treating
�i

ion/�
i and �i

dec/�
i as small, one ultimately arrives at

the same expression eq. (31).
We also note that using the Milne relation, eq. (11),

for each bound state, one finds

�eff
ion =

s

4

Y eq 2

q̃

Y eq

B

⌦
�BSFv

↵
sum , (32)

i.e. the summed recombination cross section and the ef-
fective ionization rate satisfy a generalized Milne rela-
tion. This implies that, in analogy to the case of a single
bound state, within the regime of ionization equilibrium
(�eff

ion � �eff
dec), the effective cross section becomes in-

dependent of the recombination cross section, and only
depends on the effective decay rate. In the opposite limit
�eff

ion ⌧ �eff
dec of almost instantaneous decay, the decay

rate drops out, and the effective cross section depends
only on

⌦
�BSFv

↵
sum.

3. Ionization equilibrium

The limit of ionization equilibrium is somewhat orthog-
onal to the two limiting cases considered above. When
ionization and recombination processes are assumed to
be efficient enough to establish ionization equilibrium,
the effective cross section approaches the universal form

⌦
�q̃q̃†v

↵
eff !

⌦
�q̃q̃†v

↵
+
X

i

gBi

g2q̃

 
2⇡mBi

Tm2

q̃

!3/2

eEBi/T �i
dec ,

(33)

which is a straightforward generalization of eq. (16) and
independent of ionization rates �i

ion as well as transition
rates �i!j

trans. The reason is that efficient ionization and
recombination processes establish chemical equilibrium
with the unbound q̃ particles in that case for each bound
state. This means, in turn, that they are in chemical
equilibrium among each other, such that the transition
processes play no role for their relative abundances in
that limit. This result agrees with the finding in [35],
where a set of bound states in ionization equilibrium was
considered.

Indeed, it is easy to see that eq. (33) follows from both
the effective cross section in either the limiting case of no
transitions or the case of efficient transitions when assum-
ing in addition that �i

ion � �i
dec. Moreover, the fact that

eq. (33) is even valid independently of the size of tran-
sition rates can be seen by noticing that the derivation
presented in Sec. III B 2 relies only on the assumption of
chemical equilibrium among the bound states, which is
satisfied in ionization equilibrium.

Therefore, as long as ionization equilibrium holds, the
effective cross section is only sensitive to the bound state
decay rates, independently of the size of transition and
ionization rates.

In a realistic setup, the limiting assumptions made
above may be too restrictive, and at best hold only for a
subset of bound states, and a subset of the corresponding
ionization, decay or transition processes. In this case, the
effective cross section can be computed using the general
result, eq. (23).

IV. RATES

While the discussion in the previous section was
generic, we focus on the set of bound states and ion-
ization, decay and transition rates that are relevant for
the scalar mediator q̃ that carries hypercharge and trans-
forms under the fundamental representation of SU(Nc)
with Nc = 3 in the following.

A heavy (mq̃ � ⇤QCD), non-relativistic q̃q̃† pair can
be described by two wavefunctions  [R], one for the color
octet ([8]) and one for the color singlet ([1]) configura-
tion. They obey a Schrödinger equation with kinetic en-
ergy p2

rel/(2µ), where

µ = mq̃/2 , (34)

is the reduced mass, and potential in Coulomb approxi-
mation [26]

V[R](r) = �

↵eff
[R]

r
, (35)

with effective coupling strength

↵eff
[R]

= ↵s
C [3]

2
+ C [3]

2
� C [R]

2

2
. (36)
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one obtains
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=
1

3Hs

ds
dx
⇥
�eff

ion
�
YB � Y eq

B y2
�
+ �eff

dec (YB � Y eq

B )
⇤
,

(29)
with effective ionization and decay rates

�eff
break/dec =

P
i �

i
break/dec Y

eq

B,i

Y eq

B
(30)

Setting again the left-hand side of the Boltzmann equa-
tion (29) to zero, and inserting the resulting algebraic
expression together with eq. (28) into eq. (10) yields

⌦
�q̃q̃†v

↵
eff =

⌦
�q̃q̃†v

↵
+
⌦
�BSFv

↵
sum

�eff
dec

�eff
ion + �eff

dec
, (31)

where
⌦
�BSFv

↵
sum =

P
i

⌦
�BSF,iv

↵
. The result is similar

in form to the case of a single bound state, eq. (15), but
with the ionization and decay rates replaced by a ther-
mal average over all bound states, and the recombination
cross section by the sum.

It turns out that obtaining this result directly from the
general expression eq. (23) is tedious. The reason is that
naively neglecting the ionization and decay rates in the
total width would lead to a singular matrix Mij . How-
ever, by carefully expanding the abundances around the
chemical equilibrium solution yi =const., and treating
�i

ion/�
i and �i

dec/�
i as small, one ultimately arrives at

the same expression eq. (31).
We also note that using the Milne relation, eq. (11),

for each bound state, one finds

�eff
ion =

s

4

Y eq 2

q̃

Y eq

B

⌦
�BSFv

↵
sum , (32)

i.e. the summed recombination cross section and the ef-
fective ionization rate satisfy a generalized Milne rela-
tion. This implies that, in analogy to the case of a single
bound state, within the regime of ionization equilibrium
(�eff

ion � �eff
dec), the effective cross section becomes in-

dependent of the recombination cross section, and only
depends on the effective decay rate. In the opposite limit
�eff

ion ⌧ �eff
dec of almost instantaneous decay, the decay

rate drops out, and the effective cross section depends
only on

⌦
�BSFv

↵
sum.

3. Ionization equilibrium

The limit of ionization equilibrium is somewhat orthog-
onal to the two limiting cases considered above. When
ionization and recombination processes are assumed to
be efficient enough to establish ionization equilibrium,
the effective cross section approaches the universal form

⌦
�q̃q̃†v

↵
eff !

⌦
�q̃q̃†v

↵
+
X

i

gBi

g2q̃

 
2⇡mBi

Tm2

q̃

!3/2

eEBi/T �i
dec ,

(33)

which is a straightforward generalization of eq. (16) and
independent of ionization rates �i

ion as well as transition
rates �i!j

trans. The reason is that efficient ionization and
recombination processes establish chemical equilibrium
with the unbound q̃ particles in that case for each bound
state. This means, in turn, that they are in chemical
equilibrium among each other, such that the transition
processes play no role for their relative abundances in
that limit. This result agrees with the finding in [35],
where a set of bound states in ionization equilibrium was
considered.

Indeed, it is easy to see that eq. (33) follows from both
the effective cross section in either the limiting case of no
transitions or the case of efficient transitions when assum-
ing in addition that �i

ion � �i
dec. Moreover, the fact that

eq. (33) is even valid independently of the size of tran-
sition rates can be seen by noticing that the derivation
presented in Sec. III B 2 relies only on the assumption of
chemical equilibrium among the bound states, which is
satisfied in ionization equilibrium.

Therefore, as long as ionization equilibrium holds, the
effective cross section is only sensitive to the bound state
decay rates, independently of the size of transition and
ionization rates.

In a realistic setup, the limiting assumptions made
above may be too restrictive, and at best hold only for a
subset of bound states, and a subset of the corresponding
ionization, decay or transition processes. In this case, the
effective cross section can be computed using the general
result, eq. (23).

IV. RATES

While the discussion in the previous section was
generic, we focus on the set of bound states and ion-
ization, decay and transition rates that are relevant for
the scalar mediator q̃ that carries hypercharge and trans-
forms under the fundamental representation of SU(Nc)
with Nc = 3 in the following.

A heavy (mq̃ � ⇤QCD), non-relativistic q̃q̃† pair can
be described by two wavefunctions  [R], one for the color
octet ([8]) and one for the color singlet ([1]) configura-
tion. They obey a Schrödinger equation with kinetic en-
ergy p2

rel/(2µ), where

µ = mq̃/2 , (34)

is the reduced mass, and potential in Coulomb approxi-
mation [26]

V[R](r) = �

↵eff
[R]

r
, (35)

with effective coupling strength

↵eff
[R]

= ↵s
C [3]

2
+ C [3]

2
� C [R]

2

2
. (36)
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Figure 1a. The amplitude for the radiative capture consists of the (non-perturbative) initial and
final state wavefunctions, and the perturbative 5-point function that includes the radiative vertices.
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Figure 1b. The leading order diagrams contributing to C⌫ . The external-momentum, colour-index
and space-time-index assignments are the same in all three diagrams.

Emission from the mediator

ipC⌫
medqaii1,jj1 “

“ S1p⌘1P ` pq
”
´igspT b

1 qi1i p⌘1K ` ⌘1P ` q ` pq⇢
ı
S1p⌘1K ` qq ´i

p⌘1K ` q ´ ⌘1P ´ pq2

ˆ S2p⌘2P ´ pq
“
´igs pT c

2 qj1j p⌘2K ` ⌘2P ´ q ´ pqµ
‰
S2p⌘2K ´ qq ´i

p⌘2K ´ q ´ ⌘2P ` pq2
ˆ p´gBSF

s fabcq tg⇢µrp⌘1K ` q ´ ⌘1P ´ pq ´ p⌘2K ´ q ´ ⌘2P ` pqs⌫

`g⌫⇢r´Pg ´ p⌘1K ` q ´ ⌘1P ´ pqsµ ` gµ⌫rp⌘2K ´ q ´ ⌘2P ` pq ` Pgs⇢u , (2.21a)

Emission from X1

ipC⌫
1 qaii1,jj1 “ �j1j S2p⌘2K ´ qq ˆ S1p⌘1P ` pqS1p⌘1K ` qq

ˆ
“
´igBSF

s pT a
1 qi1i p⌘1K ` ⌘1P ` q ` pq⌫ p2⇡q4�4p⌘1K ` q ´ ⌘1P ´ p ´ Pgq

‰
,

(2.21b)

Emission from X2

ipC⌫
2 qaii1,jj1 “ �i1i S1p⌘1K ` qq ˆ S2p⌘2P ´ pqS2p⌘2K ´ qq

ˆ
“
´igBSF

s pT a
2 qj1j p⌘2K ` ⌘2P ´ q ´ pq⌫ p2⇡q4�4p⌘2K ´ q ´ ⌘2P ` p ´ Pgq

‰
.

(2.21c)

We are interested only in the spatial components of C⌫ , ⌫ “ 1, 2, 3,

Ca
ii1,jj1 “ pCmedqaii1,jj1 ` pC1qaii1,jj1 ` pC2qaii1,jj1 . (2.22)
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Non-perturbative effects

dominant contribution arises from the processes that annihilate XX:, with total cross-

section �XX: , such that

x�e↵ vrely “ 2Y eq
X Y eq

X: x�XX: vrely
Ỹ 2
eq

“ x�XX: vrely
˜

2g2Xp1 ` �q3 e´2x �

“
g� ` 2gXp1 ` �q3{2 e´x �

‰2

¸
. (3.6)

Both the direct annihilation and the BSF processes contribute to �XX: , as we discuss in

the following.

In this work, we shall neglect thermal e↵ects. The thermal bath may a↵ect the DM

freeze-out in a variety of ways, including, on one hand, screening of the long-range interac-

tions and, on the other hand, frequent (non-radiative) scattering processes that precipitate

DM depletion via BSF [49]. In the context of DM coannihilation with coloured partners,

the latter have been considered in Ref. [51]. The inclusion of thermal corrections for the

radiative BSF processes considered here requires a comprehensive study that we leave for

future work.

3.2 Colour states and the running of the coupling

The X ´ X: colour interaction may be decomposed as

3 b 3̄ “ 1 ‘ 8 . (3.7)

In each irreducible representation R̂, the gluon exchange gives rise to the Coulomb potential

of eq. (2.13) with the coupling ↵g given by eq. (2.14). The quadratic Casimir invariants

for the SUp3q representations of interest are C2p1q “ 0, C2p3q “ C2p3̄q “ 4{3, C2p8q “ 3,

therefore

↵g ” ↵s ˆ
#

4{3, R̂ “ 1,

´1{6, R̂ “ 8.
(3.8)

As discussed in section 2.2, the strong coupling ↵s depends on the momentum transfer

Q. In table 2, we list the average Q for the various vertices appearing in the annihilation

and BSF processes, in this model. For the bound states, the momentum transfer depends

itself on the strong coupling, Q “ Qp↵sq. In this case, we determine ↵s by solving the

numerically the equation

↵spQp↵̃qq “ ↵̃ , (3.9)

for ã. We discuss further the e↵ect of the ↵s running in the following.

3.3 Direct annihilation

XX: pairs annihilate dominantly into gluons (cf. fig. 2), with cross-section [68]

�XX:Ñggvrel “ 14

27

⇡p↵ann
s q2

m2
X

ˆ
ˆ
2

7
S0,r1s ` 5

7
S0,r8s

˙
, (3.10)

where S0,r1s and S0,r8s are the s-wave Sommerfeld factors of the colour-singlet and colour-

octet states,

S0,r1s ” S0

ˆ
4↵S

s

3vrel

˙
and S0,r8s ” S0

ˆ
´ ↵S

s

6vrel

˙
. (3.11)
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Figure 1a. The amplitude for the radiative capture consists of the (non-perturbative) initial and
final state wavefunctions, and the perturbative 5-point function that includes the radiative vertices.

i

j
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⌘2K ´ q

a, ⌫
b, ⇢

c, µ

Pg

⌘1P ` p

⌘2P ´ p

i1

j1

` `

Figure 1b. The leading order diagrams contributing to C⌫ . The external-momentum, colour-index
and space-time-index assignments are the same in all three diagrams.

Emission from the mediator

ipC⌫
medqaii1,jj1 “

“ S1p⌘1P ` pq
”
´igspT b

1 qi1i p⌘1K ` ⌘1P ` q ` pq⇢
ı
S1p⌘1K ` qq ´i

p⌘1K ` q ´ ⌘1P ´ pq2

ˆ S2p⌘2P ´ pq
“
´igs pT c

2 qj1j p⌘2K ` ⌘2P ´ q ´ pqµ
‰
S2p⌘2K ´ qq ´i

p⌘2K ´ q ´ ⌘2P ` pq2
ˆ p´gBSF

s fabcq tg⇢µrp⌘1K ` q ´ ⌘1P ´ pq ´ p⌘2K ´ q ´ ⌘2P ` pqs⌫

`g⌫⇢r´Pg ´ p⌘1K ` q ´ ⌘1P ´ pqsµ ` gµ⌫rp⌘2K ´ q ´ ⌘2P ` pq ` Pgs⇢u , (2.21a)

Emission from X1

ipC⌫
1 qaii1,jj1 “ �j1j S2p⌘2K ´ qq ˆ S1p⌘1P ` pqS1p⌘1K ` qq

ˆ
“
´igBSF

s pT a
1 qi1i p⌘1K ` ⌘1P ` q ` pq⌫ p2⇡q4�4p⌘1K ` q ´ ⌘1P ´ p ´ Pgq

‰
,

(2.21b)

Emission from X2

ipC⌫
2 qaii1,jj1 “ �i1i S1p⌘1K ` qq ˆ S2p⌘2P ´ pqS2p⌘2K ´ qq

ˆ
“
´igBSF

s pT a
2 qj1j p⌘2K ` ⌘2P ´ q ´ pq⌫ p2⇡q4�4p⌘2K ´ q ´ ⌘2P ` p ´ Pgq

‰
.

(2.21c)

We are interested only in the spatial components of C⌫ , ⌫ “ 1, 2, 3,

Ca
ii1,jj1 “ pCmedqaii1,jj1 ` pC1qaii1,jj1 ` pC2qaii1,jj1 . (2.22)

– 8 –

▪ Bound state formation:

Pair of colored coannihilators:

8 �! 1 [H
ar

z, 
Pe

tr
ak

i]

[see e.g. J. Ellis, F. Luo, K. A. Olive 1503.07142; S. P. Liew, F. Luo 1611.08133; J. Harz, K. Petraki 1805.01200;  
A. Mitridate, M. Redi, J. Smirnov,  A. Strumia 1702.01141; T. Binder, B. Blobel, J. Harz, and K. Mukaida 2002.07145]

6

one obtains

dYB
dx

=
1

3Hs

ds
dx
⇥
�eff

ion
�
YB � Y eq

B y2
�
+ �eff

dec (YB � Y eq

B )
⇤
,

(29)
with effective ionization and decay rates

�eff
break/dec =

P
i �

i
break/dec Y

eq

B,i

Y eq

B
(30)

Setting again the left-hand side of the Boltzmann equa-
tion (29) to zero, and inserting the resulting algebraic
expression together with eq. (28) into eq. (10) yields

⌦
�q̃q̃†v

↵
eff =

⌦
�q̃q̃†v

↵
+
⌦
�BSFv

↵
sum

�eff
dec

�eff
ion + �eff

dec
, (31)

where
⌦
�BSFv

↵
sum =

P
i

⌦
�BSF,iv

↵
. The result is similar

in form to the case of a single bound state, eq. (15), but
with the ionization and decay rates replaced by a ther-
mal average over all bound states, and the recombination
cross section by the sum.

It turns out that obtaining this result directly from the
general expression eq. (23) is tedious. The reason is that
naively neglecting the ionization and decay rates in the
total width would lead to a singular matrix Mij . How-
ever, by carefully expanding the abundances around the
chemical equilibrium solution yi =const., and treating
�i

ion/�
i and �i

dec/�
i as small, one ultimately arrives at

the same expression eq. (31).
We also note that using the Milne relation, eq. (11),

for each bound state, one finds

�eff
ion =

s

4

Y eq 2

q̃

Y eq

B

⌦
�BSFv

↵
sum , (32)

i.e. the summed recombination cross section and the ef-
fective ionization rate satisfy a generalized Milne rela-
tion. This implies that, in analogy to the case of a single
bound state, within the regime of ionization equilibrium
(�eff

ion � �eff
dec), the effective cross section becomes in-

dependent of the recombination cross section, and only
depends on the effective decay rate. In the opposite limit
�eff

ion ⌧ �eff
dec of almost instantaneous decay, the decay

rate drops out, and the effective cross section depends
only on

⌦
�BSFv

↵
sum.

3. Ionization equilibrium

The limit of ionization equilibrium is somewhat orthog-
onal to the two limiting cases considered above. When
ionization and recombination processes are assumed to
be efficient enough to establish ionization equilibrium,
the effective cross section approaches the universal form

⌦
�q̃q̃†v

↵
eff !

⌦
�q̃q̃†v

↵
+
X

i

gBi

g2q̃

 
2⇡mBi

Tm2

q̃

!3/2

eEBi/T �i
dec ,

(33)

which is a straightforward generalization of eq. (16) and
independent of ionization rates �i

ion as well as transition
rates �i!j

trans. The reason is that efficient ionization and
recombination processes establish chemical equilibrium
with the unbound q̃ particles in that case for each bound
state. This means, in turn, that they are in chemical
equilibrium among each other, such that the transition
processes play no role for their relative abundances in
that limit. This result agrees with the finding in [35],
where a set of bound states in ionization equilibrium was
considered.

Indeed, it is easy to see that eq. (33) follows from both
the effective cross section in either the limiting case of no
transitions or the case of efficient transitions when assum-
ing in addition that �i

ion � �i
dec. Moreover, the fact that

eq. (33) is even valid independently of the size of tran-
sition rates can be seen by noticing that the derivation
presented in Sec. III B 2 relies only on the assumption of
chemical equilibrium among the bound states, which is
satisfied in ionization equilibrium.

Therefore, as long as ionization equilibrium holds, the
effective cross section is only sensitive to the bound state
decay rates, independently of the size of transition and
ionization rates.

In a realistic setup, the limiting assumptions made
above may be too restrictive, and at best hold only for a
subset of bound states, and a subset of the corresponding
ionization, decay or transition processes. In this case, the
effective cross section can be computed using the general
result, eq. (23).

IV. RATES

While the discussion in the previous section was
generic, we focus on the set of bound states and ion-
ization, decay and transition rates that are relevant for
the scalar mediator q̃ that carries hypercharge and trans-
forms under the fundamental representation of SU(Nc)
with Nc = 3 in the following.

A heavy (mq̃ � ⇤QCD), non-relativistic q̃q̃† pair can
be described by two wavefunctions  [R], one for the color
octet ([8]) and one for the color singlet ([1]) configura-
tion. They obey a Schrödinger equation with kinetic en-
ergy p2

rel/(2µ), where

µ = mq̃/2 , (34)

is the reduced mass, and potential in Coulomb approxi-
mation [26]

V[R](r) = �

↵eff
[R]

r
, (35)

with effective coupling strength

↵eff
[R]

= ↵s
C [3]

2
+ C [3]

2
� C [R]

2

2
. (36)

Coulomb limit: 

dominant contribution arises from the processes that annihilate XX:, with total cross-

section �XX: , such that

x�e↵ vrely “ 2Y eq
X Y eq

X: x�XX: vrely
Ỹ 2
eq

“ x�XX: vrely
˜

2g2Xp1 ` �q3 e´2x �

“
g� ` 2gXp1 ` �q3{2 e´x �

‰2

¸
. (3.6)

Both the direct annihilation and the BSF processes contribute to �XX: , as we discuss in

the following.

In this work, we shall neglect thermal e↵ects. The thermal bath may a↵ect the DM

freeze-out in a variety of ways, including, on one hand, screening of the long-range interac-

tions and, on the other hand, frequent (non-radiative) scattering processes that precipitate

DM depletion via BSF [49]. In the context of DM coannihilation with coloured partners,

the latter have been considered in Ref. [51]. The inclusion of thermal corrections for the

radiative BSF processes considered here requires a comprehensive study that we leave for

future work.

3.2 Colour states and the running of the coupling

The X ´ X: colour interaction may be decomposed as

3 b 3̄ “ 1 ‘ 8 . (3.7)

In each irreducible representation R̂, the gluon exchange gives rise to the Coulomb potential

of eq. (2.13) with the coupling ↵g given by eq. (2.14). The quadratic Casimir invariants

for the SUp3q representations of interest are C2p1q “ 0, C2p3q “ C2p3̄q “ 4{3, C2p8q “ 3,

therefore

↵g ” ↵s ˆ
#

4{3, R̂ “ 1,

´1{6, R̂ “ 8.
(3.8)

As discussed in section 2.2, the strong coupling ↵s depends on the momentum transfer

Q. In table 2, we list the average Q for the various vertices appearing in the annihilation

and BSF processes, in this model. For the bound states, the momentum transfer depends

itself on the strong coupling, Q “ Qp↵sq. In this case, we determine ↵s by solving the

numerically the equation

↵spQp↵̃qq “ ↵̃ , (3.9)

for ã. We discuss further the e↵ect of the ↵s running in the following.

3.3 Direct annihilation

XX: pairs annihilate dominantly into gluons (cf. fig. 2), with cross-section [68]

�XX:Ñggvrel “ 14

27

⇡p↵ann
s q2

m2
X

ˆ
ˆ
2

7
S0,r1s ` 5

7
S0,r8s

˙
, (3.10)

where S0,r1s and S0,r8s are the s-wave Sommerfeld factors of the colour-singlet and colour-

octet states,

S0,r1s ” S0

ˆ
4↵S

s

3vrel

˙
and S0,r8s ” S0

ˆ
´ ↵S

s

6vrel

˙
. (3.11)
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one obtains

dYB
dx

=
1

3Hs

ds
dx
⇥
�eff

ion
�
YB � Y eq

B y2
�
+ �eff

dec (YB � Y eq

B )
⇤
,

(29)
with effective ionization and decay rates

�eff
break/dec =

P
i �

i
break/dec Y

eq

B,i

Y eq

B
(30)

Setting again the left-hand side of the Boltzmann equa-
tion (29) to zero, and inserting the resulting algebraic
expression together with eq. (28) into eq. (10) yields

⌦
�q̃q̃†v

↵
eff =

⌦
�q̃q̃†v

↵
+
⌦
�BSFv

↵
sum

�eff
dec

�eff
ion + �eff

dec
, (31)

where
⌦
�BSFv

↵
sum =

P
i

⌦
�BSF,iv

↵
. The result is similar

in form to the case of a single bound state, eq. (15), but
with the ionization and decay rates replaced by a ther-
mal average over all bound states, and the recombination
cross section by the sum.

It turns out that obtaining this result directly from the
general expression eq. (23) is tedious. The reason is that
naively neglecting the ionization and decay rates in the
total width would lead to a singular matrix Mij . How-
ever, by carefully expanding the abundances around the
chemical equilibrium solution yi =const., and treating
�i

ion/�
i and �i

dec/�
i as small, one ultimately arrives at

the same expression eq. (31).
We also note that using the Milne relation, eq. (11),

for each bound state, one finds

�eff
ion =

s

4

Y eq 2

q̃

Y eq

B

⌦
�BSFv

↵
sum , (32)

i.e. the summed recombination cross section and the ef-
fective ionization rate satisfy a generalized Milne rela-
tion. This implies that, in analogy to the case of a single
bound state, within the regime of ionization equilibrium
(�eff

ion � �eff
dec), the effective cross section becomes in-

dependent of the recombination cross section, and only
depends on the effective decay rate. In the opposite limit
�eff

ion ⌧ �eff
dec of almost instantaneous decay, the decay

rate drops out, and the effective cross section depends
only on

⌦
�BSFv

↵
sum.

3. Ionization equilibrium

The limit of ionization equilibrium is somewhat orthog-
onal to the two limiting cases considered above. When
ionization and recombination processes are assumed to
be efficient enough to establish ionization equilibrium,
the effective cross section approaches the universal form

⌦
�q̃q̃†v

↵
eff !

⌦
�q̃q̃†v

↵
+
X

i

gBi

g2q̃

 
2⇡mBi

Tm2

q̃

!3/2

eEBi/T �i
dec ,

(33)

which is a straightforward generalization of eq. (16) and
independent of ionization rates �i

ion as well as transition
rates �i!j

trans. The reason is that efficient ionization and
recombination processes establish chemical equilibrium
with the unbound q̃ particles in that case for each bound
state. This means, in turn, that they are in chemical
equilibrium among each other, such that the transition
processes play no role for their relative abundances in
that limit. This result agrees with the finding in [35],
where a set of bound states in ionization equilibrium was
considered.

Indeed, it is easy to see that eq. (33) follows from both
the effective cross section in either the limiting case of no
transitions or the case of efficient transitions when assum-
ing in addition that �i

ion � �i
dec. Moreover, the fact that

eq. (33) is even valid independently of the size of tran-
sition rates can be seen by noticing that the derivation
presented in Sec. III B 2 relies only on the assumption of
chemical equilibrium among the bound states, which is
satisfied in ionization equilibrium.

Therefore, as long as ionization equilibrium holds, the
effective cross section is only sensitive to the bound state
decay rates, independently of the size of transition and
ionization rates.

In a realistic setup, the limiting assumptions made
above may be too restrictive, and at best hold only for a
subset of bound states, and a subset of the corresponding
ionization, decay or transition processes. In this case, the
effective cross section can be computed using the general
result, eq. (23).

IV. RATES

While the discussion in the previous section was
generic, we focus on the set of bound states and ion-
ization, decay and transition rates that are relevant for
the scalar mediator q̃ that carries hypercharge and trans-
forms under the fundamental representation of SU(Nc)
with Nc = 3 in the following.

A heavy (mq̃ � ⇤QCD), non-relativistic q̃q̃† pair can
be described by two wavefunctions  [R], one for the color
octet ([8]) and one for the color singlet ([1]) configura-
tion. They obey a Schrödinger equation with kinetic en-
ergy p2

rel/(2µ), where

µ = mq̃/2 , (34)

is the reduced mass, and potential in Coulomb approxi-
mation [26]

V[R](r) = �

↵eff
[R]

r
, (35)

with effective coupling strength

↵eff
[R]

= ↵s
C [3]

2
+ C [3]

2
� C [R]

2

2
. (36)
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one obtains
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=
1

3Hs

ds
dx
⇥
�eff

ion
�
YB � Y eq

B y2
�
+ �eff

dec (YB � Y eq

B )
⇤
,

(29)
with effective ionization and decay rates

�eff
break/dec =

P
i �

i
break/dec Y

eq

B,i

Y eq

B
(30)

Setting again the left-hand side of the Boltzmann equa-
tion (29) to zero, and inserting the resulting algebraic
expression together with eq. (28) into eq. (10) yields

⌦
�q̃q̃†v

↵
eff =

⌦
�q̃q̃†v

↵
+
⌦
�BSFv

↵
sum

�eff
dec

�eff
ion + �eff

dec
, (31)

where
⌦
�BSFv

↵
sum =

P
i

⌦
�BSF,iv

↵
. The result is similar

in form to the case of a single bound state, eq. (15), but
with the ionization and decay rates replaced by a ther-
mal average over all bound states, and the recombination
cross section by the sum.

It turns out that obtaining this result directly from the
general expression eq. (23) is tedious. The reason is that
naively neglecting the ionization and decay rates in the
total width would lead to a singular matrix Mij . How-
ever, by carefully expanding the abundances around the
chemical equilibrium solution yi =const., and treating
�i

ion/�
i and �i

dec/�
i as small, one ultimately arrives at

the same expression eq. (31).
We also note that using the Milne relation, eq. (11),

for each bound state, one finds

�eff
ion =

s

4

Y eq 2

q̃

Y eq

B

⌦
�BSFv

↵
sum , (32)

i.e. the summed recombination cross section and the ef-
fective ionization rate satisfy a generalized Milne rela-
tion. This implies that, in analogy to the case of a single
bound state, within the regime of ionization equilibrium
(�eff

ion � �eff
dec), the effective cross section becomes in-

dependent of the recombination cross section, and only
depends on the effective decay rate. In the opposite limit
�eff

ion ⌧ �eff
dec of almost instantaneous decay, the decay

rate drops out, and the effective cross section depends
only on

⌦
�BSFv

↵
sum.

3. Ionization equilibrium

The limit of ionization equilibrium is somewhat orthog-
onal to the two limiting cases considered above. When
ionization and recombination processes are assumed to
be efficient enough to establish ionization equilibrium,
the effective cross section approaches the universal form

⌦
�q̃q̃†v

↵
eff !

⌦
�q̃q̃†v

↵
+
X

i

gBi

g2q̃

 
2⇡mBi

Tm2

q̃

!3/2

eEBi/T �i
dec ,

(33)

which is a straightforward generalization of eq. (16) and
independent of ionization rates �i

ion as well as transition
rates �i!j

trans. The reason is that efficient ionization and
recombination processes establish chemical equilibrium
with the unbound q̃ particles in that case for each bound
state. This means, in turn, that they are in chemical
equilibrium among each other, such that the transition
processes play no role for their relative abundances in
that limit. This result agrees with the finding in [35],
where a set of bound states in ionization equilibrium was
considered.

Indeed, it is easy to see that eq. (33) follows from both
the effective cross section in either the limiting case of no
transitions or the case of efficient transitions when assum-
ing in addition that �i

ion � �i
dec. Moreover, the fact that

eq. (33) is even valid independently of the size of tran-
sition rates can be seen by noticing that the derivation
presented in Sec. III B 2 relies only on the assumption of
chemical equilibrium among the bound states, which is
satisfied in ionization equilibrium.

Therefore, as long as ionization equilibrium holds, the
effective cross section is only sensitive to the bound state
decay rates, independently of the size of transition and
ionization rates.

In a realistic setup, the limiting assumptions made
above may be too restrictive, and at best hold only for a
subset of bound states, and a subset of the corresponding
ionization, decay or transition processes. In this case, the
effective cross section can be computed using the general
result, eq. (23).

IV. RATES

While the discussion in the previous section was
generic, we focus on the set of bound states and ion-
ization, decay and transition rates that are relevant for
the scalar mediator q̃ that carries hypercharge and trans-
forms under the fundamental representation of SU(Nc)
with Nc = 3 in the following.

A heavy (mq̃ � ⇤QCD), non-relativistic q̃q̃† pair can
be described by two wavefunctions  [R], one for the color
octet ([8]) and one for the color singlet ([1]) configura-
tion. They obey a Schrödinger equation with kinetic en-
ergy p2

rel/(2µ), where

µ = mq̃/2 , (34)

is the reduced mass, and potential in Coulomb approxi-
mation [26]

V[R](r) = �

↵eff
[R]

r
, (35)

with effective coupling strength

↵eff
[R]

= ↵s
C [3]

2
+ C [3]

2
� C [R]

2

2
. (36)
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g

C⌫

Figure 1a. The amplitude for the radiative capture consists of the (non-perturbative) initial and
final state wavefunctions, and the perturbative 5-point function that includes the radiative vertices.

i

j

⌘1K ` q

⌘2K ´ q

a, ⌫
b, ⇢

c, µ

Pg

⌘1P ` p

⌘2P ´ p

i1

j1

` `

Figure 1b. The leading order diagrams contributing to C⌫ . The external-momentum, colour-index
and space-time-index assignments are the same in all three diagrams.

Emission from the mediator

ipC⌫
medqaii1,jj1 “

“ S1p⌘1P ` pq
”
´igspT b

1 qi1i p⌘1K ` ⌘1P ` q ` pq⇢
ı
S1p⌘1K ` qq ´i

p⌘1K ` q ´ ⌘1P ´ pq2

ˆ S2p⌘2P ´ pq
“
´igs pT c

2 qj1j p⌘2K ` ⌘2P ´ q ´ pqµ
‰
S2p⌘2K ´ qq ´i

p⌘2K ´ q ´ ⌘2P ` pq2
ˆ p´gBSF

s fabcq tg⇢µrp⌘1K ` q ´ ⌘1P ´ pq ´ p⌘2K ´ q ´ ⌘2P ` pqs⌫

`g⌫⇢r´Pg ´ p⌘1K ` q ´ ⌘1P ´ pqsµ ` gµ⌫rp⌘2K ´ q ´ ⌘2P ` pq ` Pgs⇢u , (2.21a)

Emission from X1

ipC⌫
1 qaii1,jj1 “ �j1j S2p⌘2K ´ qq ˆ S1p⌘1P ` pqS1p⌘1K ` qq

ˆ
“
´igBSF

s pT a
1 qi1i p⌘1K ` ⌘1P ` q ` pq⌫ p2⇡q4�4p⌘1K ` q ´ ⌘1P ´ p ´ Pgq

‰
,

(2.21b)

Emission from X2

ipC⌫
2 qaii1,jj1 “ �i1i S1p⌘1K ` qq ˆ S2p⌘2P ´ pqS2p⌘2K ´ qq

ˆ
“
´igBSF

s pT a
2 qj1j p⌘2K ` ⌘2P ´ q ´ pq⌫ p2⇡q4�4p⌘2K ´ q ´ ⌘2P ` p ´ Pgq

‰
.

(2.21c)

We are interested only in the spatial components of C⌫ , ⌫ “ 1, 2, 3,

Ca
ii1,jj1 “ pCmedqaii1,jj1 ` pC1qaii1,jj1 ` pC2qaii1,jj1 . (2.22)
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FIG. 1: Bound-state formation cross section, eq. (49), for the strong (left) and elecromagnetic process (right). We show the
sum

P
` S

BSF
n` (⇣s, ⇣b) (solid lines) as well as the ` = 0 contribution only (dashed lines). The various colors corresponds to

the principal quantum numbers n = 1, . . . , 6, as given in the legend. For large ↵s/vrel the cross section of the strong process
is Sommerfeld suppressed due to the repulsive interaction of the q̃q̃† pair in the octet representation, while it is Sommerfeld
enhanced for the electromagnetic process, involving a scattering wave function in the color singlet configuration.

tion, and the first from `0 = ` � 1 exists only for ` > 0.
The contribution from ` = 0 orbitals therefore dominates
for ↵s/vrel ⌧ 1, as can also be seen by the convergence
of solid and dashed lines for each n � 2 in Fig. 1 in that
limit.

In the opposite limit ↵s/vrel � 1,

SBSF
n` (⇣s, ⇣b) !

2⇡⇣s
1� e�2⇡⇣s

fBSF
n`

✓
⇣s
⇣b

◆
, |⇣s,b| ! 1 ,

(55)

where

fBSF
n`

✓
⇣s
⇣b

◆
= e�

4n⇣s
⇣b

sBSF
n` |4n�2`

⇣4n�2`
b

. (56)

Here sBSF
n` |4n�2` corresponds to the polynomial obtained

when keeping only the terms with maximal combined
power in ⇣s and ⇣b in sBSF

n` (⇣s, ⇣b), being 4n�2`, such that
fBSF
n` depends only on the ratio ⇣s/⇣b = ↵eff

s /↵eff
b . Up to

the different renormalization scale at which the effective
couplings are evaluated, fBSF

n` approaches a constant for
↵s/vrel � 1.

The behavior at small relative velocities is therefore
governed dominantly by the first factor in eq. (55). It
exhibits a qualitatively different behavior depending on
the sign of ⇣s. For (q̃q̃†)[8] ! B

[1]
n` + g, the repulsive

potential relevant for the initial state implies ⇣s < 0,
leading to an exponential suppression for small relative
velocities, SBSF

n` ! 2⇡|⇣s|e�2⇡|⇣s|fBSF
n` . For the electro-

magnetic process (q̃q̃†)[1] ! B
[1]
n` +�, both the initial and

final state wavefunction are sensitive to the attractive
color singlet potential, such that in particular ⇣s > 0,
and SBSF

n` ! 2⇡⇣sfBSF
n` grows with ⇣s / ↵s/vrel.

The different shape of SBSF
n` for the two processes can

clearly be seen in Fig. 1. For the electromagnetic process,

the combined contribution from all angular momentum
states

P
` S

BSF
n` decreases with increasing values of n, for

all velocities vrel. On the other hand, for the strong pro-
cess the exponential suppression at large ⇣s leads to a
maximum of SBSF

n` . Its position shifts to higher values of
↵s/vrel for excited states with increasing n. In addition,
the value at the maximum increases with n. This indi-
cates that excited levels become more and more relevant
the smaller the relative velocity, i.e. the lower the tem-
perature that is relevant for determining the relic density.

B. Decay

The leading decay process is due to annihilation of the
constituents of the bound state into a pair of gluons,
Bn` ! gg. Here, we briefly review the derivation of the
decay rate following [23], provide an expression for gen-
eral n (for ` = 0) and discuss the role of higher-order
corrections.

For a generic 1 ! N decay process Bn` !

X1X2 . . . XN the matrix element Mn` can be related
to the usual Feynman matrix element for the process
q̃(k1, i)+q̃†(k2, j) ! X1(p1)+· · ·+XN (pN ), with color in-
dices in the initial state contracted with P s

ij = �ij/
p
Nc,

that we denote by M
s(k1, k2, {pj}), via

Mn`m =

Z
d3q

(2⇡)3
 n`m(q)p

2Nq
M

s(K/2 + q,K/2� q, {pj}) ,

(57)
with Nq ! µ in the nonrelativistic limit, and bound state
wave function  n`m ⌘  [1]

n`m in momentum space, nor-
malized such that

R
d3x| n`m(x)|2 = 1 in position space.

Here K is the four-momentum of the bound state. The

�q̃q̃
†!Bg

BSF,n` vrel / ↵s!
3
��h [1]

n` |r| 
[8]
preli

��2

[Garny, JH 2112.01499]

small velocities ~ relevant for small temperatures

[Color-electric dipol operator,
computed in potential nonrel. QCD, 

see e.g. X. Yao, B. Müller 1811.09644 ]
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is Sommerfeld suppressed due to the repulsive interaction of the q̃q̃† pair in the octet representation, while it is Sommerfeld
enhanced for the electromagnetic process, involving a scattering wave function in the color singlet configuration.

tion, and the first from `0 = ` � 1 exists only for ` > 0.
The contribution from ` = 0 orbitals therefore dominates
for ↵s/vrel ⌧ 1, as can also be seen by the convergence
of solid and dashed lines for each n � 2 in Fig. 1 in that
limit.

In the opposite limit ↵s/vrel � 1,

SBSF
n` (⇣s, ⇣b) !

2⇡⇣s
1� e�2⇡⇣s

fBSF
n`
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⇣s
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, |⇣s,b| ! 1 ,
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where

fBSF
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Here sBSF
n` |4n�2` corresponds to the polynomial obtained

when keeping only the terms with maximal combined
power in ⇣s and ⇣b in sBSF

n` (⇣s, ⇣b), being 4n�2`, such that
fBSF
n` depends only on the ratio ⇣s/⇣b = ↵eff

s /↵eff
b . Up to

the different renormalization scale at which the effective
couplings are evaluated, fBSF

n` approaches a constant for
↵s/vrel � 1.

The behavior at small relative velocities is therefore
governed dominantly by the first factor in eq. (55). It
exhibits a qualitatively different behavior depending on
the sign of ⇣s. For (q̃q̃†)[8] ! B

[1]
n` + g, the repulsive

potential relevant for the initial state implies ⇣s < 0,
leading to an exponential suppression for small relative
velocities, SBSF

n` ! 2⇡|⇣s|e�2⇡|⇣s|fBSF
n` . For the electro-

magnetic process (q̃q̃†)[1] ! B
[1]
n` +�, both the initial and

final state wavefunction are sensitive to the attractive
color singlet potential, such that in particular ⇣s > 0,
and SBSF

n` ! 2⇡⇣sfBSF
n` grows with ⇣s / ↵s/vrel.

The different shape of SBSF
n` for the two processes can

clearly be seen in Fig. 1. For the electromagnetic process,

the combined contribution from all angular momentum
states

P
` S

BSF
n` decreases with increasing values of n, for

all velocities vrel. On the other hand, for the strong pro-
cess the exponential suppression at large ⇣s leads to a
maximum of SBSF

n` . Its position shifts to higher values of
↵s/vrel for excited states with increasing n. In addition,
the value at the maximum increases with n. This indi-
cates that excited levels become more and more relevant
the smaller the relative velocity, i.e. the lower the tem-
perature that is relevant for determining the relic density.

B. Decay

The leading decay process is due to annihilation of the
constituents of the bound state into a pair of gluons,
Bn` ! gg. Here, we briefly review the derivation of the
decay rate following [23], provide an expression for gen-
eral n (for ` = 0) and discuss the role of higher-order
corrections.

For a generic 1 ! N decay process Bn` !

X1X2 . . . XN the matrix element Mn` can be related
to the usual Feynman matrix element for the process
q̃(k1, i)+q̃†(k2, j) ! X1(p1)+· · ·+XN (pN ), with color in-
dices in the initial state contracted with P s

ij = �ij/
p
Nc,

that we denote by M
s(k1, k2, {pj}), via

Mn`m =

Z
d3q

(2⇡)3
 n`m(q)p

2Nq
M

s(K/2 + q,K/2� q, {pj}) ,

(57)
with Nq ! µ in the nonrelativistic limit, and bound state
wave function  n`m ⌘  [1]

n`m in momentum space, nor-
malized such that

R
d3x| n`m(x)|2 = 1 in position space.

Here K is the four-momentum of the bound state. The
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▪ Re-interpret LHC Run I mono-jet + MET searches
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µ
⇥̄�

µ (g⇥V
� g⇥A�

5 )⇥+ Z
0
µ

�

q

q̄�
µ (gqV

� gqA�
5 )q .

(3.1
)

Here
mmed

is th
e (a

xial)
-vec

tor m
ass t

erm
and

gV and
gA are

the
vect

or a
nd axia

l cou
plin

gs

resp
ectiv

ely.
The

dark
matte

r pa
rticl

e ⇥
is a

Dira
c fer

mion
with

mass m
DM

, neu
tral

und
er

the
Stan

dard
Model

gaug
e grou

ps.
The

sum
exte

nds
over

all q
uark

s and
for

simplici
ty,

we assu
me that

the
coup

ling
s gqV

and
gqA

are
the

sam
e for a

ll qu
arks

. While
in gene

ral,

a Z
0 from

a brok
en U(1

)
0 will

also
have

coup
ling

s to lept
ons

and
gaug

e boso
ns,

we do

not
cons

ider
them

here
as t

hey
are

not
relev

ant
for t

he mono
jet s

earc
h.
1 This

simplifi
ed

model
is si

milar
(alb

eit s
impler

) to
the

model
disc

usse
d in [31].

Sim
plifi

ed model
s of

vect
or

media
tors

have
also

been
disc

usse
d in [4, 1

8, 3
1, 4

3, 4
4].

While
the

abov
e Lag

rang
ian

allow
s for

both
vect

or a
nd axia

l-vec
tor

inte
ract

ions
, th

e

phen
omenol

ogy
and

limits f
rom

the
mono

jet s
earc

h are
similar

in both
case

s. The
refo

re

for t
he p

urpo
ses o

f cla
rity,

we f
ocus

on one:
the

axia
l-vec

tor
inte

ract
ion.

In the
rem

aind
er

of th
is ar

ticle
, we

set g⇥
V
= gqV

= 0 and
rede

fine
g⇥ ⇥

g⇥A
and

gq ⇥
ggA.

The
axia

l-vec
tor

inte
ract

ion
has

two
adva

ntag
es.

Firs
tly,

this
inte

ract
ion

is non
-zer

o for
Major

ana
dark

matte
r (the

norm
alisa

tion
of o

ur resu
lts wou

ld chan
ge by a fact

or of fo
ur in this

case
),

unli
ke the

vect
or inte

ract
ion,

whic
h vani

shes
for

Major
ana

dark
matte

r. Seco
ndly

, th
e

1We as
sum

e th
at t

he c
harg

es a
re ch

osen
so the

U(1)
0 gau

ge s
ymmetry

is an
omaly

free
. Th

is m
ay requ

ire

add
ition

al p
arti

cles
.

– 5 –
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T
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tion
at

x
=

1
(for

a
discussion

of
kinetic

equilibration,

see
[13]).

T
he

dependence
of

the
final

freeze-out
den-

sity
on

the
initial condition

is
also

indicated
in

Fig. 4
by

the
area

shaded
in

red, and
is

rem
arkably

sm
all.

T
here-

fore, conversion-driven
freeze-out

is
largely

insensitive
to

details
of

the
therm

al history
prior

to
freeze-out

and
in

particular
to

a
potential production

during
the

reheating

process.
N

ote
that

this
feature

distinguishes
conversion-

driven
freeze-out

from
scenarios

for
w

hich
D

M
has

an

even
w

eaker
coupling

such
that

it
w

as
never

in
therm

al

contact
(e.g.

freeze-in
production

[15]).
T

hus, w
hile

re-

quiring
a

rather w
eak

coupling, the
robustness of the

con-

ventional freeze-out paradigm
is preserved

in
the

scenario

considered
here.

A
s

discussed
before, conversions

⇥
�

�b
are

driven
by

tw
o

types
of

processes,
decay

and
scattering.

It
turns

out
that

quantitatively
both

are
im

portant
for

determ
in-

ing
the

freeze-out density.
To

illustrate
the

im
portance

of

scattering
processes, w

e
show

the
freeze-out

density
that

w
ould

be
obtained

w
hen

only
taking

decays
into

account

by
the

gray
dashed

line
in

Fig. 4.
Furtherm

ore, the
gray

shaded
area

indicates
the

dependence
on

initial
condi-

tions
that

w
ould

result
neglecting

scatterings.
W

e
find

that
scattering

processes, that
are

active
at

sm
all

x, are

responsible
for

w
iping

out
the

dependence
on

the
initial

abundance
in

the
full solution

of the
coupled

B
oltzm

ann

equations.

V
IA

B
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P
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R
A
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E
T

E
R
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A

C
E

W
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w
ill

now
explore

the
param
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space

consistent

w
ith

a
relic

density
that

m
atches

the
D

M
density

m
ea-

sured
by

P
lanck,
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2

=
0.1198

±
0.0015

[14].
In
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scenario, for
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result
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red
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full solution
including
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coupling
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is
still

sm
all

enough
so

that
⇥
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and

⇥ �b-annihilation
is

negligible).
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curve

for
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this

choice
provides

the
right

relic
density

defines
the

bound-
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of the

valid
param

eter
space

and
is

show
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as
a

black,

solid
curve

in
Fig.

7.
B

elow
this

curve
a

choice
of
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to

support
C

E
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38:
L
ow

er
exclusion

lim
its

in
the

m
� -M

V
plane

at
95%

C
L
for

the
A
T
L
A
S
(blue

lines)
and

C
M
S
(red

lines)
m
ono-jet

searches.
T
he

lim
its

for
the

sim
plified

m
odel

(solid
lines),

for
the

E
F
T

(dashed
lines)

and
for

the
E
F
T

applying
the

Q
-truncation

(dotted
lines)

are
show

n.
Four

slices
of

the
param

eter
space: �

g
� g

q
=

1
,

�
V
=

0.01M
V
(upper

left
panel), �

g
� g

q
=

1,
�
V
=

0.5M
V
(upper

right
panel), �

g
� g

q
=

0.2,
�
V
=

0.01M
V

(low
er

left
panel)

and �
g
� g

q
=
0.2, �

V
=
0.5M

V
(low

er
right

panel)
are

displayed.
T
he

blue
shaded

region
in

the

left
panels

represent
the

param
eters

space
not

allow
ing

a
consistent

solution
for

the
m
ediator

w
idth

as
a
function

of
M

V
,m

� , �
g
� g

q .
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Results from
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ono-jet searches at 8 TeV LH
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it

▪ Re-interpret LH
C

 Run I m
ono-jet + M

ET searches

   [ATLA
S:1502.01518, C

M
S: 1408.3583]

▪ Sim
ulation: FeyRules/M

adG
raph/Phythia/D

elphes

Sim
plified M

odel 

Lim
it

q

q̄

�

�̄

g

Q
q

q̄

�

�̄

g

Z �

F
igu

re
2.

L
eft

panel:
T
he

m
onojet

process
from

a
qq̄

initial state
in
the

E
F
T
fram

ew
ork.

T
he

con-

tact
interaction

is
represented

by
the

shaded
blob.

D
etails

of
the

particle
m
ediating

the
interaction

do
not

have
to

be
specified.

R
ight

panel:
T
his

show
s
a
U
V
resolution

of
the

contact
interaction

for

an
(axial)-vector

m
ediator

Z
0
,
exchanged

in
the

s-channel.
T
he

m
om

entum
transfer

through
the

s-channel
is
denoted

by
Q
.

exchanged
in
the

s-channel.
W
e
rem

ain
agnostic

to
the

precise
origin

of the
vector

m
ediator

and
its

coupling
w
ith

dark
m
atter

and
quarks.

O
ne

exam
ple

of such
a
m
ediator

is
a
(axial)-

vector
Z 0
,
a
m
assive

spin-one
vector

boson
from

a
broken

U
(1) 0

gauge
sym

m
etry

[40,
41].

A
second

exam
ple

is
a
com

posite
vector

m
ediator,

sim
ilar

to
the

⇤
in

Q
C
D
[42].

In
either

case,
in

addition
to

the
usual

term
s
in

the
Standard

M
odel

L
agrangian,

the
L
agrangian

w
ith

general
quark

interaction
term

s
is

L
=
� 1

4 Z �µ
� Z 0µ

�
+
1
2 m

2m
ed Z 0µ

Z 0µ
+
i⇥̄
� µ
⌅
µ ⇥

�
m

D
M
⇥̄
⇥

+
Z 0µ ⇥̄

� µ
(g

⇥
V
�
g
⇥
A � 5

)⇥
+
Z 0µ �

q q̄� µ
(g

qV
�
g
qA � 5

)q
.

(3.1)

H
ere

m
m
ed
is
the

(axial)-vector
m
ass

term
and

g
V
and

g
A
are

the
vector

and
axial couplings

respectively.
T
he

dark
m
atter

particle
⇥
is
a
D
irac

ferm
ion

w
ith

m
ass

m
D
M
, neutral under

the
Standard

M
odel

gauge
groups.

T
he

sum
extends

over
all

quarks
and

for
sim

plicity,

w
e
assum

e
that

the
couplings

g
qV

and
g
qA

are
the

sam
e
for

all
quarks.

W
hile

in
general,

a
Z 0

from
a
broken

U
(1) 0

w
ill

also
have

couplings
to

leptons
and

gauge
bosons,

w
e
do

not
consider

them
here

as
they

are
not

relevant
for

the
m
onojet

search. 1
T
his

sim
plified

m
odel is

sim
ilar

(albeit
sim

pler)
to

the
m
odel discussed

in
[31].

Sim
plified

m
odels

of vector

m
ediators

have
also

been
discussed

in
[4,

18,
31,

43,
44].

W
hile

the
above

L
agrangian

allow
s
for

both
vector

and
axial-vector

interactions,
the

phenom
enology

and
lim

its
from

the
m
onojet

search
are

sim
ilar

in
both

cases.
T
herefore

for
the

purposes
of
clarity,

w
e
focus

on
one:

the
axial-vector

interaction.
In

the
rem

ainder

of
this

article, w
e
set

g
⇥
V
=
g
qV

=
0
and

redefine
g
⇥ ⇥

g
⇥
A
and

g
q ⇥

g
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Boltzmann equations including excitations
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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4

ternal degrees of freedom. Within the model considered
here, the bound states are characterized by their n and
` quantum numbers, i ⌘ (n, `) and gBn` = 2` + 1, but
the discussion in this section applies to any set of bound
states in general.

We add a Boltzmann equation for the yield YBi =
nBi/s for each bound state, taking into account ionization
(or equivalently breaking) into an unbound q̃q̃† pair via

gluon or photon absorption, direct decay of the bound
state into SM particles, as well as transitions between
two bound states. In addition, the collision term in the
Boltzmann equation of the mediator q̃ picks up an extra
term due to ionization and its inverse process, recombina-
tion [or equivalently bound-state formation (BSF)]. The
changes in the Boltzmann equations compared to (2), (3)
are given by
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The ionization rate �i
ion is related to the thermally aver-

aged recombination cross section
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via the Milne
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originating from the detailed balance condition in ther-
mal equilibrium. Indeed, the Milne relation ensures that
the ionization and recombination terms drop out in the
sum d(Yq̃ + 2

P
i YB,i)/dx, consistent with the conserva-

tion of the total number of q̃ and q̃† in absence of decays.
Note that in the non-relativistic limit
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where EBi = 2mq̃ �mBi > 0 is the binding energy, and
we used that Yq̃ denotes the yield of the sum of q̃ and q̃†.
In addition, detailed balance requires
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Also here we can see that transition terms drop out when
summing the Boltzmann equations for all bound states,
as required.

Before discussing explicit expressions for correspond-
ing rates in Sec. IV, we investigate generic features of the
coupled set of equations.

A. Single bound state

We first recall the case of a single bound state B.
In a typical cosmological setting, the ionization and
decay rates (mediated by the strong interaction) are
much larger than H. In this case, the density of

bound states almost instantaneously adjusts to a quasi-
stationary number (from the point of view of cosmologi-
cal versus strong interaction time-scales) that can be ob-
tained by setting the left-hand side of the Boltzmann
equation for B to zero, turning it into an algebraic equa-
tion [34]. For the case of a single bound state (dropping
the index i and transition terms), one obtains
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Inserting this relation in eq. (10) yields the same form as
eq. (3) but with the substitution
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This means it is sufficient to solve the Boltzmann equa-
tions for q̃ and �, while the impact of the bound state is
captured by replacing the q̃q̃† annihilation cross section
by the effective cross section.

In the limit H ⌧ �dec ⌧ �ion the ionization and re-
combination processes establish equilibrium between the
bound state and unbound q̃ (ionization equilibrium). The
corresponding rates therefore drop out of the effective
cross section, that only depends on the decay rate �dec,
as can be seen using the Milne relation, eq. (11),
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The effective cross section increases exponentially with
falling temperature, due to the energetic preference for
bound states in equilibrium. This increase stops once
the ionization rate, which itself becomes exponentially
suppressed at low temperatures, falls below the decay
rate, and ionization equilibrium breaks down. Therefore,
at low enough temperatures, the regime H ⌧ �ion ⌧
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rates are large compared to the Hubble expansion rate
H during the freeze-out process. Since the rates of all
conversion processes necessarily involve some power of
the coupling ��, the assumption of chemical equilibrium
can be violated if the coupling strength is small enough.
In that case, the conversions have to be included along

with (co-) annihilation processes in the Boltzmann equa-
tions. This scenario is known as conversion-driven freeze-
out [15], or also coscattering [16].

In general, for the minimal t-channel model considered
here, the coupled set of Boltzmann equations read [15]
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where x = m�/T and Yi = ni/s, with number density ni

and entropy density s, with
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where Mpl ' 2.4⇥ 1018 GeV is the reduced Planck mass.
Yq̃ represents the summed contribution of the mediator
and its anti-particle,

Yq̃ ⌘ (gq̃ + gq̃†)
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Z
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(2⇡)3
fq̃(p) , (5)

leading to the various factors 1/2. Here gq̃ = gq̃† = Nc =
3, and fq̃ is the distribution function that is assumed
to be identical for particles and antiparticles as well as
all colors. The processes in the first line of each equation
denote the usual (co-)annihilation processes into SM par-
ticles.

The conversion terms in the second line of each equa-
tion can be split into processes of the form q̃ ! � and
q̃q̃† ! ��. The former case requires accompanying SM
particles, and can be further decomposed into 1 ! 2 and
2 ! 2 processes,
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where neq

i = T/(2⇡2) gim2

iK2(mi/T ) and Ki denote
modified Bessel functions of the second kind. Depend-
ing on kinematic constraints further 1 ! 3, 1 ! 4 or
2 ! 3 process can be relevant, especially for a coupling
to top quarks, q̃ = t̃ [12]. In the following, we focus
on a coupling to bottom quarks, q̃ = b̃, and include the
processes stated in eq. (6).

The set of Boltzmann equations can describe both
coannihilations in and out of chemical equilibrium, with
well-known simplifications being possible in the former
case by summing both equations [5]. Out of chemi-
cal equilibrium, the coupled set of equations needs to
be solved. However, since the coupling �� is small in
this case, all terms except for the ones involving

⌦
�q̃q̃†v

↵

and �conv can be neglected for conversion-driven freeze-
out. The former process is considerably Sommerfeld
enhanced for small relative velocities, due to the at-
tractive potential generated by gluon exchange in the
color singlet configuration of the q̃q̃† pair [10]. In addi-
tion, the same potential leads to the formation of bound
states [25, 26, 32, 33]. In this work, we improve the
computations of the relic density in the coannihilation
and conversion-driven freeze-out scenario by considering
bound-state effects, including an exploration of the role
of excited states.

III. INCLUDING BOUND STATES

Within the t-channel model, bound states of q̃q̃† pairs
in the color singlet configuration exist and can contribute
to the freeze-out process. We consider an extension of the
Boltzmann equation by including a set of bound states
Bi, enumerated by an abstract index i, and with gBi in-
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sum d(Yq̃ + 2

P
i YB,i)/dx, consistent with the conserva-

tion of the total number of q̃ and q̃† in absence of decays.
Note that in the non-relativistic limit

s

4

Y eq 2

q̃

Y eq

Bi

'
g2q̃
gBi

 
Tm2

q̃

2⇡mBi

!3/2

e�EBi/T , (12)
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we used that Yq̃ denotes the yield of the sum of q̃ and q̃†.
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Also here we can see that transition terms drop out when
summing the Boltzmann equations for all bound states,
as required.

Before discussing explicit expressions for correspond-
ing rates in Sec. IV, we investigate generic features of the
coupled set of equations.

A. Single bound state

We first recall the case of a single bound state B.
In a typical cosmological setting, the ionization and
decay rates (mediated by the strong interaction) are
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can be violated if the coupling strength is small enough.
In that case, the conversions have to be included along

with (co-) annihilation processes in the Boltzmann equa-
tions. This scenario is known as conversion-driven freeze-
out [15], or also coscattering [16].
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leading to the various factors 1/2. Here gq̃ = gq̃† = Nc =
3, and fq̃ is the distribution function that is assumed
to be identical for particles and antiparticles as well as
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where neq
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modified Bessel functions of the second kind. Depend-
ing on kinematic constraints further 1 ! 3, 1 ! 4 or
2 ! 3 process can be relevant, especially for a coupling
to top quarks, q̃ = t̃ [12]. In the following, we focus
on a coupling to bottom quarks, q̃ = b̃, and include the
processes stated in eq. (6).

The set of Boltzmann equations can describe both
coannihilations in and out of chemical equilibrium, with
well-known simplifications being possible in the former
case by summing both equations [5]. Out of chemi-
cal equilibrium, the coupled set of equations needs to
be solved. However, since the coupling �� is small in
this case, all terms except for the ones involving
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and �conv can be neglected for conversion-driven freeze-
out. The former process is considerably Sommerfeld
enhanced for small relative velocities, due to the at-
tractive potential generated by gluon exchange in the
color singlet configuration of the q̃q̃† pair [10]. In addi-
tion, the same potential leads to the formation of bound
states [25, 26, 32, 33]. In this work, we improve the
computations of the relic density in the coannihilation
and conversion-driven freeze-out scenario by considering
bound-state effects, including an exploration of the role
of excited states.

III. INCLUDING BOUND STATES

Within the t-channel model, bound states of q̃q̃† pairs
in the color singlet configuration exist and can contribute
to the freeze-out process. We consider an extension of the
Boltzmann equation by including a set of bound states
Bi, enumerated by an abstract index i, and with gBi in-
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p
s/T ) , (8)

where neq

i = T/(2⇡2) gim2

iK2(mi/T ) and Ki denote
modified Bessel functions of the second kind. Depend-
ing on kinematic constraints further 1 ! 3, 1 ! 4 or
2 ! 3 process can be relevant, especially for a coupling
to top quarks, q̃ = t̃ [12]. In the following, we focus
on a coupling to bottom quarks, q̃ = b̃, and include the
processes stated in eq. (6).

The set of Boltzmann equations can describe both
coannihilations in and out of chemical equilibrium, with
well-known simplifications being possible in the former
case by summing both equations [5]. Out of chemi-
cal equilibrium, the coupled set of equations needs to
be solved. However, since the coupling �� is small in
this case, all terms except for the ones involving

⌦
�q̃q̃†v

↵

and �conv can be neglected for conversion-driven freeze-
out. The former process is considerably Sommerfeld
enhanced for small relative velocities, due to the at-
tractive potential generated by gluon exchange in the
color singlet configuration of the q̃q̃† pair [10]. In addi-
tion, the same potential leads to the formation of bound
states [25, 26, 32, 33]. In this work, we improve the
computations of the relic density in the coannihilation
and conversion-driven freeze-out scenario by considering
bound-state effects, including an exploration of the role
of excited states.

III. INCLUDING BOUND STATES

Within the t-channel model, bound states of q̃q̃† pairs
in the color singlet configuration exist and can contribute
to the freeze-out process. We consider an extension of the
Boltzmann equation by including a set of bound states
Bi, enumerated by an abstract index i, and with gBi in-

q̃

q̃
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tion at x = 1 (for a discussion of kinetic equilibration,see [13]). The dependence of the final freeze-out den-sity on the initial condition is also indicated in Fig. 4 bythe area shaded in red, and is remarkably small. There-fore, conversion-driven freeze-out is largely insensitive todetails of the thermal history prior to freeze-out and inparticular to a potential production during the reheatingprocess. Note that this feature distinguishes conversion-driven freeze-out from scenarios for which DM has aneven weaker coupling such that it was never in thermalcontact (e.g. freeze-in production [15]). Thus, while re-quiring a rather weak coupling, the robustness of the con-ventional freeze-out paradigm is preserved in the scenarioconsidered here.
As discussed before, conversions ⇥ � �b are driven bytwo types of processes, decay and scattering. It turnsout that quantitatively both are important for determin-ing the freeze-out density. To illustrate the importance ofscattering processes, we show the freeze-out density thatwould be obtained when only taking decays into accountby the gray dashed line in Fig. 4. Furthermore, the grayshaded area indicates the dependence on initial condi-tions that would result neglecting scatterings. We findthat scattering processes, that are active at small x, areresponsible for wiping out the dependence on the initialabundance in the full solution of the coupled Boltzmannequations.
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m�). These values lie far beyond the sensitivity of director indirect detection experiments.

4

re
la

ti
ve

ra
te

�
/H

mX1/T

X2X2 ⇥ SM

X2 ⇥ X1 SM

ab
un

da
nc

e

mX1/T

X1
X2

neq

FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relativeto the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution ofthe resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,see [13]). The dependence of the final freeze-out den-sity on the initial condition is also indicated in Fig. 4 bythe area shaded in red, and is remarkably small. There-fore, conversion-driven freeze-out is largely insensitive todetails of the thermal history prior to freeze-out and inparticular to a potential production during the reheatingprocess. Note that this feature distinguishes conversion-driven freeze-out from scenarios for which DM has aneven weaker coupling such that it was never in thermalcontact (e.g. freeze-in production [15]). Thus, while re-quiring a rather weak coupling, the robustness of the con-ventional freeze-out paradigm is preserved in the scenarioconsidered here.
As discussed before, conversions ⇥ � �b are driven bytwo types of processes, decay and scattering. It turnsout that quantitatively both are important for determin-ing the freeze-out density. To illustrate the importance ofscattering processes, we show the freeze-out density thatwould be obtained when only taking decays into accountby the gray dashed line in Fig. 4. Furthermore, the grayshaded area indicates the dependence on initial condi-tions that would result neglecting scatterings. We findthat scattering processes, that are active at small x, areresponsible for wiping out the dependence on the initialabundance in the full solution of the coupled Boltzmannequations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistentwith a relic density that matches the DM density mea-sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilationis the only e�cient annihilation channel. Hence the min-imal relic density that can be obtained for a certain point

⇥
h
2

��/10�7

0

1
0
0

1
0
0

CE

decay only

�h2 = 0.12

FIG. 4. Relic density as a function of the coupling ��, form� = 500GeV, meb = 510GeV. The dotted blue line is theresult that would be obtained when assuming CE. The redline shows the full solution including all conversion rates, thegray dashed line corresponds to the solution when only decaysare considered. The shaded areas highlight the dependenceon initial conditions, Y�(1) = (0�100)⇥ Y eq
� (1). The centralcurves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that justprovides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which thischoice provides the right relic density defines the bound-ary of the valid parameter space and is shown as a black,solid curve in Fig. 7. Below this curve a choice of ��su�ciently large to support CE would undershoot therelic density. In this region a solution with small �� ex-ists that renders the involved conversion rates just largeenough to allow for the right portion of thermal contactbetween �b and ⇥ to provide the right relic density. Thevalue of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of director indirect detection experiments.

1
10

100
1000

100

1000

10
4

� g�gq
= 1, �V

= 0.01
MV

m� [G
eV]

M
V
[G

eV
]

M
V

=
2
m

�

Figu
re 38:

Low
er excl

usio
n limits in the

m�-M
V

plan
e at 95%

CL
for

the
ATL

AS
(blu

e line
s) and

CM
S (red

line
s) mono

-jet
sear

ches
. The

limits for
the

simplifi
ed model

(sol
id line

s), f
or the

EFT
(das

hed
line

s) and
for

the
EFT

app
lyin

g the
Q-tru

ncat
ion

(dot
ted

line
s) a

re show
n. Fou

r slice
s of t

he para
meter

spac
e:

� g�gq
= 1 ,

�V
= 0.01

MV
(upp

er left
pan

el),
� g�gq

= 1, �V
= 0.5M

V
(upp

er righ
t pan

el),
� g�gq

= 0.2,
�V

= 0.01
MV

(low
er le

ft pa
nel)

and
� g�gq

= 0.2,
�V

= 0.5M
V
(low

er ri
ght

pan
el) a

re d
ispla

yed.
The

blue
shad

ed regi
on in the

left
pan

els r
epre

sent
the

para
meter

s sp
ace

not
allow

ing
a cons

isten
t so

lutio
n for t

he m
edia

tor
wid

th as a
func

tion

of M
V ,m

�,
� g�gq

.

39

Results fr
om mono-jet searches at 8

 TeV LHC

EFT Limit

▪ Re-interpret LHC Run I mono-jet + MET searches

   [ATLAS:1502.01518, CMS: 1408.3583]

▪ Simulatio
n: FeyRules/MadGraph/Phythia/Delphes

Simplified Model 

Limit

q

q̄

�

�̄

g
Q

q

q̄

�

�̄

g

Z
�

Fig
ure

2. L
eft p

anel
: Th

e mono
jet p

roce
ss fr

om
a qq̄

initi
al st

ate
in the

EFT
fram

ewo
rk.

The
con-

tact
inte

ract
ion

is re
pres

ente
d by the

shad
ed blob

. De
tails

of th
e pa

rticl
e media

ting
the

inte
ract

ion

do not
have

to be s
peci

fied.
Righ

t pa
nel:

This
show

s a UV
reso

lutio
n of th

e co
ntac

t int
erac

tion
for

an (axi
al)-v

ecto
r m

edia
tor

Z
0 , ex

chan
ged

in the
s-ch

ann
el.

The
momentu

m tran
sfer

thro
ugh

the

s-ch
ann

el is
deno

ted
by Q.

exch
ange

d in the
s-ch

ann
el. W

e rem
ain agno

stic
to th

e pr
ecise

orig
in of th

e ve
ctor

media
tor

and
its c

oup
ling

with
dark

matte
r an

d quar
ks.

One
exam

ple o
f suc

h a m
edia

tor i
s a (

axia
l)-

vect
or Z

0 , a massiv
e sp

in-o
ne v

ecto
r bo

son
from

a brok
en U(1

)
0 gaug

e sy
mmetry

[40,
41].

A seco
nd exam

ple
is a

com
posi

te v
ecto

r media
tor,

similar
to the

⇤ in QCD
[42].

In eith
er

case
, in

add
ition

to the
usua

l ter
ms in the

Stan
dard

Model
Lag

rang
ian,

the
Lag

rang
ian

with
gene

ral q
uark

inte
ract

ion
term

s is

L = �
1
4
Z
�
µ�
Z
0µ� +

1
2
m
2
med

Z
0µZ

0
µ
+ i⇥̄�

µ ⌅µ⇥
�mDM

⇥̄⇥

+ Z
0
µ
⇥̄�

µ (g⇥V
� g⇥A�

5 )⇥+ Z
0
µ

�

q

q̄�
µ (gqV

� gqA�
5 )q .

(3.1
)

Here
mmed

is th
e (a

xial)
-vec

tor m
ass t

erm
and

gV and
gA are

the
vect

or a
nd axia

l cou
plin

gs

resp
ectiv

ely.
The

dark
matte

r pa
rticl

e ⇥
is a

Dira
c fer

mion
with

mass m
DM

, neu
tral

und
er

the
Stan

dard
Model

gaug
e grou

ps.
The

sum
exte

nds
over

all q
uark

s and
for

simplici
ty,

we assu
me that

the
coup

ling
s gqV

and
gqA

are
the

sam
e for a

ll qu
arks

. While
in gene

ral,

a Z
0 from

a brok
en U(1

)
0 will

also
have

coup
ling

s to lept
ons

and
gaug

e boso
ns,

we do

not
cons

ider
them

here
as t

hey
are

not
relev

ant
for t

he mono
jet s

earc
h.
1 This

simplifi
ed

model
is si

milar
(alb

eit s
impler

) to
the

model
disc

usse
d in [31].

Sim
plifi

ed model
s of

vect
or

media
tors

have
also

been
disc

usse
d in [4, 1

8, 3
1, 4

3, 4
4].

While
the

abov
e Lag

rang
ian

allow
s for

both
vect

or a
nd axia

l-vec
tor

inte
ract

ions
, th

e

phen
omenol

ogy
and

limits f
rom

the
mono

jet s
earc

h are
similar

in both
case

s. The
refo

re

for t
he p

urpo
ses o

f cla
rity,

we f
ocus

on one:
the

axia
l-vec

tor
inte

ract
ion.

In the
rem

aind
er

of th
is ar

ticle
, we

set g⇥
V
= gqV

= 0 and
rede

fine
g⇥ ⇥

g⇥A
and

gq ⇥
ggA.

The
axia

l-vec
tor

inte
ract

ion
has

two
adva

ntag
es.

Firs
tly,

this
inte

ract
ion

is non
-zer

o for
Major

ana
dark

matte
r (the

norm
alisa

tion
of o

ur resu
lts wou

ld chan
ge by a fact

or of fo
ur in this

case
),

unli
ke the

vect
or inte

ract
ion,

whic
h vani

shes
for

Major
ana

dark
matte

r. Seco
ndly

, th
e

1We as
sum

e th
at t

he c
harg

es a
re ch

osen
so the

U(1)
0 gau

ge s
ymmetry

is an
omaly

free
. Th

is m
ay requ

ire

add
ition

al p
arti

cles
.

– 5 –

Jan Heisig (
RWTH Aachen University

)      
       

       
       

       
 10       

       
       

       
       

New Physics
 at th

e LHC, Bonn 2015

Te
xt

Rates for standard coupling
(�
=

� 0)

j
i

SM
SM

SM
�

b̃ 1
SM

b̃ 1

SM�

Freeze out!

CE
satisfied!

�
H
=

1

DPG
M
ünster 2017 - Benedikt Lülf

Coupled BM
Es

6/10

Ratesforstandard
coupling

(�
=

�0)
j i

SM
SM

SM
�

b̃1
SM

b̃1
SM �

Freezeout!

CE
satisfied!

�H
=

1

DPG
M

ünster2017
-BenediktLülf

Coupled
BM

Es

6/10

Rates for standard coupling
(�
=
� 0)

j
i

SM
SM

SM
�

b̃ 1
SM

b̃ 1

SM�

Freeze out!

CE
satisfied!

�
H
=
1

DPG
M
ünster 2017

- Benedikt Lülf

Coupled
BM

Es

6/10

Ratesforstandard
coupling

(�
=

�0)
j i

SM
SM

SM
�

b̃1
SM

b̃1
SM �

Freezeout!

CE
satisfied!

�H
=

1
DPG

M
ünster2017

-BenediktLülf

Coupled
BM

Es

6/10

pp

4

relative rate �/H

m
X

1 /T

X
2 X

2
⇥

SM

X
2
⇥

X
1
SM

abundance

m
X

1 /T

X
1

X
2

n
eq

FIG
. 3.

Left
panel:

R
ates

of
annihilation

(blue
curves)

and
conversion

(red
curves)

term
s

in
the

B
oltzm

ann
equation

relative

to
the

H
ubble

rate
as

a
function

of
x
=

m
�
/T

for
m

�
=

500
G

eV
,
m

eb
=

510
G

eV
,
�
�
⇤

2.6
⇥

10 �
7.

R
ight

panel: E
volution

of

the
resulting

abundance
(solid

curves)
of eb

(blue)
and

⇥
(red).

T
he

dashed
curves

denote
the

equilibrium
abundances.

tion
at

x
=

1
(for

a
discussion

of
kinetic

equilibration,

see
[13]).

T
he

dependence
of

the
final

freeze-out
den-

sity
on

the
initial condition

is
also

indicated
in

Fig. 4
by

the
area

shaded
in

red, and
is

rem
arkably

sm
all.

T
here-

fore, conversion-driven
freeze-out

is
largely

insensitive
to

details
of

the
therm

al history
prior

to
freeze-out

and
in

particular
to

a
potential production

during
the

reheating

process.
N

ote
that

this
feature

distinguishes
conversion-

driven
freeze-out

from
scenarios

for
w

hich
D

M
has

an

even
w

eaker
coupling

such
that

it
w

as
never

in
therm

al

contact
(e.g.

freeze-in
production

[15]).
T

hus, w
hile

re-

quiring
a

rather w
eak

coupling, the
robustness of the

con-

ventional freeze-out paradigm
is preserved

in
the

scenario

considered
here.

A
s

discussed
before, conversions

⇥
�

�b
are

driven
by

tw
o

types
of

processes,
decay

and
scattering.

It
turns

out
that

quantitatively
both

are
im

portant
for

determ
in-

ing
the

freeze-out density.
To

illustrate
the

im
portance

of

scattering
processes, w

e
show

the
freeze-out

density
that

w
ould

be
obtained

w
hen

only
taking

decays
into

account

by
the

gray
dashed

line
in

Fig. 4.
Furtherm

ore, the
gray

shaded
area

indicates
the

dependence
on

initial
condi-

tions
that

w
ould

result
neglecting

scatterings.
W

e
find

that
scattering

processes, that
are

active
at

sm
all

x, are

responsible
for

w
iping

out
the

dependence
on

the
initial

abundance
in

the
full solution

of the
coupled

B
oltzm

ann

equations.

V
IA

B
L
E

P
A

R
A

M
E
T

E
R

SP
A

C
E

W
e

w
ill

now
explore

the
param

eter
space

consistent

w
ith

a
relic

density
that

m
atches

the
D

M
density

m
ea-

sured
by

P
lanck,

�
h
2

=
0.1198

±
0.0015

[14].
In

the

considered
scenario, for

sm
all couplings, �b �b †

annihilation

is
the

only
e�

cient
annihilation

channel.
H

ence
the

m
in-

im
al relic

density
that can

be
obtained

for a
certain

point ⇥h
2

�
�
/10 �

7

0

100

100

C
E

d
ecay

on
ly

�
h
2

=
0
.1

2

FIG
.

4.
R

elic
density

as
a

function
of

the
coupling

�
� ,

for

m
�
=

500
G

eV
,
m

eb
=

510
G

eV
.

T
he

dotted
blue

line
is

the

result
that

w
ould

be
obtained

w
hen

assum
ing

C
E

.
T

he
red

line
show

s
the

full solution
including

all conversion
rates, the

gray
dashed

line
corresponds to

the
solution

w
hen

only
decays

are
considered.

T
he

shaded
areas

highlight
the

dependence

on
initial conditions,

Y
�
(1)

=
(0�

100)⇥
Y

e
q

�
(1).

T
he

central

curves
correspond

to
Y
�
(1)

=
Y

e
q

�
(1).

in
the

m
� -m

eb plane
is

the
one

for
a

coupling
�
�

that
just

provides
C

E
(but

is
still

sm
all

enough
so

that
⇥
⇥-

and

⇥ �b-annihilation
is

negligible).
T

he
curve

for
w

hich
this

choice
provides

the
right

relic
density

defines
the

bound-

ary
of the

valid
param

eter
space

and
is

show
n

as
a

black,

solid
curve

in
Fig.

7.
B

elow
this

curve
a

choice
of

�
�

su�
ciently

large
to

support
C

E
w

ould
undershoot

the

relic
density.

In
this

region
a

solution
w

ith
sm

all
�
�

ex-

ists
that

renders
the

involved
conversion

rates
just

large

enough
to

allow
for

the
right

portion
of therm

al contact

betw
een

�b
and

⇥
to

provide
the

right
relic

density.
T

he

value
of

�
�

ranges from
10 �

7
to

10 �
6

(from
sm

all to
large

m
� ).

T
hese

values
lie

far
beyond

the
sensitivity

of direct

or
indirect

detection
experim

ents.
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Left
panel:

R
ates

of
annihilation

(blue
curves)

and
conversion

(red
curves)

term
s

in
the

B
oltzm

ann
equation

relative

to
the

H
ubble

rate
as

a
function

of
x
=

m
�
/T

for
m

�
=

500
G

eV
,
m

eb
=

510
G

eV
,
�
�
⇤

2.6
⇥

10 �
7.

R
ight

panel: E
volution

of

the
resulting

abundance
(solid

curves)
of eb

(blue)
and

⇥
(red).

T
he

dashed
curves

denote
the

equilibrium
abundances.

tion
at

x
=

1
(for

a
discussion

of
kinetic

equilibration,

see
[13]).

T
he

dependence
of

the
final

freeze-out
den-

sity
on

the
initial condition

is
also

indicated
in

Fig. 4
by

the
area

shaded
in

red, and
is

rem
arkably

sm
all.

T
here-

fore, conversion-driven
freeze-out

is
largely

insensitive
to

details
of

the
therm

al history
prior

to
freeze-out

and
in

particular
to

a
potential production

during
the

reheating

process.
N

ote
that

this
feature

distinguishes
conversion-

driven
freeze-out

from
scenarios

for
w

hich
D

M
has

an

even
w

eaker
coupling

such
that

it
w

as
never

in
therm

al

contact
(e.g.

freeze-in
production

[15]).
T

hus, w
hile

re-

quiring
a

rather w
eak

coupling, the
robustness of the

con-

ventional freeze-out paradigm
is preserved

in
the

scenario

considered
here.

A
s

discussed
before, conversions

⇥
�

�b
are

driven
by

tw
o

types
of

processes,
decay

and
scattering.

It
turns

out
that

quantitatively
both

are
im

portant
for

determ
in-

ing
the

freeze-out density.
To

illustrate
the

im
portance

of

scattering
processes, w

e
show

the
freeze-out

density
that

w
ould

be
obtained

w
hen

only
taking

decays
into

account

by
the

gray
dashed

line
in

Fig. 4.
Furtherm

ore, the
gray

shaded
area

indicates
the

dependence
on

initial
condi-

tions
that

w
ould

result
neglecting

scatterings.
W

e
find

that
scattering

processes, that
are

active
at

sm
all

x, are

responsible
for

w
iping

out
the

dependence
on

the
initial

abundance
in

the
full solution

of the
coupled

B
oltzm

ann

equations.

V
IA

B
L
E

P
A

R
A

M
E
T

E
R

SP
A

C
E

W
e

w
ill

now
explore

the
param

eter
space

consistent

w
ith

a
relic

density
that

m
atches

the
D

M
density

m
ea-

sured
by

P
lanck,

�
h
2

=
0.1198

±
0.0015

[14].
In

the

considered
scenario, for

sm
all couplings, �b �b †

annihilation

is
the

only
e�

cient
annihilation

channel.
H
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FIG
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R

elic
density

as
a

function
of

the
coupling

�
� ,

for

m
�
=

500
G

eV
,
m

eb
=

510
G

eV
.

T
he

dotted
blue

line
is

the

result
that

w
ould

be
obtained

w
hen

assum
ing

C
E

.
T

he
red

line
show

s
the

full solution
including

all conversion
rates, the

gray
dashed

line
corresponds to

the
solution

w
hen

only
decays

are
considered.

T
he

shaded
areas

highlight
the

dependence

on
initial conditions,

Y
�
(1)

=
(0�

100)⇥
Y

e
q

�
(1).

T
he

central

curves
correspond

to
Y
�
(1)

=
Y

e
q

�
(1).

in
the

m
� -m

eb plane
is

the
one

for
a

coupling
�
�

that
just

provides
C

E
(but

is
still

sm
all

enough
so

that
⇥
⇥-

and

⇥ �b-annihilation
is

negligible).
T

he
curve

for
w

hich
this

choice
provides

the
right

relic
density

defines
the

bound-

ary
of the

valid
param

eter
space

and
is

show
n

as
a

black,

solid
curve

in
Fig.

7.
B

elow
this

curve
a

choice
of

�
�

su�
ciently

large
to

support
C

E
w

ould
undershoot

the

relic
density.

In
this

region
a

solution
w

ith
sm

all
�
�

ex-

ists
that

renders
the

involved
conversion

rates
just

large

enough
to

allow
for

the
right

portion
of therm

al contact

betw
een

�b
and

⇥
to

provide
the

right
relic

density.
T

he

value
of

�
�

ranges from
10 �

7
to

10 �
6

(from
sm

all to
large

m
� ).

T
hese

values
lie

far
beyond

the
sensitivity

of direct

or
indirect

detection
experim

ents.
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38:
L
ow

er
exclusion

lim
its

in
the

m
� -M

V
plane

at
95%

C
L
for

the
A
T
L
A
S
(blue

lines)
and

C
M
S
(red

lines)
m
ono-jet

searches.
T
he

lim
its

for
the

sim
plified

m
odel

(solid
lines),

for
the

E
F
T

(dashed
lines)

and
for

the
E
F
T

applying
the

Q
-truncation

(dotted
lines)

are
show

n.
Four

slices
of

the
param

eter
space: �

g
� g

q
=

1
,

�
V
=

0.01M
V
(upper

left
panel), �

g
� g

q
=

1,
�
V
=

0.5M
V
(upper

right
panel), �

g
� g

q
=

0.2,
�
V
=

0.01M
V

(low
er

left
panel)

and �
g
� g

q
=
0.2, �

V
=
0.5M

V
(low

er
right

panel)
are

displayed.
T
he

blue
shaded

region
in

the

left
panels

represent
the

param
eters

space
not

allow
ing

a
consistent

solution
for

the
m
ediator

w
idth

as
a
function

of
M

V
,m

� , �
g
� g

q .
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M
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elphes
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g

Q
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F
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L
eft

panel:
T
he

m
onojet

process
from

a
qq̄

initial state
in
the

E
F
T
fram

ew
ork.

T
he

con-

tact
interaction

is
represented

by
the

shaded
blob.

D
etails

of
the

particle
m
ediating

the
interaction

do
not

have
to

be
specified.

R
ight

panel:
T
his

show
s
a
U
V
resolution

of
the

contact
interaction

for

an
(axial)-vector

m
ediator

Z
0
,
exchanged

in
the

s-channel.
T
he

m
om

entum
transfer

through
the

s-channel
is
denoted

by
Q
.

exchanged
in
the

s-channel.
W
e
rem

ain
agnostic

to
the

precise
origin

of the
vector

m
ediator

and
its

coupling
w
ith

dark
m
atter

and
quarks.

O
ne

exam
ple

of such
a
m
ediator

is
a
(axial)-

vector
Z 0
,
a
m
assive

spin-one
vector

boson
from

a
broken

U
(1) 0

gauge
sym

m
etry

[40,
41].

A
second

exam
ple

is
a
com

posite
vector

m
ediator,

sim
ilar

to
the

⇤
in

Q
C
D
[42].

In
either

case,
in

addition
to

the
usual

term
s
in

the
Standard

M
odel

L
agrangian,

the
L
agrangian

w
ith

general
quark

interaction
term

s
is

L
=
� 1

4 Z �µ
� Z 0µ

�
+
1
2 m

2m
ed Z 0µ

Z 0µ
+
i⇥̄
� µ
⌅
µ ⇥

�
m

D
M
⇥̄
⇥

+
Z 0µ ⇥̄

� µ
(g

⇥
V
�
g
⇥
A � 5

)⇥
+
Z 0µ �

q q̄� µ
(g

qV
�
g
qA � 5

)q
.

(3.1)

H
ere

m
m
ed
is
the

(axial)-vector
m
ass

term
and

g
V
and

g
A
are

the
vector

and
axial couplings

respectively.
T
he

dark
m
atter

particle
⇥
is
a
D
irac

ferm
ion

w
ith

m
ass

m
D
M
, neutral under

the
Standard

M
odel

gauge
groups.

T
he

sum
extends

over
all

quarks
and

for
sim

plicity,

w
e
assum

e
that

the
couplings

g
qV

and
g
qA

are
the

sam
e
for

all
quarks.

W
hile

in
general,

a
Z 0

from
a
broken

U
(1) 0

w
ill

also
have

couplings
to

leptons
and

gauge
bosons,

w
e
do

not
consider

them
here

as
they

are
not

relevant
for

the
m
onojet

search. 1
T
his

sim
plified

m
odel is

sim
ilar

(albeit
sim

pler)
to

the
m
odel discussed

in
[31].

Sim
plified

m
odels

of vector

m
ediators

have
also

been
discussed

in
[4,

18,
31,

43,
44].

W
hile

the
above

L
agrangian

allow
s
for

both
vector

and
axial-vector

interactions,
the

phenom
enology

and
lim

its
from

the
m
onojet

search
are

sim
ilar

in
both

cases.
T
herefore

for
the

purposes
of
clarity,

w
e
focus

on
one:

the
axial-vector

interaction.
In

the
rem

ainder

of
this

article, w
e
set

g
⇥
V
=
g
qV

=
0
and

redefine
g
⇥ ⇥

g
⇥
A
and

g
q ⇥

g
gA .

T
he

axial-vector

interaction
has

tw
o
advantages.

F
irstly,

this
interaction

is
non-zero

for
M
ajorana

dark

m
atter

(the
norm

alisation
of

our
results

w
ould

change
by

a
factor

of
four

in
this

case),

unlike
the

vector
interaction,

w
hich

vanishes
for

M
ajorana

dark
m
atter.

Secondly,
the

1
W
e
assum

e
that

the
charges

are
chosen

so
the

U
(1) 0

gauge
sym

m
etry

is
anom

aly
free.

T
his

m
ay

require

additional
particles.

–
5
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point

⇥
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CE

decay only

�h2 = 0.12

FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.

4

ternal degrees of freedom. Within the model considered
here, the bound states are characterized by their n and
` quantum numbers, i ⌘ (n, `) and gBn` = 2` + 1, but
the discussion in this section applies to any set of bound
states in general.

We add a Boltzmann equation for the yield YBi =
nBi/s for each bound state, taking into account ionization
(or equivalently breaking) into an unbound q̃q̃† pair via

gluon or photon absorption, direct decay of the bound
state into SM particles, as well as transitions between
two bound states. In addition, the collision term in the
Boltzmann equation of the mediator q̃ picks up an extra
term due to ionization and its inverse process, recombina-
tion [or equivalently bound-state formation (BSF)]. The
changes in the Boltzmann equations compared to (2), (3)
are given by

dYBi

dx
=

1

3Hs

ds
dx

"
�i

ion

 
YBi � Y eq

Bi

Y 2

q̃

Y eq 2

q̃

!
+ �i

dec
�
YBi � Y eq

Bi

�
�

X

j 6=i

�j!i
trans

 
YBj � YBi

Y eq

Bj

Y eq

Bi

!#
, (9)

dYq̃

dx
=

✓
dYq̃

dx

◆

Eq. (3)
+

1

3Hs

ds
dx
X

i

1

2

⌦
�BSF,iv

↵✓
Y 2

q̃ � Y eq 2

q̃

YBi

Y eq

Bi

◆
. (10)

The ionization rate �i
ion is related to the thermally aver-

aged recombination cross section
⌦
�BSF,iv

↵
via the Milne

relation

�i
ion =

s

4

Y eq 2

q̃

Y eq

Bi

⌦
�BSF,iv

↵
, (11)

originating from the detailed balance condition in ther-
mal equilibrium. Indeed, the Milne relation ensures that
the ionization and recombination terms drop out in the
sum d(Yq̃ + 2

P
i YB,i)/dx, consistent with the conserva-

tion of the total number of q̃ and q̃† in absence of decays.
Note that in the non-relativistic limit

s

4

Y eq 2

q̃

Y eq

Bi

'
g2q̃
gBi

 
Tm2

q̃

2⇡mBi

!3/2

e�EBi/T , (12)

where EBi = 2mq̃ �mBi > 0 is the binding energy, and
we used that Yq̃ denotes the yield of the sum of q̃ and q̃†.
In addition, detailed balance requires

�i!j
trans = �j!i

trans
Y eq

Bj

Y eq

Bi

. (13)

Also here we can see that transition terms drop out when
summing the Boltzmann equations for all bound states,
as required.

Before discussing explicit expressions for correspond-
ing rates in Sec. IV, we investigate generic features of the
coupled set of equations.

A. Single bound state

We first recall the case of a single bound state B.
In a typical cosmological setting, the ionization and
decay rates (mediated by the strong interaction) are
much larger than H. In this case, the density of

bound states almost instantaneously adjusts to a quasi-
stationary number (from the point of view of cosmologi-
cal versus strong interaction time-scales) that can be ob-
tained by setting the left-hand side of the Boltzmann
equation for B to zero, turning it into an algebraic equa-
tion [34]. For the case of a single bound state (dropping
the index i and transition terms), one obtains

YB
Y eq

B
=

�ion Y 2

q̃ /Y
eq 2

q̃ + �dec

�ion + �dec
. (14)

Inserting this relation in eq. (10) yields the same form as
eq. (3) but with the substitution

⌦
�q̃q̃†v

↵
!
⌦
�q̃q̃†v

↵
eff =

⌦
�q̃q̃†v

↵
+
⌦
�BSFv

↵ �dec

�ion + �dec
.

(15)
This means it is sufficient to solve the Boltzmann equa-
tions for q̃ and �, while the impact of the bound state is
captured by replacing the q̃q̃† annihilation cross section
by the effective cross section.

In the limit H ⌧ �dec ⌧ �ion the ionization and re-
combination processes establish equilibrium between the
bound state and unbound q̃ (ionization equilibrium). The
corresponding rates therefore drop out of the effective
cross section, that only depends on the decay rate �dec,
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The effective cross section increases exponentially with
falling temperature, due to the energetic preference for
bound states in equilibrium. This increase stops once
the ionization rate, which itself becomes exponentially
suppressed at low temperatures, falls below the decay
rate, and ionization equilibrium breaks down. Therefore,
at low enough temperatures, the regime H ⌧ �ion ⌧
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rates are large compared to the Hubble expansion rate
H during the freeze-out process. Since the rates of all
conversion processes necessarily involve some power of
the coupling ��, the assumption of chemical equilibrium
can be violated if the coupling strength is small enough.
In that case, the conversions have to be included along

with (co-) annihilation processes in the Boltzmann equa-
tions. This scenario is known as conversion-driven freeze-
out [15], or also coscattering [16].

In general, for the minimal t-channel model considered
here, the coupled set of Boltzmann equations read [15]
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where Mpl ' 2.4⇥ 1018 GeV is the reduced Planck mass.
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and its anti-particle,
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leading to the various factors 1/2. Here gq̃ = gq̃† = Nc =
3, and fq̃ is the distribution function that is assumed
to be identical for particles and antiparticles as well as
all colors. The processes in the first line of each equation
denote the usual (co-)annihilation processes into SM par-
ticles.

The conversion terms in the second line of each equa-
tion can be split into processes of the form q̃ ! � and
q̃q̃† ! ��. The former case requires accompanying SM
particles, and can be further decomposed into 1 ! 2 and
2 ! 2 processes,
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where neq

i = T/(2⇡2) gim2

iK2(mi/T ) and Ki denote
modified Bessel functions of the second kind. Depend-
ing on kinematic constraints further 1 ! 3, 1 ! 4 or
2 ! 3 process can be relevant, especially for a coupling
to top quarks, q̃ = t̃ [12]. In the following, we focus
on a coupling to bottom quarks, q̃ = b̃, and include the
processes stated in eq. (6).

The set of Boltzmann equations can describe both
coannihilations in and out of chemical equilibrium, with
well-known simplifications being possible in the former
case by summing both equations [5]. Out of chemi-
cal equilibrium, the coupled set of equations needs to
be solved. However, since the coupling �� is small in
this case, all terms except for the ones involving

⌦
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and �conv can be neglected for conversion-driven freeze-
out. The former process is considerably Sommerfeld
enhanced for small relative velocities, due to the at-
tractive potential generated by gluon exchange in the
color singlet configuration of the q̃q̃† pair [10]. In addi-
tion, the same potential leads to the formation of bound
states [25, 26, 32, 33]. In this work, we improve the
computations of the relic density in the coannihilation
and conversion-driven freeze-out scenario by considering
bound-state effects, including an exploration of the role
of excited states.

III. INCLUDING BOUND STATES

Within the t-channel model, bound states of q̃q̃† pairs
in the color singlet configuration exist and can contribute
to the freeze-out process. We consider an extension of the
Boltzmann equation by including a set of bound states
Bi, enumerated by an abstract index i, and with gBi in-
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on a coupling to bottom quarks, q̃ = b̃, and include the
processes stated in eq. (6).
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computations of the relic density in the coannihilation
and conversion-driven freeze-out scenario by considering
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to the freeze-out process. We consider an extension of the
Boltzmann equation by including a set of bound states
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ternal degrees of freedom. Within the model considered
here, the bound states are characterized by their n and
` quantum numbers, i ⌘ (n, `) and gBn` = 2` + 1, but
the discussion in this section applies to any set of bound
states in general.

We add a Boltzmann equation for the yield YBi =
nBi/s for each bound state, taking into account ionization
(or equivalently breaking) into an unbound q̃q̃† pair via

gluon or photon absorption, direct decay of the bound
state into SM particles, as well as transitions between
two bound states. In addition, the collision term in the
Boltzmann equation of the mediator q̃ picks up an extra
term due to ionization and its inverse process, recombina-
tion [or equivalently bound-state formation (BSF)]. The
changes in the Boltzmann equations compared to (2), (3)
are given by
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originating from the detailed balance condition in ther-
mal equilibrium. Indeed, the Milne relation ensures that
the ionization and recombination terms drop out in the
sum d(Yq̃ + 2

P
i YB,i)/dx, consistent with the conserva-

tion of the total number of q̃ and q̃† in absence of decays.
Note that in the non-relativistic limit
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where EBi = 2mq̃ �mBi > 0 is the binding energy, and
we used that Yq̃ denotes the yield of the sum of q̃ and q̃†.
In addition, detailed balance requires
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Also here we can see that transition terms drop out when
summing the Boltzmann equations for all bound states,
as required.

Before discussing explicit expressions for correspond-
ing rates in Sec. IV, we investigate generic features of the
coupled set of equations.

A. Single bound state

We first recall the case of a single bound state B.
In a typical cosmological setting, the ionization and
decay rates (mediated by the strong interaction) are
much larger than H. In this case, the density of

bound states almost instantaneously adjusts to a quasi-
stationary number (from the point of view of cosmologi-
cal versus strong interaction time-scales) that can be ob-
tained by setting the left-hand side of the Boltzmann
equation for B to zero, turning it into an algebraic equa-
tion [34]. For the case of a single bound state (dropping
the index i and transition terms), one obtains
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This means it is sufficient to solve the Boltzmann equa-
tions for q̃ and �, while the impact of the bound state is
captured by replacing the q̃q̃† annihilation cross section
by the effective cross section.

In the limit H ⌧ �dec ⌧ �ion the ionization and re-
combination processes establish equilibrium between the
bound state and unbound q̃ (ionization equilibrium). The
corresponding rates therefore drop out of the effective
cross section, that only depends on the decay rate �dec,
as can be seen using the Milne relation, eq. (11),
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The effective cross section increases exponentially with
falling temperature, due to the energetic preference for
bound states in equilibrium. This increase stops once
the ionization rate, which itself becomes exponentially
suppressed at low temperatures, falls below the decay
rate, and ionization equilibrium breaks down. Therefore,
at low enough temperatures, the regime H ⌧ �ion ⌧
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rates are large compared to the Hubble expansion rate
H during the freeze-out process. Since the rates of all
conversion processes necessarily involve some power of
the coupling ��, the assumption of chemical equilibrium
can be violated if the coupling strength is small enough.
In that case, the conversions have to be included along

with (co-) annihilation processes in the Boltzmann equa-
tions. This scenario is known as conversion-driven freeze-
out [15], or also coscattering [16].

In general, for the minimal t-channel model considered
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where Mpl ' 2.4⇥ 1018 GeV is the reduced Planck mass.
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Yq̃ ⌘ (gq̃ + gq̃†)
1

s

Z
d3p

(2⇡)3
fq̃(p) , (5)

leading to the various factors 1/2. Here gq̃ = gq̃† = Nc =
3, and fq̃ is the distribution function that is assumed
to be identical for particles and antiparticles as well as
all colors. The processes in the first line of each equation
denote the usual (co-)annihilation processes into SM par-
ticles.

The conversion terms in the second line of each equa-
tion can be split into processes of the form q̃ ! � and
q̃q̃† ! ��. The former case requires accompanying SM
particles, and can be further decomposed into 1 ! 2 and
2 ! 2 processes,
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where neq
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iK2(mi/T ) and Ki denote
modified Bessel functions of the second kind. Depend-
ing on kinematic constraints further 1 ! 3, 1 ! 4 or
2 ! 3 process can be relevant, especially for a coupling
to top quarks, q̃ = t̃ [12]. In the following, we focus
on a coupling to bottom quarks, q̃ = b̃, and include the
processes stated in eq. (6).

The set of Boltzmann equations can describe both
coannihilations in and out of chemical equilibrium, with
well-known simplifications being possible in the former
case by summing both equations [5]. Out of chemi-
cal equilibrium, the coupled set of equations needs to
be solved. However, since the coupling �� is small in
this case, all terms except for the ones involving
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and �conv can be neglected for conversion-driven freeze-
out. The former process is considerably Sommerfeld
enhanced for small relative velocities, due to the at-
tractive potential generated by gluon exchange in the
color singlet configuration of the q̃q̃† pair [10]. In addi-
tion, the same potential leads to the formation of bound
states [25, 26, 32, 33]. In this work, we improve the
computations of the relic density in the coannihilation
and conversion-driven freeze-out scenario by considering
bound-state effects, including an exploration of the role
of excited states.
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in the color singlet configuration exist and can contribute
to the freeze-out process. We consider an extension of the
Boltzmann equation by including a set of bound states
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Righ

t pa
nel:

This
show

s a UV
reso

lutio
n of th

e co
ntac

t int
erac

tion
for

an (axi
al)-v

ecto
r m

edia
tor

Z
0 , ex

chan
ged

in the
s-ch

ann
el.

The
momentu

m tran
sfer

thro
ugh

the

s-ch
ann

el is
deno

ted
by Q.

exch
ange

d in the
s-ch

ann
el. W

e rem
ain agno

stic
to th

e pr
ecise

orig
in of th

e ve
ctor

media
tor

and
its c

oup
ling

with
dark

matte
r an

d quar
ks.

One
exam

ple o
f suc

h a m
edia

tor i
s a (

axia
l)-

vect
or Z

0 , a massiv
e sp

in-o
ne v

ecto
r bo

son
from

a brok
en U(1

)
0 gaug

e sy
mmetry

[40,
41].

A seco
nd exam

ple
is a

com
posi

te v
ecto

r media
tor,

similar
to the

⇤ in QCD
[42].

In eith
er

case
, in

add
ition

to the
usua

l ter
ms in the

Stan
dard

Model
Lag

rang
ian,

the
Lag

rang
ian

with
gene

ral q
uark

inte
ract

ion
term

s is

L = �
1
4
Z
�
µ�
Z
0µ� +

1
2
m
2
med

Z
0µZ

0
µ
+ i⇥̄�

µ ⌅µ⇥
�mDM

⇥̄⇥

+ Z
0
µ
⇥̄�

µ (g⇥V
� g⇥A�

5 )⇥+ Z
0
µ

�

q

q̄�
µ (gqV

� gqA�
5 )q .

(3.1
)

Here
mmed

is th
e (a

xial)
-vec

tor m
ass t

erm
and

gV and
gA are

the
vect

or a
nd axia

l cou
plin

gs

resp
ectiv

ely.
The

dark
matte

r pa
rticl

e ⇥
is a

Dira
c fer

mion
with

mass m
DM

, neu
tral

und
er

the
Stan

dard
Model

gaug
e grou

ps.
The

sum
exte

nds
over

all q
uark

s and
for

simplici
ty,

we assu
me that

the
coup

ling
s gqV

and
gqA

are
the

sam
e for a

ll qu
arks

. While
in gene

ral,

a Z
0 from

a brok
en U(1

)
0 will

also
have

coup
ling

s to lept
ons

and
gaug

e boso
ns,

we do

not
cons

ider
them

here
as t

hey
are

not
relev

ant
for t

he mono
jet s

earc
h.
1 This

simplifi
ed

model
is si

milar
(alb

eit s
impler

) to
the

model
disc

usse
d in [31].

Sim
plifi

ed model
s of

vect
or

media
tors

have
also

been
disc

usse
d in [4, 1

8, 3
1, 4

3, 4
4].

While
the

abov
e Lag

rang
ian

allow
s for

both
vect

or a
nd axia

l-vec
tor

inte
ract

ions
, th

e

phen
omenol

ogy
and

limits f
rom

the
mono

jet s
earc

h are
similar

in both
case

s. The
refo

re

for t
he p

urpo
ses o

f cla
rity,

we f
ocus

on one:
the

axia
l-vec

tor
inte

ract
ion.

In the
rem

aind
er

of th
is ar

ticle
, we

set g⇥
V
= gqV

= 0 and
rede

fine
g⇥ ⇥

g⇥A
and

gq ⇥
ggA.

The
axia

l-vec
tor

inte
ract

ion
has

two
adva

ntag
es.

Firs
tly,

this
inte

ract
ion

is non
-zer

o for
Major

ana
dark

matte
r (the

norm
alisa

tion
of o

ur resu
lts wou

ld chan
ge by a fact

or of fo
ur in this

case
),

unli
ke the

vect
or inte

ract
ion,

whic
h vani

shes
for

Major
ana

dark
matte

r. Seco
ndly

, th
e

1We as
sum

e th
at t

he c
harg

es a
re ch

osen
so the

U(1)
0 gau

ge s
ymmetry

is an
omaly

free
. Th

is m
ay requ

ire

add
ition

al p
arti

cles
.
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Jan Heisig (
RWTH Aachen University

)      
       

       
       

       
 10       

       
       

       
       

New Physics
 at th

e LHC, Bonn 2015

Te
xt

Rates for standard coupling
(�
=

� 0)

j
i

SM
SM

SM
�

b̃ 1
SM

b̃ 1

SM�

Freeze out!

CE
satisfied!

�
H
=

1

DPG
M
ünster 2017 - Benedikt Lülf

Coupled BM
Es

6/10

Ratesforstandard
coupling

(�
=

�0)
j i

SM
SM

SM
�

b̃1
SM

b̃1
SM �

Freezeout!

CE
satisfied!

�H
=

1

DPG
M

ünster2017
-BenediktLülf

Coupled
BM

Es

6/10

Rates for standard coupling
(�
=
� 0)

j
i

SM
SM

SM
�

b̃ 1
SM

b̃ 1

SM�

Freeze out!

CE
satisfied!

�
H
=
1

DPG
M
ünster 2017

- Benedikt Lülf

Coupled
BM

Es

6/10

Ratesforstandard
coupling

(�
=

�0)
j i

SM
SM

SM
�

b̃1
SM

b̃1
SM �

Freezeout!

CE
satisfied!

�H
=

1
DPG

M
ünster2017

-BenediktLülf

Coupled
BM

Es

6/10

pp

4

relative rate �/H

m
X

1 /T

X
2 X

2
⇥

SM

X
2
⇥

X
1
SM

abundance

m
X

1 /T

X
1

X
2

n
eq

FIG
. 3.

Left
panel:

R
ates

of
annihilation

(blue
curves)

and
conversion

(red
curves)

term
s

in
the

B
oltzm

ann
equation

relative

to
the

H
ubble

rate
as

a
function

of
x
=

m
�
/T

for
m

�
=

500
G

eV
,
m

eb
=

510
G

eV
,
�
�
⇤

2.6
⇥

10 �
7.

R
ight

panel: E
volution

of

the
resulting

abundance
(solid

curves)
of eb

(blue)
and

⇥
(red).

T
he

dashed
curves

denote
the

equilibrium
abundances.

tion
at

x
=

1
(for

a
discussion

of
kinetic

equilibration,

see
[13]).

T
he

dependence
of

the
final

freeze-out
den-

sity
on

the
initial condition

is
also

indicated
in

Fig. 4
by

the
area

shaded
in

red, and
is

rem
arkably

sm
all.

T
here-

fore, conversion-driven
freeze-out

is
largely

insensitive
to

details
of

the
therm

al history
prior

to
freeze-out

and
in

particular
to

a
potential production

during
the

reheating

process.
N

ote
that

this
feature

distinguishes
conversion-

driven
freeze-out

from
scenarios

for
w

hich
D

M
has

an

even
w

eaker
coupling

such
that

it
w

as
never

in
therm

al

contact
(e.g.

freeze-in
production

[15]).
T

hus, w
hile

re-

quiring
a

rather w
eak

coupling, the
robustness of the

con-

ventional freeze-out paradigm
is preserved

in
the

scenario

considered
here.

A
s

discussed
before, conversions

⇥
�

�b
are

driven
by

tw
o

types
of

processes,
decay

and
scattering.

It
turns

out
that

quantitatively
both

are
im

portant
for

determ
in-

ing
the

freeze-out density.
To

illustrate
the

im
portance

of

scattering
processes, w

e
show

the
freeze-out

density
that

w
ould

be
obtained

w
hen

only
taking

decays
into

account

by
the

gray
dashed

line
in

Fig. 4.
Furtherm

ore, the
gray

shaded
area

indicates
the

dependence
on

initial
condi-

tions
that

w
ould

result
neglecting

scatterings.
W

e
find

that
scattering

processes, that
are

active
at

sm
all

x, are

responsible
for

w
iping

out
the

dependence
on

the
initial

abundance
in

the
full solution

of the
coupled

B
oltzm

ann

equations.

V
IA

B
L
E

P
A

R
A

M
E
T

E
R

SP
A

C
E

W
e

w
ill

now
explore

the
param

eter
space

consistent

w
ith

a
relic

density
that

m
atches

the
D

M
density

m
ea-

sured
by

P
lanck,

�
h
2

=
0.1198

±
0.0015

[14].
In

the

considered
scenario, for

sm
all couplings, �b �b †

annihilation

is
the

only
e�

cient
annihilation

channel.
H

ence
the
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in-
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al relic

density
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be
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for a
certain

point ⇥h
2
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R

elic
density

as
a

function
of

the
coupling

�
� ,

for

m
�
=

500
G

eV
,
m

eb
=

510
G

eV
.

T
he

dotted
blue

line
is

the

result
that

w
ould

be
obtained

w
hen

assum
ing

C
E

.
T

he
red

line
show

s
the

full solution
including

all conversion
rates, the

gray
dashed

line
corresponds to

the
solution

w
hen

only
decays

are
considered.

T
he

shaded
areas

highlight
the

dependence

on
initial conditions,

Y
�
(1)

=
(0�

100)⇥
Y

e
q

�
(1).

T
he

central

curves
correspond

to
Y
�
(1)

=
Y

e
q

�
(1).

in
the

m
� -m

eb plane
is

the
one

for
a

coupling
�
�

that
just

provides
C

E
(but

is
still

sm
all

enough
so

that
⇥
⇥-

and

⇥ �b-annihilation
is

negligible).
T

he
curve

for
w

hich
this

choice
provides

the
right

relic
density

defines
the

bound-

ary
of the

valid
param

eter
space

and
is

show
n

as
a

black,

solid
curve

in
Fig.

7.
B

elow
this

curve
a

choice
of

�
�

su�
ciently

large
to

support
C

E
w

ould
undershoot

the

relic
density.

In
this

region
a

solution
w

ith
sm

all
�
�

ex-

ists
that

renders
the

involved
conversion

rates
just

large

enough
to

allow
for

the
right

portion
of therm

al contact

betw
een
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and
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to

provide
the

right
relic

density.
T

he

value
of

�
�

ranges from
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7
to
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6

(from
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all to
large

m
� ).

T
hese

values
lie

far
beyond

the
sensitivity

of direct

or
indirect

detection
experim

ents.
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38:
L
ow

er
exclusion

lim
its

in
the

m
� -M

V
plane

at
95%

C
L
for

the
A
T
L
A
S
(blue

lines)
and

C
M
S
(red

lines)
m
ono-jet

searches.
T
he

lim
its

for
the

sim
plified

m
odel

(solid
lines),

for
the

E
F
T

(dashed
lines)

and
for

the
E
F
T

applying
the

Q
-truncation

(dotted
lines)

are
show

n.
Four

slices
of

the
param

eter
space: �

g
� g

q
=

1
,

�
V
=

0.01M
V
(upper

left
panel), �

g
� g

q
=

1,
�
V
=

0.5M
V
(upper

right
panel), �

g
� g

q
=

0.2,
�
V
=

0.01M
V

(low
er

left
panel)

and �
g
� g

q
=
0.2, �

V
=
0.5M

V
(low

er
right

panel)
are

displayed.
T
he

blue
shaded

region
in

the

left
panels

represent
the

param
eters

space
not

allow
ing

a
consistent

solution
for

the
m
ediator

w
idth

as
a
function

of
M

V
,m

� , �
g
� g

q .
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Results from
 m

ono-jet searches at 8 TeV LH
C

EFT Lim
it

▪ Re-interpret LH
C

 Run I m
ono-jet + M

ET searches

   [ATLA
S:1502.01518, C

M
S: 1408.3583]

▪ Sim
ulation: FeyRules/M

adG
raph/Phythia/D

elphes

Sim
plified M

odel 

Lim
it
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Q
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F
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L
eft

panel:
T
he

m
onojet

process
from

a
qq̄

initial state
in
the

E
F
T
fram

ew
ork.

T
he

con-

tact
interaction

is
represented

by
the

shaded
blob.

D
etails

of
the

particle
m
ediating

the
interaction

do
not

have
to

be
specified.

R
ight

panel:
T
his

show
s
a
U
V
resolution

of
the

contact
interaction

for

an
(axial)-vector

m
ediator

Z
0
,
exchanged

in
the

s-channel.
T
he

m
om

entum
transfer

through
the

s-channel
is
denoted

by
Q
.

exchanged
in
the

s-channel.
W
e
rem

ain
agnostic

to
the

precise
origin

of the
vector

m
ediator

and
its

coupling
w
ith

dark
m
atter

and
quarks.

O
ne

exam
ple

of such
a
m
ediator

is
a
(axial)-

vector
Z 0
,
a
m
assive

spin-one
vector

boson
from

a
broken

U
(1) 0

gauge
sym

m
etry

[40,
41].

A
second

exam
ple

is
a
com

posite
vector

m
ediator,

sim
ilar

to
the

⇤
in

Q
C
D
[42].

In
either

case,
in

addition
to

the
usual

term
s
in

the
Standard

M
odel

L
agrangian,

the
L
agrangian

w
ith

general
quark

interaction
term

s
is

L
=
� 1

4 Z �µ
� Z 0µ

�
+
1
2 m

2m
ed Z 0µ

Z 0µ
+
i⇥̄
� µ
⌅
µ ⇥

�
m

D
M
⇥̄
⇥

+
Z 0µ ⇥̄

� µ
(g

⇥
V
�
g
⇥
A � 5

)⇥
+
Z 0µ �

q q̄� µ
(g

qV
�
g
qA � 5

)q
.

(3.1)

H
ere

m
m
ed
is
the

(axial)-vector
m
ass

term
and

g
V
and

g
A
are

the
vector

and
axial couplings

respectively.
T
he

dark
m
atter

particle
⇥
is
a
D
irac

ferm
ion

w
ith

m
ass

m
D
M
, neutral under

the
Standard

M
odel

gauge
groups.

T
he

sum
extends

over
all

quarks
and

for
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plicity,

w
e
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e
that

the
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g
qV

and
g
qA

are
the

sam
e
for

all
quarks.
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hile

in
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a
Z 0

from
a
broken

U
(1) 0
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ill

also
have

couplings
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gauge
bosons,
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e
do

not
consider
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here

as
they

are
not

relevant
for

the
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search. 1
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his

sim
plified
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odel is
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(albeit
sim

pler)
to

the
m
odel discussed

in
[31].
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plified
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odels

of vector
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ediators

have
also

been
discussed

in
[4,

18,
31,

43,
44].
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set
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⇥
V
=
g
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=
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point

⇥
h
2

��/10�7

0

1
0
0

1
0
0

CE

decay only

�h2 = 0.12

FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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rates are large compared to the Hubble expansion rate
H during the freeze-out process. Since the rates of all
conversion processes necessarily involve some power of
the coupling ��, the assumption of chemical equilibrium
can be violated if the coupling strength is small enough.
In that case, the conversions have to be included along

with (co-) annihilation processes in the Boltzmann equa-
tions. This scenario is known as conversion-driven freeze-
out [15], or also coscattering [16].

In general, for the minimal t-channel model considered
here, the coupled set of Boltzmann equations read [15]
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where x = m�/T and Yi = ni/s, with number density ni

and entropy density s, with
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where Mpl ' 2.4⇥ 1018 GeV is the reduced Planck mass.
Yq̃ represents the summed contribution of the mediator
and its anti-particle,

Yq̃ ⌘ (gq̃ + gq̃†)
1

s

Z
d3p

(2⇡)3
fq̃(p) , (5)

leading to the various factors 1/2. Here gq̃ = gq̃† = Nc =
3, and fq̃ is the distribution function that is assumed
to be identical for particles and antiparticles as well as
all colors. The processes in the first line of each equation
denote the usual (co-)annihilation processes into SM par-
ticles.

The conversion terms in the second line of each equa-
tion can be split into processes of the form q̃ ! � and
q̃q̃† ! ��. The former case requires accompanying SM
particles, and can be further decomposed into 1 ! 2 and
2 ! 2 processes,
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where neq

i = T/(2⇡2) gim2

iK2(mi/T ) and Ki denote
modified Bessel functions of the second kind. Depend-
ing on kinematic constraints further 1 ! 3, 1 ! 4 or
2 ! 3 process can be relevant, especially for a coupling
to top quarks, q̃ = t̃ [12]. In the following, we focus
on a coupling to bottom quarks, q̃ = b̃, and include the
processes stated in eq. (6).

The set of Boltzmann equations can describe both
coannihilations in and out of chemical equilibrium, with
well-known simplifications being possible in the former
case by summing both equations [5]. Out of chemi-
cal equilibrium, the coupled set of equations needs to
be solved. However, since the coupling �� is small in
this case, all terms except for the ones involving

⌦
�q̃q̃†v

↵

and �conv can be neglected for conversion-driven freeze-
out. The former process is considerably Sommerfeld
enhanced for small relative velocities, due to the at-
tractive potential generated by gluon exchange in the
color singlet configuration of the q̃q̃† pair [10]. In addi-
tion, the same potential leads to the formation of bound
states [25, 26, 32, 33]. In this work, we improve the
computations of the relic density in the coannihilation
and conversion-driven freeze-out scenario by considering
bound-state effects, including an exploration of the role
of excited states.

III. INCLUDING BOUND STATES

Within the t-channel model, bound states of q̃q̃† pairs
in the color singlet configuration exist and can contribute
to the freeze-out process. We consider an extension of the
Boltzmann equation by including a set of bound states
Bi, enumerated by an abstract index i, and with gBi in-
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leading to the various factors 1/2. Here gq̃ = gq̃† = Nc =
3, and fq̃ is the distribution function that is assumed
to be identical for particles and antiparticles as well as
all colors. The processes in the first line of each equation
denote the usual (co-)annihilation processes into SM par-
ticles.

The conversion terms in the second line of each equa-
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modified Bessel functions of the second kind. Depend-
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2 ! 3 process can be relevant, especially for a coupling
to top quarks, q̃ = t̃ [12]. In the following, we focus
on a coupling to bottom quarks, q̃ = b̃, and include the
processes stated in eq. (6).

The set of Boltzmann equations can describe both
coannihilations in and out of chemical equilibrium, with
well-known simplifications being possible in the former
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be solved. However, since the coupling �� is small in
this case, all terms except for the ones involving
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and �conv can be neglected for conversion-driven freeze-
out. The former process is considerably Sommerfeld
enhanced for small relative velocities, due to the at-
tractive potential generated by gluon exchange in the
color singlet configuration of the q̃q̃† pair [10]. In addi-
tion, the same potential leads to the formation of bound
states [25, 26, 32, 33]. In this work, we improve the
computations of the relic density in the coannihilation
and conversion-driven freeze-out scenario by considering
bound-state effects, including an exploration of the role
of excited states.
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in the color singlet configuration exist and can contribute
to the freeze-out process. We consider an extension of the
Boltzmann equation by including a set of bound states
Bi, enumerated by an abstract index i, and with gBi in-

3

rates are large compared to the Hubble expansion rate
H during the freeze-out process. Since the rates of all
conversion processes necessarily involve some power of
the coupling ��, the assumption of chemical equilibrium
can be violated if the coupling strength is small enough.
In that case, the conversions have to be included along

with (co-) annihilation processes in the Boltzmann equa-
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3, and fq̃ is the distribution function that is assumed
to be identical for particles and antiparticles as well as
all colors. The processes in the first line of each equation
denote the usual (co-)annihilation processes into SM par-
ticles.
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tion can be split into processes of the form q̃ ! � and
q̃q̃† ! ��. The former case requires accompanying SM
particles, and can be further decomposed into 1 ! 2 and
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modified Bessel functions of the second kind. Depend-
ing on kinematic constraints further 1 ! 3, 1 ! 4 or
2 ! 3 process can be relevant, especially for a coupling
to top quarks, q̃ = t̃ [12]. In the following, we focus
on a coupling to bottom quarks, q̃ = b̃, and include the
processes stated in eq. (6).

The set of Boltzmann equations can describe both
coannihilations in and out of chemical equilibrium, with
well-known simplifications being possible in the former
case by summing both equations [5]. Out of chemi-
cal equilibrium, the coupled set of equations needs to
be solved. However, since the coupling �� is small in
this case, all terms except for the ones involving
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and �conv can be neglected for conversion-driven freeze-
out. The former process is considerably Sommerfeld
enhanced for small relative velocities, due to the at-
tractive potential generated by gluon exchange in the
color singlet configuration of the q̃q̃† pair [10]. In addi-
tion, the same potential leads to the formation of bound
states [25, 26, 32, 33]. In this work, we improve the
computations of the relic density in the coannihilation
and conversion-driven freeze-out scenario by considering
bound-state effects, including an exploration of the role
of excited states.

III. INCLUDING BOUND STATES

Within the t-channel model, bound states of q̃q̃† pairs
in the color singlet configuration exist and can contribute
to the freeze-out process. We consider an extension of the
Boltzmann equation by including a set of bound states
Bi, enumerated by an abstract index i, and with gBi in-
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In that limit, any bound state that forms decays almost
immediately, and therefore the effective cross section is
only sensitive to the recombination cross section

⌦
�BSFv

↵
.

B. Multiple bound states

Let us now generalize the previous findings to a set of
bound states. When assuming as before that all relevant
ionization, decay and transition rates are much larger
than H, we obtain a set of coupled algebraic equations
for the yields YBi from setting the left-hand sides of the
Boltzmann equations (9) to zero. It can be written as
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where we used eq. (13) and introduced the total width of
Bi,

�i = �i
ion + �i

dec +
X

j 6=i

�i!j
trans . (19)

From the structure of the Boltzmann equation, it is a
priori not clear whether the impact of bound states can
be captured by an effective cross section when inserting
the solution to eq. (18) into the Boltzmann equation (10)
for q̃. However, this turns out to be the case in general.
To see it, we rewrite eq. (18) in the form

yi � 1�
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�i
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where we defined yi ⌘ YB,i/Y
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B,i and y ⌘ Yq̃/Y
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the solution for the bound state abundances reads
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�j
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Inserting it in the Boltzmann equation (10) for q̃ indeed
yields a contribution that has the form of the annihilation
term, involving in particular a factor y2 � 1. Therefore,
provided the rates are large compared to the expansion
rate, the impact of a set of bound states can in general
be captured by an effective cross section, given by
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The effective cross section, eq. (23), describes the im-
pact of an arbitrary number of bound states on the q̃
abundance, that can all individually be populated by
recombination processes, decay into SM particles, and
undergo a network of transitions among them, with the
corresponding rates entering in the determination of Ri.
For a given setup, the Ri can be determined numerically.
Nevertheless, it is instructive to study two limiting cases
analytically.

1. No transition limit

In the limit �i!j
trans ⌧ �i

dec,�
i
ion we can neglect the tran-

sition terms, such that Mij ! �ij becomes the unity ma-
trix, and the total width depends only on ionization and
decay rates. The effective cross section becomes
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In the absence of transitions, each bound state therefore
gives a contribution to the effective cross section that is
analog to the case for a single bound state, see eq. (15).
In particular, each summand exhibits the limiting cases
of ionization equilibrium (�i

ion � �i
dec) or instantaneous

decay (�i
ion ⌧ �i

dec) in close analogy to the case of a
single bound state.

2. Efficient transition limit

In the limit �i!j
trans � �i

dec,�
i
ion, we expect that the

transitions establish chemical equilibrium among the
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which is indeed a solution to eq. (18) in that limit. The
most straightforward way to derive the effective cross sec-
tion in that limit is to proceed similar to the case of
coannihilations [5], introducing
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i
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and summing up all Boltzmann equations (9) for the Bi,
such that the transition terms drop out. Using (26) to
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rates are large compared to the Hubble expansion rate
H during the freeze-out process. Since the rates of all
conversion processes necessarily involve some power of
the coupling ��, the assumption of chemical equilibrium
can be violated if the coupling strength is small enough.
In that case, the conversions have to be included along

with (co-) annihilation processes in the Boltzmann equa-
tions. This scenario is known as conversion-driven freeze-
out [15], or also coscattering [16].

In general, for the minimal t-channel model considered
here, the coupled set of Boltzmann equations read [15]
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where x = m�/T and Yi = ni/s, with number density ni

and entropy density s, with
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where Mpl ' 2.4⇥ 1018 GeV is the reduced Planck mass.
Yq̃ represents the summed contribution of the mediator
and its anti-particle,
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1

s

Z
d3p

(2⇡)3
fq̃(p) , (5)

leading to the various factors 1/2. Here gq̃ = gq̃† = Nc =
3, and fq̃ is the distribution function that is assumed
to be identical for particles and antiparticles as well as
all colors. The processes in the first line of each equation
denote the usual (co-)annihilation processes into SM par-
ticles.

The conversion terms in the second line of each equa-
tion can be split into processes of the form q̃ ! � and
q̃q̃† ! ��. The former case requires accompanying SM
particles, and can be further decomposed into 1 ! 2 and
2 ! 2 processes,

�conv = �q̃!�q + �q̃X!�Y , (6)

with

�q̃!�q ⌘ �
⌦ 1
�

↵
= �

K1 (mq̃/T )

K2 (mq̃/T )
, (7)

where � is the decay rate at rest, and
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where neq

i = T/(2⇡2) gim2

iK2(mi/T ) and Ki denote
modified Bessel functions of the second kind. Depend-
ing on kinematic constraints further 1 ! 3, 1 ! 4 or
2 ! 3 process can be relevant, especially for a coupling
to top quarks, q̃ = t̃ [12]. In the following, we focus
on a coupling to bottom quarks, q̃ = b̃, and include the
processes stated in eq. (6).

The set of Boltzmann equations can describe both
coannihilations in and out of chemical equilibrium, with
well-known simplifications being possible in the former
case by summing both equations [5]. Out of chemi-
cal equilibrium, the coupled set of equations needs to
be solved. However, since the coupling �� is small in
this case, all terms except for the ones involving

⌦
�q̃q̃†v

↵

and �conv can be neglected for conversion-driven freeze-
out. The former process is considerably Sommerfeld
enhanced for small relative velocities, due to the at-
tractive potential generated by gluon exchange in the
color singlet configuration of the q̃q̃† pair [10]. In addi-
tion, the same potential leads to the formation of bound
states [25, 26, 32, 33]. In this work, we improve the
computations of the relic density in the coannihilation
and conversion-driven freeze-out scenario by considering
bound-state effects, including an exploration of the role
of excited states.

III. INCLUDING BOUND STATES

Within the t-channel model, bound states of q̃q̃† pairs
in the color singlet configuration exist and can contribute
to the freeze-out process. We consider an extension of the
Boltzmann equation by including a set of bound states
Bi, enumerated by an abstract index i, and with gBi in-
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ternal degrees of freedom. Within the model considered
here, the bound states are characterized by their n and
` quantum numbers, i ⌘ (n, `) and gBn` = 2` + 1, but
the discussion in this section applies to any set of bound
states in general.

We add a Boltzmann equation for the yield YBi =
nBi/s for each bound state, taking into account ionization
(or equivalently breaking) into an unbound q̃q̃† pair via

gluon or photon absorption, direct decay of the bound
state into SM particles, as well as transitions between
two bound states. In addition, the collision term in the
Boltzmann equation of the mediator q̃ picks up an extra
term due to ionization and its inverse process, recombina-
tion [or equivalently bound-state formation (BSF)]. The
changes in the Boltzmann equations compared to (2), (3)
are given by
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The ionization rate �i
ion is related to the thermally aver-

aged recombination cross section
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originating from the detailed balance condition in ther-
mal equilibrium. Indeed, the Milne relation ensures that
the ionization and recombination terms drop out in the
sum d(Yq̃ + 2

P
i YB,i)/dx, consistent with the conserva-

tion of the total number of q̃ and q̃† in absence of decays.
Note that in the non-relativistic limit
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where EBi = 2mq̃ �mBi > 0 is the binding energy, and
we used that Yq̃ denotes the yield of the sum of q̃ and q̃†.
In addition, detailed balance requires

�i!j
trans = �j!i

trans
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Also here we can see that transition terms drop out when
summing the Boltzmann equations for all bound states,
as required.

Before discussing explicit expressions for correspond-
ing rates in Sec. IV, we investigate generic features of the
coupled set of equations.

A. Single bound state

We first recall the case of a single bound state B.
In a typical cosmological setting, the ionization and
decay rates (mediated by the strong interaction) are
much larger than H. In this case, the density of

bound states almost instantaneously adjusts to a quasi-
stationary number (from the point of view of cosmologi-
cal versus strong interaction time-scales) that can be ob-
tained by setting the left-hand side of the Boltzmann
equation for B to zero, turning it into an algebraic equa-
tion [34]. For the case of a single bound state (dropping
the index i and transition terms), one obtains
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Inserting this relation in eq. (10) yields the same form as
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This means it is sufficient to solve the Boltzmann equa-
tions for q̃ and �, while the impact of the bound state is
captured by replacing the q̃q̃† annihilation cross section
by the effective cross section.

In the limit H ⌧ �dec ⌧ �ion the ionization and re-
combination processes establish equilibrium between the
bound state and unbound q̃ (ionization equilibrium). The
corresponding rates therefore drop out of the effective
cross section, that only depends on the decay rate �dec,
as can be seen using the Milne relation, eq. (11),
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The effective cross section increases exponentially with
falling temperature, due to the energetic preference for
bound states in equilibrium. This increase stops once
the ionization rate, which itself becomes exponentially
suppressed at low temperatures, falls below the decay
rate, and ionization equilibrium breaks down. Therefore,
at low enough temperatures, the regime H ⌧ �ion ⌧
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rates are large compared to the Hubble expansion rate
H during the freeze-out process. Since the rates of all
conversion processes necessarily involve some power of
the coupling ��, the assumption of chemical equilibrium
can be violated if the coupling strength is small enough.
In that case, the conversions have to be included along

with (co-) annihilation processes in the Boltzmann equa-
tions. This scenario is known as conversion-driven freeze-
out [15], or also coscattering [16].

In general, for the minimal t-channel model considered
here, the coupled set of Boltzmann equations read [15]
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where x = m�/T and Yi = ni/s, with number density ni

and entropy density s, with
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where Mpl ' 2.4⇥ 1018 GeV is the reduced Planck mass.
Yq̃ represents the summed contribution of the mediator
and its anti-particle,

Yq̃ ⌘ (gq̃ + gq̃†)
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leading to the various factors 1/2. Here gq̃ = gq̃† = Nc =
3, and fq̃ is the distribution function that is assumed
to be identical for particles and antiparticles as well as
all colors. The processes in the first line of each equation
denote the usual (co-)annihilation processes into SM par-
ticles.

The conversion terms in the second line of each equa-
tion can be split into processes of the form q̃ ! � and
q̃q̃† ! ��. The former case requires accompanying SM
particles, and can be further decomposed into 1 ! 2 and
2 ! 2 processes,

�conv = �q̃!�q + �q̃X!�Y , (6)

with
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where neq

i = T/(2⇡2) gim2

iK2(mi/T ) and Ki denote
modified Bessel functions of the second kind. Depend-
ing on kinematic constraints further 1 ! 3, 1 ! 4 or
2 ! 3 process can be relevant, especially for a coupling
to top quarks, q̃ = t̃ [12]. In the following, we focus
on a coupling to bottom quarks, q̃ = b̃, and include the
processes stated in eq. (6).

The set of Boltzmann equations can describe both
coannihilations in and out of chemical equilibrium, with
well-known simplifications being possible in the former
case by summing both equations [5]. Out of chemi-
cal equilibrium, the coupled set of equations needs to
be solved. However, since the coupling �� is small in
this case, all terms except for the ones involving
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and �conv can be neglected for conversion-driven freeze-
out. The former process is considerably Sommerfeld
enhanced for small relative velocities, due to the at-
tractive potential generated by gluon exchange in the
color singlet configuration of the q̃q̃† pair [10]. In addi-
tion, the same potential leads to the formation of bound
states [25, 26, 32, 33]. In this work, we improve the
computations of the relic density in the coannihilation
and conversion-driven freeze-out scenario by considering
bound-state effects, including an exploration of the role
of excited states.

III. INCLUDING BOUND STATES

Within the t-channel model, bound states of q̃q̃† pairs
in the color singlet configuration exist and can contribute
to the freeze-out process. We consider an extension of the
Boltzmann equation by including a set of bound states
Bi, enumerated by an abstract index i, and with gBi in-
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rates are large compared to the Hubble expansion rate
H during the freeze-out process. Since the rates of all
conversion processes necessarily involve some power of
the coupling ��, the assumption of chemical equilibrium
can be violated if the coupling strength is small enough.
In that case, the conversions have to be included along

with (co-) annihilation processes in the Boltzmann equa-
tions. This scenario is known as conversion-driven freeze-
out [15], or also coscattering [16].

In general, for the minimal t-channel model considered
here, the coupled set of Boltzmann equations read [15]
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where Mpl ' 2.4⇥ 1018 GeV is the reduced Planck mass.
Yq̃ represents the summed contribution of the mediator
and its anti-particle,
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leading to the various factors 1/2. Here gq̃ = gq̃† = Nc =
3, and fq̃ is the distribution function that is assumed
to be identical for particles and antiparticles as well as
all colors. The processes in the first line of each equation
denote the usual (co-)annihilation processes into SM par-
ticles.

The conversion terms in the second line of each equa-
tion can be split into processes of the form q̃ ! � and
q̃q̃† ! ��. The former case requires accompanying SM
particles, and can be further decomposed into 1 ! 2 and
2 ! 2 processes,
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where neq

i = T/(2⇡2) gim2

iK2(mi/T ) and Ki denote
modified Bessel functions of the second kind. Depend-
ing on kinematic constraints further 1 ! 3, 1 ! 4 or
2 ! 3 process can be relevant, especially for a coupling
to top quarks, q̃ = t̃ [12]. In the following, we focus
on a coupling to bottom quarks, q̃ = b̃, and include the
processes stated in eq. (6).

The set of Boltzmann equations can describe both
coannihilations in and out of chemical equilibrium, with
well-known simplifications being possible in the former
case by summing both equations [5]. Out of chemi-
cal equilibrium, the coupled set of equations needs to
be solved. However, since the coupling �� is small in
this case, all terms except for the ones involving
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and �conv can be neglected for conversion-driven freeze-
out. The former process is considerably Sommerfeld
enhanced for small relative velocities, due to the at-
tractive potential generated by gluon exchange in the
color singlet configuration of the q̃q̃† pair [10]. In addi-
tion, the same potential leads to the formation of bound
states [25, 26, 32, 33]. In this work, we improve the
computations of the relic density in the coannihilation
and conversion-driven freeze-out scenario by considering
bound-state effects, including an exploration of the role
of excited states.

III. INCLUDING BOUND STATES

Within the t-channel model, bound states of q̃q̃† pairs
in the color singlet configuration exist and can contribute
to the freeze-out process. We consider an extension of the
Boltzmann equation by including a set of bound states
Bi, enumerated by an abstract index i, and with gBi in-
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rates are large compared to the Hubble expansion rate
H during the freeze-out process. Since the rates of all
conversion processes necessarily involve some power of
the coupling ��, the assumption of chemical equilibrium
can be violated if the coupling strength is small enough.
In that case, the conversions have to be included along

with (co-) annihilation processes in the Boltzmann equa-
tions. This scenario is known as conversion-driven freeze-
out [15], or also coscattering [16].

In general, for the minimal t-channel model considered
here, the coupled set of Boltzmann equations read [15]
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where Mpl ' 2.4⇥ 1018 GeV is the reduced Planck mass.
Yq̃ represents the summed contribution of the mediator
and its anti-particle,
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leading to the various factors 1/2. Here gq̃ = gq̃† = Nc =
3, and fq̃ is the distribution function that is assumed
to be identical for particles and antiparticles as well as
all colors. The processes in the first line of each equation
denote the usual (co-)annihilation processes into SM par-
ticles.

The conversion terms in the second line of each equa-
tion can be split into processes of the form q̃ ! � and
q̃q̃† ! ��. The former case requires accompanying SM
particles, and can be further decomposed into 1 ! 2 and
2 ! 2 processes,
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where neq

i = T/(2⇡2) gim2

iK2(mi/T ) and Ki denote
modified Bessel functions of the second kind. Depend-
ing on kinematic constraints further 1 ! 3, 1 ! 4 or
2 ! 3 process can be relevant, especially for a coupling
to top quarks, q̃ = t̃ [12]. In the following, we focus
on a coupling to bottom quarks, q̃ = b̃, and include the
processes stated in eq. (6).

The set of Boltzmann equations can describe both
coannihilations in and out of chemical equilibrium, with
well-known simplifications being possible in the former
case by summing both equations [5]. Out of chemi-
cal equilibrium, the coupled set of equations needs to
be solved. However, since the coupling �� is small in
this case, all terms except for the ones involving
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and �conv can be neglected for conversion-driven freeze-
out. The former process is considerably Sommerfeld
enhanced for small relative velocities, due to the at-
tractive potential generated by gluon exchange in the
color singlet configuration of the q̃q̃† pair [10]. In addi-
tion, the same potential leads to the formation of bound
states [25, 26, 32, 33]. In this work, we improve the
computations of the relic density in the coannihilation
and conversion-driven freeze-out scenario by considering
bound-state effects, including an exploration of the role
of excited states.

III. INCLUDING BOUND STATES

Within the t-channel model, bound states of q̃q̃† pairs
in the color singlet configuration exist and can contribute
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
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the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.
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ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
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FIG. 4. Relic density as a function of the coupling ��, for
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result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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rates are large compared to the Hubble expansion rate
H during the freeze-out process. Since the rates of all
conversion processes necessarily involve some power of
the coupling ��, the assumption of chemical equilibrium
can be violated if the coupling strength is small enough.
In that case, the conversions have to be included along

with (co-) annihilation processes in the Boltzmann equa-
tions. This scenario is known as conversion-driven freeze-
out [15], or also coscattering [16].
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2 ! 3 process can be relevant, especially for a coupling
to top quarks, q̃ = t̃ [12]. In the following, we focus
on a coupling to bottom quarks, q̃ = b̃, and include the
processes stated in eq. (6).

The set of Boltzmann equations can describe both
coannihilations in and out of chemical equilibrium, with
well-known simplifications being possible in the former
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and �conv can be neglected for conversion-driven freeze-
out. The former process is considerably Sommerfeld
enhanced for small relative velocities, due to the at-
tractive potential generated by gluon exchange in the
color singlet configuration of the q̃q̃† pair [10]. In addi-
tion, the same potential leads to the formation of bound
states [25, 26, 32, 33]. In this work, we improve the
computations of the relic density in the coannihilation
and conversion-driven freeze-out scenario by considering
bound-state effects, including an exploration of the role
of excited states.
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In that limit, any bound state that forms decays almost
immediately, and therefore the effective cross section is
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B. Multiple bound states

Let us now generalize the previous findings to a set of
bound states. When assuming as before that all relevant
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From the structure of the Boltzmann equation, it is a
priori not clear whether the impact of bound states can
be captured by an effective cross section when inserting
the solution to eq. (18) into the Boltzmann equation (10)
for q̃. However, this turns out to be the case in general.
To see it, we rewrite eq. (18) in the form
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Inserting it in the Boltzmann equation (10) for q̃ indeed
yields a contribution that has the form of the annihilation
term, involving in particular a factor y2 � 1. Therefore,
provided the rates are large compared to the expansion
rate, the impact of a set of bound states can in general
be captured by an effective cross section, given by

⌦
�q̃q̃†v

↵
eff =

⌦
�q̃q̃†v

↵
+

X

i

⌦
�BSF,iv

↵
Ri , (23)

with

Ri ⌘ 1�
X

j

(M�1)ij
�j

ion
�j

(24)

The effective cross section, eq. (23), describes the im-
pact of an arbitrary number of bound states on the q̃
abundance, that can all individually be populated by
recombination processes, decay into SM particles, and
undergo a network of transitions among them, with the
corresponding rates entering in the determination of Ri.
For a given setup, the Ri can be determined numerically.
Nevertheless, it is instructive to study two limiting cases
analytically.
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In the absence of transitions, each bound state therefore
gives a contribution to the effective cross section that is
analog to the case for a single bound state, see eq. (15).
In particular, each summand exhibits the limiting cases
of ionization equilibrium (�i
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dec) or instantaneous

decay (�i
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dec) in close analogy to the case of a
single bound state.

2. Efficient transition limit
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bound states,
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which is indeed a solution to eq. (18) in that limit. The
most straightforward way to derive the effective cross sec-
tion in that limit is to proceed similar to the case of
coannihilations [5], introducing
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and summing up all Boltzmann equations (9) for the Bi,
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leading to the various factors 1/2. Here gq̃ = gq̃† = Nc =
3, and fq̃ is the distribution function that is assumed
to be identical for particles and antiparticles as well as
all colors. The processes in the first line of each equation
denote the usual (co-)annihilation processes into SM par-
ticles.

The conversion terms in the second line of each equa-
tion can be split into processes of the form q̃ ! � and
q̃q̃† ! ��. The former case requires accompanying SM
particles, and can be further decomposed into 1 ! 2 and
2 ! 2 processes,
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where neq

i = T/(2⇡2) gim2

iK2(mi/T ) and Ki denote
modified Bessel functions of the second kind. Depend-
ing on kinematic constraints further 1 ! 3, 1 ! 4 or
2 ! 3 process can be relevant, especially for a coupling
to top quarks, q̃ = t̃ [12]. In the following, we focus
on a coupling to bottom quarks, q̃ = b̃, and include the
processes stated in eq. (6).

The set of Boltzmann equations can describe both
coannihilations in and out of chemical equilibrium, with
well-known simplifications being possible in the former
case by summing both equations [5]. Out of chemi-
cal equilibrium, the coupled set of equations needs to
be solved. However, since the coupling �� is small in
this case, all terms except for the ones involving
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and �conv can be neglected for conversion-driven freeze-
out. The former process is considerably Sommerfeld
enhanced for small relative velocities, due to the at-
tractive potential generated by gluon exchange in the
color singlet configuration of the q̃q̃† pair [10]. In addi-
tion, the same potential leads to the formation of bound
states [25, 26, 32, 33]. In this work, we improve the
computations of the relic density in the coannihilation
and conversion-driven freeze-out scenario by considering
bound-state effects, including an exploration of the role
of excited states.

III. INCLUDING BOUND STATES

Within the t-channel model, bound states of q̃q̃† pairs
in the color singlet configuration exist and can contribute
to the freeze-out process. We consider an extension of the
Boltzmann equation by including a set of bound states
Bi, enumerated by an abstract index i, and with gBi in-
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ternal degrees of freedom. Within the model considered
here, the bound states are characterized by their n and
` quantum numbers, i ⌘ (n, `) and gBn` = 2` + 1, but
the discussion in this section applies to any set of bound
states in general.

We add a Boltzmann equation for the yield YBi =
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term due to ionization and its inverse process, recombina-
tion [or equivalently bound-state formation (BSF)]. The
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originating from the detailed balance condition in ther-
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the ionization and recombination terms drop out in the
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where EBi = 2mq̃ �mBi > 0 is the binding energy, and
we used that Yq̃ denotes the yield of the sum of q̃ and q̃†.
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Also here we can see that transition terms drop out when
summing the Boltzmann equations for all bound states,
as required.

Before discussing explicit expressions for correspond-
ing rates in Sec. IV, we investigate generic features of the
coupled set of equations.

A. Single bound state

We first recall the case of a single bound state B.
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decay rates (mediated by the strong interaction) are
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cal versus strong interaction time-scales) that can be ob-
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the index i and transition terms), one obtains
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This means it is sufficient to solve the Boltzmann equa-
tions for q̃ and �, while the impact of the bound state is
captured by replacing the q̃q̃† annihilation cross section
by the effective cross section.

In the limit H ⌧ �dec ⌧ �ion the ionization and re-
combination processes establish equilibrium between the
bound state and unbound q̃ (ionization equilibrium). The
corresponding rates therefore drop out of the effective
cross section, that only depends on the decay rate �dec,
as can be seen using the Milne relation, eq. (11),
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The effective cross section increases exponentially with
falling temperature, due to the energetic preference for
bound states in equilibrium. This increase stops once
the ionization rate, which itself becomes exponentially
suppressed at low temperatures, falls below the decay
rate, and ionization equilibrium breaks down. Therefore,
at low enough temperatures, the regime H ⌧ �ion ⌧
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rates are large compared to the Hubble expansion rate
H during the freeze-out process. Since the rates of all
conversion processes necessarily involve some power of
the coupling ��, the assumption of chemical equilibrium
can be violated if the coupling strength is small enough.
In that case, the conversions have to be included along

with (co-) annihilation processes in the Boltzmann equa-
tions. This scenario is known as conversion-driven freeze-
out [15], or also coscattering [16].

In general, for the minimal t-channel model considered
here, the coupled set of Boltzmann equations read [15]
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where Mpl ' 2.4⇥ 1018 GeV is the reduced Planck mass.
Yq̃ represents the summed contribution of the mediator
and its anti-particle,
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leading to the various factors 1/2. Here gq̃ = gq̃† = Nc =
3, and fq̃ is the distribution function that is assumed
to be identical for particles and antiparticles as well as
all colors. The processes in the first line of each equation
denote the usual (co-)annihilation processes into SM par-
ticles.

The conversion terms in the second line of each equa-
tion can be split into processes of the form q̃ ! � and
q̃q̃† ! ��. The former case requires accompanying SM
particles, and can be further decomposed into 1 ! 2 and
2 ! 2 processes,

�conv = �q̃!�q + �q̃X!�Y , (6)

with
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where neq

i = T/(2⇡2) gim2

iK2(mi/T ) and Ki denote
modified Bessel functions of the second kind. Depend-
ing on kinematic constraints further 1 ! 3, 1 ! 4 or
2 ! 3 process can be relevant, especially for a coupling
to top quarks, q̃ = t̃ [12]. In the following, we focus
on a coupling to bottom quarks, q̃ = b̃, and include the
processes stated in eq. (6).

The set of Boltzmann equations can describe both
coannihilations in and out of chemical equilibrium, with
well-known simplifications being possible in the former
case by summing both equations [5]. Out of chemi-
cal equilibrium, the coupled set of equations needs to
be solved. However, since the coupling �� is small in
this case, all terms except for the ones involving
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and �conv can be neglected for conversion-driven freeze-
out. The former process is considerably Sommerfeld
enhanced for small relative velocities, due to the at-
tractive potential generated by gluon exchange in the
color singlet configuration of the q̃q̃† pair [10]. In addi-
tion, the same potential leads to the formation of bound
states [25, 26, 32, 33]. In this work, we improve the
computations of the relic density in the coannihilation
and conversion-driven freeze-out scenario by considering
bound-state effects, including an exploration of the role
of excited states.

III. INCLUDING BOUND STATES

Within the t-channel model, bound states of q̃q̃† pairs
in the color singlet configuration exist and can contribute
to the freeze-out process. We consider an extension of the
Boltzmann equation by including a set of bound states
Bi, enumerated by an abstract index i, and with gBi in-
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rates are large compared to the Hubble expansion rate
H during the freeze-out process. Since the rates of all
conversion processes necessarily involve some power of
the coupling ��, the assumption of chemical equilibrium
can be violated if the coupling strength is small enough.
In that case, the conversions have to be included along

with (co-) annihilation processes in the Boltzmann equa-
tions. This scenario is known as conversion-driven freeze-
out [15], or also coscattering [16].

In general, for the minimal t-channel model considered
here, the coupled set of Boltzmann equations read [15]
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where Mpl ' 2.4⇥ 1018 GeV is the reduced Planck mass.
Yq̃ represents the summed contribution of the mediator
and its anti-particle,
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leading to the various factors 1/2. Here gq̃ = gq̃† = Nc =
3, and fq̃ is the distribution function that is assumed
to be identical for particles and antiparticles as well as
all colors. The processes in the first line of each equation
denote the usual (co-)annihilation processes into SM par-
ticles.

The conversion terms in the second line of each equa-
tion can be split into processes of the form q̃ ! � and
q̃q̃† ! ��. The former case requires accompanying SM
particles, and can be further decomposed into 1 ! 2 and
2 ! 2 processes,
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where neq

i = T/(2⇡2) gim2

iK2(mi/T ) and Ki denote
modified Bessel functions of the second kind. Depend-
ing on kinematic constraints further 1 ! 3, 1 ! 4 or
2 ! 3 process can be relevant, especially for a coupling
to top quarks, q̃ = t̃ [12]. In the following, we focus
on a coupling to bottom quarks, q̃ = b̃, and include the
processes stated in eq. (6).

The set of Boltzmann equations can describe both
coannihilations in and out of chemical equilibrium, with
well-known simplifications being possible in the former
case by summing both equations [5]. Out of chemi-
cal equilibrium, the coupled set of equations needs to
be solved. However, since the coupling �� is small in
this case, all terms except for the ones involving
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and �conv can be neglected for conversion-driven freeze-
out. The former process is considerably Sommerfeld
enhanced for small relative velocities, due to the at-
tractive potential generated by gluon exchange in the
color singlet configuration of the q̃q̃† pair [10]. In addi-
tion, the same potential leads to the formation of bound
states [25, 26, 32, 33]. In this work, we improve the
computations of the relic density in the coannihilation
and conversion-driven freeze-out scenario by considering
bound-state effects, including an exploration of the role
of excited states.

III. INCLUDING BOUND STATES

Within the t-channel model, bound states of q̃q̃† pairs
in the color singlet configuration exist and can contribute
to the freeze-out process. We consider an extension of the
Boltzmann equation by including a set of bound states
Bi, enumerated by an abstract index i, and with gBi in-
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rates are large compared to the Hubble expansion rate
H during the freeze-out process. Since the rates of all
conversion processes necessarily involve some power of
the coupling ��, the assumption of chemical equilibrium
can be violated if the coupling strength is small enough.
In that case, the conversions have to be included along

with (co-) annihilation processes in the Boltzmann equa-
tions. This scenario is known as conversion-driven freeze-
out [15], or also coscattering [16].

In general, for the minimal t-channel model considered
here, the coupled set of Boltzmann equations read [15]
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and its anti-particle,
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leading to the various factors 1/2. Here gq̃ = gq̃† = Nc =
3, and fq̃ is the distribution function that is assumed
to be identical for particles and antiparticles as well as
all colors. The processes in the first line of each equation
denote the usual (co-)annihilation processes into SM par-
ticles.

The conversion terms in the second line of each equa-
tion can be split into processes of the form q̃ ! � and
q̃q̃† ! ��. The former case requires accompanying SM
particles, and can be further decomposed into 1 ! 2 and
2 ! 2 processes,
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iK2(mi/T ) and Ki denote
modified Bessel functions of the second kind. Depend-
ing on kinematic constraints further 1 ! 3, 1 ! 4 or
2 ! 3 process can be relevant, especially for a coupling
to top quarks, q̃ = t̃ [12]. In the following, we focus
on a coupling to bottom quarks, q̃ = b̃, and include the
processes stated in eq. (6).

The set of Boltzmann equations can describe both
coannihilations in and out of chemical equilibrium, with
well-known simplifications being possible in the former
case by summing both equations [5]. Out of chemi-
cal equilibrium, the coupled set of equations needs to
be solved. However, since the coupling �� is small in
this case, all terms except for the ones involving
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and �conv can be neglected for conversion-driven freeze-
out. The former process is considerably Sommerfeld
enhanced for small relative velocities, due to the at-
tractive potential generated by gluon exchange in the
color singlet configuration of the q̃q̃† pair [10]. In addi-
tion, the same potential leads to the formation of bound
states [25, 26, 32, 33]. In this work, we improve the
computations of the relic density in the coannihilation
and conversion-driven freeze-out scenario by considering
bound-state effects, including an exploration of the role
of excited states.
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Within the t-channel model, bound states of q̃q̃† pairs
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to the freeze-out process. We consider an extension of the
Boltzmann equation by including a set of bound states
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FIG. 2: Contribution to the effective, themally averaged mediator annihilation cross section from bound states,
⌦
�q̃q̃†v

↵BS
eff , for

m� = 1000GeV and mq̃ = 1020GeV, as a function of x = m�/T . The left panel shows the result, eq. (23), when including all
recombination, decay and transition rates discussed in Sec. IV for n  6 and `  n�1 (“Ri-solution”). In addition, the limits of
efficient transitions, eq. (31), no transitions, eq. (25), and ionization equilibrium, eq. (33), are shown, as well as the individual
contributions from all n, ` levels. The right panel shows the no-transition limit, including bound states up to n  1, 3, 6, 10 and
15, respectively.

That is, in ionization equilibrium, excited states lead to a
20% correction to the effective cross section. The factor
in front of the sum is the ground-state contribution to
eq. (33).

The impact of excited states is much larger for large x,
where they give the dominant contribution. The precise
value depends in this regime on the recombination as well
as transition rates. The efficient transition limit provides
an upper bound on the effective cross section (since all
` orbitals contribute), while the limit of no transitions
provides a lower limit (only the bound states with a size-
able decay rate into SM particles contribute, being ` = 0
orbitals in our approximation). The actual effective cross
section is therefore expected to lie in between these two
limits. The “Ri-solution” result taking into account the
electromagnetic transition rates considered in this work
can only be considered as illustrative since additional pro-
cesses mediating further transitions are expected to play
an important role. We therefore conservatively adopt the
no-transition limit in our numerical analysis in the fol-
lowing.

The effective cross section in the no-transition approx-
imation eq. (25) is shown in the right panel of Fig. 2.
We show the result summed up to some maximum n,
for n = 1, 3, 6, 10, 15, respectively. While each individual
contribution becomes suppressed at large x, the summed
result continues to grow with increasing x. The decline
at very large x is due to the restriction to n  15. For
x ⌧ 105, we consider the effective cross section with
n  15 as converged. We leave an exploration of the
full result including transitions to future work, and use
the no-transition limit with n  15 as the default choice
in the following. For a discussion of the impact of a
certain class of higher-order corrections (related to col-
lisional ionization and recombination processes and the
associated virtual contributions) computed in [27, 30] as

FIG. 3: Effective mediator annihilation cross section,
eq. (23), including the contribution from direct annihilation
without (‘pert.’) and with Sommerfeld enhancement (‘Som.’),
as well as with the additional contribution from bound states
separately considering the ground state only (‘BS, n = 1’) and
including excited states up to n = 15 (‘BS, n  15’). The gray
dotted curve show the case of ionization equilibrium (‘ion-eq’).
The parameters are m� = 1000GeV and mq̃ = 1020GeV.

well as to bound state decay we refer to App. B.

V. VIABLE PARAMETER SPACE

To determine the relic abundance, we solve the coupled
set of Boltzmann equations (2) for Y� and (3) for Yq̃. We
compute the involved conversion and annihilation cross
sections, �q̃k!�l(s) and ���(s),��q̃(s),�q̃q̃†(s), respec-
tively, with MadGraph5_aMC@NLO [37]. We take
into account the leading conversions in ↵s and regular-
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FIG. 2: Contribution to the effective, themally averaged mediator annihilation cross section from bound states,
⌦
�q̃q̃†v

↵BS
eff , for

m� = 1000GeV and mq̃ = 1020GeV, as a function of x = m�/T . The left panel shows the result, eq. (23), when including all
recombination, decay and transition rates discussed in Sec. IV for n  6 and `  n�1 (“Ri-solution”). In addition, the limits of
efficient transitions, eq. (31), no transitions, eq. (25), and ionization equilibrium, eq. (33), are shown, as well as the individual
contributions from all n, ` levels. The right panel shows the no-transition limit, including bound states up to n  1, 3, 6, 10 and
15, respectively.

That is, in ionization equilibrium, excited states lead to a
20% correction to the effective cross section. The factor
in front of the sum is the ground-state contribution to
eq. (33).

The impact of excited states is much larger for large x,
where they give the dominant contribution. The precise
value depends in this regime on the recombination as well
as transition rates. The efficient transition limit provides
an upper bound on the effective cross section (since all
` orbitals contribute), while the limit of no transitions
provides a lower limit (only the bound states with a size-
able decay rate into SM particles contribute, being ` = 0
orbitals in our approximation). The actual effective cross
section is therefore expected to lie in between these two
limits. The “Ri-solution” result taking into account the
electromagnetic transition rates considered in this work
can only be considered as illustrative since additional pro-
cesses mediating further transitions are expected to play
an important role. We therefore conservatively adopt the
no-transition limit in our numerical analysis in the fol-
lowing.

The effective cross section in the no-transition approx-
imation eq. (25) is shown in the right panel of Fig. 2.
We show the result summed up to some maximum n,
for n = 1, 3, 6, 10, 15, respectively. While each individual
contribution becomes suppressed at large x, the summed
result continues to grow with increasing x. The decline
at very large x is due to the restriction to n  15. For
x ⌧ 105, we consider the effective cross section with
n  15 as converged. We leave an exploration of the
full result including transitions to future work, and use
the no-transition limit with n  15 as the default choice
in the following. For a discussion of the impact of a
certain class of higher-order corrections (related to col-
lisional ionization and recombination processes and the
associated virtual contributions) computed in [27, 30] as
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eq. (23), including the contribution from direct annihilation
without (‘pert.’) and with Sommerfeld enhancement (‘Som.’),
as well as with the additional contribution from bound states
separately considering the ground state only (‘BS, n = 1’) and
including excited states up to n = 15 (‘BS, n  15’). The gray
dotted curve show the case of ionization equilibrium (‘ion-eq’).
The parameters are m� = 1000GeV and mq̃ = 1020GeV.
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�dec becomes relevant, for which
⌦
�q̃q̃†v

↵
eff !

⌦
�q̃q̃†v

↵
+

⌦
�BSFv

↵
. (17)

In that limit, any bound state that forms decays almost
immediately, and therefore the effective cross section is
only sensitive to the recombination cross section

⌦
�BSFv

↵
.

B. Multiple bound states

Let us now generalize the previous findings to a set of
bound states. When assuming as before that all relevant
ionization, decay and transition rates are much larger
than H, we obtain a set of coupled algebraic equations
for the yields YBi from setting the left-hand sides of the
Boltzmann equations (9) to zero. It can be written as

YB,i

Y eq

B,i

=
�i

ion
�i

Y 2

q̃

Y eq 2

q̃

+
�i

dec
�i

+
X

j 6=i

�i!j
trans
�i

YB,j

Y eq

B,j

, (18)

where we used eq. (13) and introduced the total width of
Bi,

�i = �i
ion + �i

dec +
X

j 6=i

�i!j
trans . (19)

From the structure of the Boltzmann equation, it is a
priori not clear whether the impact of bound states can
be captured by an effective cross section when inserting
the solution to eq. (18) into the Boltzmann equation (10)
for q̃. However, this turns out to be the case in general.
To see it, we rewrite eq. (18) in the form

yi � 1�
X

j 6=i

�i!j
trans
�i

(yj � 1) =
�i

ion
�i

(y2 � 1) , (20)

where we defined yi ⌘ YB,i/Y
eq

B,i and y ⌘ Yq̃/Y
eq

q̃ . Intro-
ducing the matrix

Mij ⌘ �ij �
�i!j

trans
�i

, (21)

the solution for the bound state abundances reads

yi = 1 +
X

j

(M�1)ij
�j

ion
�j

(y2 � 1) . (22)

Inserting it in the Boltzmann equation (10) for q̃ indeed
yields a contribution that has the form of the annihilation
term, involving in particular a factor y2 � 1. Therefore,
provided the rates are large compared to the expansion
rate, the impact of a set of bound states can in general
be captured by an effective cross section, given by

⌦
�q̃q̃†v

↵
eff =

⌦
�q̃q̃†v

↵
+

X

i

⌦
�BSF,iv

↵
Ri , (23)

with

Ri ⌘ 1�
X

j

(M�1)ij
�j

ion
�j

(24)

The effective cross section, eq. (23), describes the im-
pact of an arbitrary number of bound states on the q̃
abundance, that can all individually be populated by
recombination processes, decay into SM particles, and
undergo a network of transitions among them, with the
corresponding rates entering in the determination of Ri.
For a given setup, the Ri can be determined numerically.
Nevertheless, it is instructive to study two limiting cases
analytically.

1. No transition limit

In the limit �i!j
trans ⌧ �i

dec,�
i
ion we can neglect the tran-

sition terms, such that Mij ! �ij becomes the unity ma-
trix, and the total width depends only on ionization and
decay rates. The effective cross section becomes

⌦
�q̃q̃†v

↵
eff =

⌦
�q̃q̃†v

↵
+

X

i

⌦
�BSF,iv

↵ �i
dec

�i
ion + �i

dec
. (25)

In the absence of transitions, each bound state therefore
gives a contribution to the effective cross section that is
analog to the case for a single bound state, see eq. (15).
In particular, each summand exhibits the limiting cases
of ionization equilibrium (�i

ion � �i
dec) or instantaneous

decay (�i
ion ⌧ �i

dec) in close analogy to the case of a
single bound state.

2. Efficient transition limit

In the limit �i!j
trans � �i

dec,�
i
ion, we expect that the

transitions establish chemical equilibrium among the
bound states,

YB,j

YB,i
!

Y eq

B,j

Y eq

B,i

' e(EBj�EBi )/T , (26)

which is indeed a solution to eq. (18) in that limit. The
most straightforward way to derive the effective cross sec-
tion in that limit is to proceed similar to the case of
coannihilations [5], introducing

YB =
X

i

YB,i , (27)

and summing up all Boltzmann equations (9) for the Bi,
such that the transition terms drop out. Using (26) to
write

YB,i = YB
Y eq

B,i

Y eq

B
, (28)
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FIG. 7: Contours for which dark matter coannihilation yields
a relic abundance that matches the observed value, for three
fixed values of the coupling ��. Red lines show the leading
order result, and blue lines the result when including bound
states up to n = 15 as well as Sommerfeld enhancement. For
the relevance of individual corrections, we refer to Fig. 6. The
boundary to the conversion-driven regime is also shown.

to our fiducial approximation that includes Sommerfeld
enhancement and bound states up to n = 15. It is appar-
ent that the blue contours allow for significantly larger
masses m� for a given ��. For example, for �� = 0.5
and �m = 20GeV, the mass for which the relic density
matches the observed value shifts from m� ' 1.2TeV
to 2TeV when including the aforementioned corrections.
For the MSSM value, �� = 0.169, the contour almost
coincides with the boundary, and the mass shifts from
m� ' 0.9TeV to 1.8TeV (for �m = 20GeV). In addition,
for a very small mass splitting, including bound states al-
lows for mediator masses in the multi-TeV regime, around
m� = 3TeV for �m = 5GeV. This shift can be ex-
pected to be of major relevance for experimental searches
for colored t-channel mediators within the coannihilation
regime. It re-opens part of the parameter space that is
constraint by conventional dark matter searches.

C. Conversion-driven regime and collider limits

In Fig. 8 we show the viable parameter space within the
regime of conversion-driven freeze-out. The value of the
coupling that is required to obtain the measured dark
matter abundance is of order 10�6

�10�7 in that case.
We show several contours for ��/10�7 = 2, 3, 5, 7. The
smallness of the coupling implies that this production
mechanism is compatible with null results from direct
and indirect dark matter detection experiments, while
still providing an explanation of the abundance of dark
matter that is insensitive to the initial conditions.

The decay length c⌧ of the mediator, where ⌧ is its life-
time, is shown by the grey contour lines in Fig. 8. It is of

the order of a few cm to 1m within most of the parameter
space, going down to 1mm close to the boundary. For
the freeze-out computation, we limit ourselves to the pa-
rameter space where �m > mb, such that the two-body
decay q̃ ! �b is kinematically allowed. For even smaller
mass splitting, conversions proceed via scatterings, and
the mediator would be stable on detector time scales.

The primary signal of conversion-driven dark mat-
ter production with a colored mediator are searches for
heavy, (meta-)stable colored particles at the LHC. For
�m < mb, the colored mediator becomes detector sta-
ble as its decay is 4-body suppressed. We can directly
apply the limit from the 13TeV ATLAS search [48] de-
rived for an R-hadron containing a b-squark. It excludes
masses below 1250GeV. The resulting limit is shown in
Fig. 8 as a solid blue curve (and blue shaded exclusion
region). For larger �m the decay length is in the range
1mm ⇠ 1m such that a sizeable fraction of decays take
place inside the inner detector. To estimate the reach
of the same search for this case, we employ the reported
cross section upper limits for the muon-system-agnostic
analysis for a b-squark R-hadron. We rescale them by
the relative suppression of the cross section upper limits
towards small lifetimes reported in the similar ATLAS
analysis [49] where the case of a gluino R-hadron has
been considered. Note that this introduces a certain level
of approximation. A recasting of the search is, however,
beyond the scope of this work. We use the cross-section
predictions from [50]. The resulting limit is displayed
as the blue, dashed curve in Fig. 8. Furthermore, we
display the limit from the recasting of the CMS 13 TeV
R-hadron search [51] performed in [15] as the blue, dot-
dashed curve.

Being only sensitive to the fraction of R-hadrons
traversing a significant part of the detector, the sensitiv-
ity of these searches is exponentially suppressed for small
lifetimes. Dedicated analyses exploiting the displaced na-
ture of the decay are, hence, expected to greatly improve
the sensitivity to this scenario. While several such analy-
ses have been performed by the collaborations, their tar-
get model differs considerably from the one considered
here, significantly reducing their reach or raising ques-
tions about their applicability as pointed out in [52] (con-
tribution 7). For instance, the sensitivity of the displaced
jets search [53] considerably suffers from the imposed cut
on the invariant mass of the displaced tracks. While the
respective choice was optimized for the scenario consid-
ered in the search, it reduces the signal of the one consid-
ered here by around two orders of magnitude [52]. This
is due to its relatively small mass splittings �m of order
tens of GeV in our scenario, resulting in softer tracks.
The search has been targeted to mass splittings of the
order of hundreds of GeV.

Another example of a potentially sensitive search is
the one for disappearing tracks. The existing searches
are targeted to charginos whose long lifetime arises due
to a tiny mass splitting, O(100MeV), to the dark matter
particle. Accordingly, in the decay, an ultra-soft pion is
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Figure 1 – Ratio between decay rate and Hubble rate as a function of the inverse temperature.

the number density of the dark sector is then driven entirely by annihilations of heavier states
and not by dark matter annihilations. In this case the relic density becomes independent of
the coupling strength of dark matter. However, this conclusion is only true for couplings that
are still large enough to maintain relative chemical equilibrium.d For even smaller couplings
relative chemical equilibrium breaks down. In this case conversion processes are responsible for
the chemical decoupling of dark matter and hence set the relic density. This conversion-driven
freeze-out mechanism is phenomenologically distinct and opens up a new region in parameter
space where coannihilation would lead to under-abundant dark matter, if relative chemical
equilibrium would hold.

2.3 The “LLP miracle”

The departure from relative chemical equilibrium has an immediate consequence for the possible
decay length of the heavier states. As the decay contributes to the conversions, requiring their
rate to become ine�cient necessarily requires

�dec . H . (3)

In the radiation dominated Universe H =
p

g⇤/90⇡T 2
/MPl, where MPl ' 2.44⇥1018 GeV is the

reduced Planck mass. We can translates the inverse Hubble rate into a length. Using g⇤ = 100,
the inequality (3) then reads

c⌧ & H
�1

' 1.5 cm

✓
(100GeV)2

T 2

◆
. (4)

This is an important results which states that for particles in the GeV to TeV range a departure
from relative chemical equilibrium during freeze-out (T ' m�/30) implies macroscopic decay
length at the LHC – an intriguing coincidence that renders the LHC to be a powerful tool to
explore these scenarios. Figure 1 illustrates the prompt, meta-stable and detector-stable regime
in the plane spanned by the inverse temperature and �dec/H.

3 Realizations of conversion-driven freeze-out

In this section we discuss a realization of conversion-driven freeze-out within a simplified dark
matter model. We consider an extension of the standard model by a neutral Majorana fermion �

and a colored scalar particle q̃ that acts as a (t-channel) mediator of the dark matter interactions
with the standard model quarks q:

Lint = |Dµq̃|
2 + ��q̃ q̄

1� �5

2
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d
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the number density of the dark sector is then driven entirely by annihilations of heavier states
and not by dark matter annihilations. In this case the relic density becomes independent of
the coupling strength of dark matter. However, this conclusion is only true for couplings that
are still large enough to maintain relative chemical equilibrium.d For even smaller couplings
relative chemical equilibrium breaks down. In this case conversion processes are responsible for
the chemical decoupling of dark matter and hence set the relic density. This conversion-driven
freeze-out mechanism is phenomenologically distinct and opens up a new region in parameter
space where coannihilation would lead to under-abundant dark matter, if relative chemical
equilibrium would hold.

2.3 The “LLP miracle”

The departure from relative chemical equilibrium has an immediate consequence for the possible
decay length of the heavier states. As the decay contributes to the conversions, requiring their
rate to become ine�cient necessarily requires

�dec . H . (3)

In the radiation dominated Universe H =
p

g⇤/90⇡T 2
/MPl, where MPl ' 2.44⇥1018 GeV is the

reduced Planck mass. We can translates the inverse Hubble rate into a length. Using g⇤ = 100,
the inequality (3) then reads
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This is an important results which states that for particles in the GeV to TeV range a departure
from relative chemical equilibrium during freeze-out (T ' m�/30) implies macroscopic decay
length at the LHC – an intriguing coincidence that renders the LHC to be a powerful tool to
explore these scenarios. Figure 1 illustrates the prompt, meta-stable and detector-stable regime
in the plane spanned by the inverse temperature and �dec/H.

3 Realizations of conversion-driven freeze-out

In this section we discuss a realization of conversion-driven freeze-out within a simplified dark
matter model. We consider an extension of the standard model by a neutral Majorana fermion �

and a colored scalar particle q̃ that acts as a (t-channel) mediator of the dark matter interactions
with the standard model quarks q:

Lint = |Dµq̃|
2 + ��q̃ q̄
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.
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out that quantitatively both are important for determin-
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by the gray dashed line in Fig. 4. Furthermore, the gray
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tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
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abundance in the full solution of the coupled Boltzmann
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relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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FIG. 7: Contours for which dark matter coannihilation yields
a relic abundance that matches the observed value, for three
fixed values of the coupling ��. Red lines show the leading
order result, and blue lines the result when including bound
states up to n = 15 as well as Sommerfeld enhancement. For
the relevance of individual corrections, we refer to Fig. 6. The
boundary to the conversion-driven regime is also shown.

to our fiducial approximation that includes Sommerfeld
enhancement and bound states up to n = 15. It is appar-
ent that the blue contours allow for significantly larger
masses m� for a given ��. For example, for �� = 0.5
and �m = 20GeV, the mass for which the relic density
matches the observed value shifts from m� ' 1.2TeV
to 2TeV when including the aforementioned corrections.
For the MSSM value, �� = 0.169, the contour almost
coincides with the boundary, and the mass shifts from
m� ' 0.9TeV to 1.8TeV (for �m = 20GeV). In addition,
for a very small mass splitting, including bound states al-
lows for mediator masses in the multi-TeV regime, around
m� = 3TeV for �m = 5GeV. This shift can be ex-
pected to be of major relevance for experimental searches
for colored t-channel mediators within the coannihilation
regime. It re-opens part of the parameter space that is
constraint by conventional dark matter searches.

C. Conversion-driven regime and collider limits

In Fig. 8 we show the viable parameter space within the
regime of conversion-driven freeze-out. The value of the
coupling that is required to obtain the measured dark
matter abundance is of order 10�6

�10�7 in that case.
We show several contours for ��/10�7 = 2, 3, 5, 7. The
smallness of the coupling implies that this production
mechanism is compatible with null results from direct
and indirect dark matter detection experiments, while
still providing an explanation of the abundance of dark
matter that is insensitive to the initial conditions.

The decay length c⌧ of the mediator, where ⌧ is its life-
time, is shown by the grey contour lines in Fig. 8. It is of

the order of a few cm to 1m within most of the parameter
space, going down to 1mm close to the boundary. For
the freeze-out computation, we limit ourselves to the pa-
rameter space where �m > mb, such that the two-body
decay q̃ ! �b is kinematically allowed. For even smaller
mass splitting, conversions proceed via scatterings, and
the mediator would be stable on detector time scales.

The primary signal of conversion-driven dark mat-
ter production with a colored mediator are searches for
heavy, (meta-)stable colored particles at the LHC. For
�m < mb, the colored mediator becomes detector sta-
ble as its decay is 4-body suppressed. We can directly
apply the limit from the 13TeV ATLAS search [48] de-
rived for an R-hadron containing a b-squark. It excludes
masses below 1250GeV. The resulting limit is shown in
Fig. 8 as a solid blue curve (and blue shaded exclusion
region). For larger �m the decay length is in the range
1mm ⇠ 1m such that a sizeable fraction of decays take
place inside the inner detector. To estimate the reach
of the same search for this case, we employ the reported
cross section upper limits for the muon-system-agnostic
analysis for a b-squark R-hadron. We rescale them by
the relative suppression of the cross section upper limits
towards small lifetimes reported in the similar ATLAS
analysis [49] where the case of a gluino R-hadron has
been considered. Note that this introduces a certain level
of approximation. A recasting of the search is, however,
beyond the scope of this work. We use the cross-section
predictions from [50]. The resulting limit is displayed
as the blue, dashed curve in Fig. 8. Furthermore, we
display the limit from the recasting of the CMS 13 TeV
R-hadron search [51] performed in [15] as the blue, dot-
dashed curve.

Being only sensitive to the fraction of R-hadrons
traversing a significant part of the detector, the sensitiv-
ity of these searches is exponentially suppressed for small
lifetimes. Dedicated analyses exploiting the displaced na-
ture of the decay are, hence, expected to greatly improve
the sensitivity to this scenario. While several such analy-
ses have been performed by the collaborations, their tar-
get model differs considerably from the one considered
here, significantly reducing their reach or raising ques-
tions about their applicability as pointed out in [52] (con-
tribution 7). For instance, the sensitivity of the displaced
jets search [53] considerably suffers from the imposed cut
on the invariant mass of the displaced tracks. While the
respective choice was optimized for the scenario consid-
ered in the search, it reduces the signal of the one consid-
ered here by around two orders of magnitude [52]. This
is due to its relatively small mass splittings �m of order
tens of GeV in our scenario, resulting in softer tracks.
The search has been targeted to mass splittings of the
order of hundreds of GeV.

Another example of a potentially sensitive search is
the one for disappearing tracks. The existing searches
are targeted to charginos whose long lifetime arises due
to a tiny mass splitting, O(100MeV), to the dark matter
particle. Accordingly, in the decay, an ultra-soft pion is

conv.
region

LLP region significantly enhanced!
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Recent excess in LLP searches

   Ismet Siral, University Of Oregon

Statistical Interpretation

12

• For each signal MC  a different mass windows is defined  
as function of signal model mass. 

• For limit setting: Multi-bin fit over Exclusion signal 
categories using asymptotic formulae is used 

• For significance calculation:  Multi-bin fit over Discovery 
signal categories using asymptotic formulae is used 

• The fits were done individually for each mass window.

• The study shows that the observed excess in the SR-
Inclusive-High region is responsible for a local significance 
of 3.6 sigma and a global significance of 3.3 sigma. 

• The maximum significance was found at 1.4 TeV (Mass 
window [1100,2800])

• The observed p0 value is  for the target mass 1.5 × 10−4
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• 4 of these are Muon events
• 2 of these are non-muon (TRK) tracks with IBL overflow
• 1 of these is a non-muon track without IBL overflow

• The observed events are kinematically different from the rest of the background events. 
• Overall the events topology of these always have a counter balancing jet. 

• Only exception to this is an event with  counter balancing MET 
• For further investigation: time of flight measurements of these excess event were also extracted from muon and calorimeter 

systems. In these studies, the excess events were observed to  have a . β ≈ 1

Excess Structure
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FIG. 7: Contours for which dark matter coannihilation yields
a relic abundance that matches the observed value, for three
fixed values of the coupling ��. Red lines show the leading
order result, and blue lines the result when including bound
states up to n = 15 as well as Sommerfeld enhancement. For
the relevance of individual corrections, we refer to Fig. 6. The
boundary to the conversion-driven regime is also shown.

to our fiducial approximation that includes Sommerfeld
enhancement and bound states up to n = 15. It is appar-
ent that the blue contours allow for significantly larger
masses m� for a given ��. For example, for �� = 0.5
and �m = 20GeV, the mass for which the relic density
matches the observed value shifts from m� ' 1.2TeV
to 2TeV when including the aforementioned corrections.
For the MSSM value, �� = 0.169, the contour almost
coincides with the boundary, and the mass shifts from
m� ' 0.9TeV to 1.8TeV (for �m = 20GeV). In addition,
for a very small mass splitting, including bound states al-
lows for mediator masses in the multi-TeV regime, around
m� = 3TeV for �m = 5GeV. This shift can be ex-
pected to be of major relevance for experimental searches
for colored t-channel mediators within the coannihilation
regime. It re-opens part of the parameter space that is
constraint by conventional dark matter searches.

C. Conversion-driven regime and collider limits

In Fig. 8 we show the viable parameter space within the
regime of conversion-driven freeze-out. The value of the
coupling that is required to obtain the measured dark
matter abundance is of order 10�6

�10�7 in that case.
We show several contours for ��/10�7 = 2, 3, 5, 7. The
smallness of the coupling implies that this production
mechanism is compatible with null results from direct
and indirect dark matter detection experiments, while
still providing an explanation of the abundance of dark
matter that is insensitive to the initial conditions.

The decay length c⌧ of the mediator, where ⌧ is its life-
time, is shown by the grey contour lines in Fig. 8. It is of

the order of a few cm to 1m within most of the parameter
space, going down to 1mm close to the boundary. For
the freeze-out computation, we limit ourselves to the pa-
rameter space where �m > mb, such that the two-body
decay q̃ ! �b is kinematically allowed. For even smaller
mass splitting, conversions proceed via scatterings, and
the mediator would be stable on detector time scales.

The primary signal of conversion-driven dark mat-
ter production with a colored mediator are searches for
heavy, (meta-)stable colored particles at the LHC. For
�m < mb, the colored mediator becomes detector sta-
ble as its decay is 4-body suppressed. We can directly
apply the limit from the 13TeV ATLAS search [48] de-
rived for an R-hadron containing a b-squark. It excludes
masses below 1250GeV. The resulting limit is shown in
Fig. 8 as a solid blue curve (and blue shaded exclusion
region). For larger �m the decay length is in the range
1mm ⇠ 1m such that a sizeable fraction of decays take
place inside the inner detector. To estimate the reach
of the same search for this case, we employ the reported
cross section upper limits for the muon-system-agnostic
analysis for a b-squark R-hadron. We rescale them by
the relative suppression of the cross section upper limits
towards small lifetimes reported in the similar ATLAS
analysis [49] where the case of a gluino R-hadron has
been considered. Note that this introduces a certain level
of approximation. A recasting of the search is, however,
beyond the scope of this work. We use the cross-section
predictions from [50]. The resulting limit is displayed
as the blue, dashed curve in Fig. 8. Furthermore, we
display the limit from the recasting of the CMS 13 TeV
R-hadron search [51] performed in [15] as the blue, dot-
dashed curve.

Being only sensitive to the fraction of R-hadrons
traversing a significant part of the detector, the sensitiv-
ity of these searches is exponentially suppressed for small
lifetimes. Dedicated analyses exploiting the displaced na-
ture of the decay are, hence, expected to greatly improve
the sensitivity to this scenario. While several such analy-
ses have been performed by the collaborations, their tar-
get model differs considerably from the one considered
here, significantly reducing their reach or raising ques-
tions about their applicability as pointed out in [52] (con-
tribution 7). For instance, the sensitivity of the displaced
jets search [53] considerably suffers from the imposed cut
on the invariant mass of the displaced tracks. While the
respective choice was optimized for the scenario consid-
ered in the search, it reduces the signal of the one consid-
ered here by around two orders of magnitude [52]. This
is due to its relatively small mass splittings �m of order
tens of GeV in our scenario, resulting in softer tracks.
The search has been targeted to mass splittings of the
order of hundreds of GeV.

Another example of a potentially sensitive search is
the one for disappearing tracks. The existing searches
are targeted to charginos whose long lifetime arises due
to a tiny mass splitting, O(100MeV), to the dark matter
particle. Accordingly, in the decay, an ultra-soft pion is

~1.4 TeV
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Collider constraints

LHC – R-hadrons: ATLAS [1902.01636, 1808.04095 approximate reinterpretation];  
                             CMS [CMS-PAS-EXO-16-036, recasting from 1705.09292] 
                 LHC – DT: ATLAS Disappearing-track search [1712.02118, recasting from 2002.12220, 7]
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FIG. 8: Cosmologically allowed parameter space (⌦h2 =
0.12) for conversion-driven freeze-out when taking bound
states with n  15 as well as Sommerfeld enhancement into
account. Green dashed lines show contours of the coupling ��

in units of 10�7, and grey lines of the mediator decay length.
In addition, LHC bounds from R-hadron searches as well as
disappearing track searches are shown, as well as the contours
within the coannihilation regime (see Fig. 7).

emitted facilitating the use of a disappearance condition.
In our scenario, the emitted b-jet is considerably harder
than in the targeted model. However, the search is esti-
mated to still provide sensitivity to the model considered
here, as shown in the approximate recasting of [54] per-
formed in [52]. In this recasting, the probability of the
R-hadron to cause a charged track was also taken into
account. We overlay the respective limit as the purple
dotted curve in Fig. 8.

We conclude that, after including the impact of bound
states, a wide part of the parameter space for conversion-
driven freeze-out is still viable, and provides a clear target
for long-lived particle searches at future LHC runs.

VI. CONCLUSION

In this work, we revisited the computation of the relic
density in the presence of bound-state effects during dark
matter freeze-out. With respect to previous work, we
improved the calculations in various aspects and demon-
strated the respective phenomenological implications on
the cosmologically viable parameter space in the coanni-
hilation and conversion-driven freeze-out scenario.

In the first part of this work, we reformulated the
Boltzmann equations including arbitrary excitations of
bound states and derived a general framework for incor-
porating their effects in terms of an effective annihilation
cross section. While a full treatment of these effects re-
quires the knowledge of all involved bound-state forma-
tion, decay, and transition rates, we introduced meaning-

ful limiting cases when assuming fully efficient or non-
efficient transitions. We provided simple analytical ex-
pressions for the effective cross section in these limits, as
well as a general result. Furthermore, we showed that for
an arbitrary set of bound states in ionization equilibrium,
the effective cross section is independent of bound-state
formation and transition rates, and only depends on a
weighted sum of bound state decay rates.

For the case of a colored coannihilator, we computed
the radiative bound-state formation rates for arbitrary
excitations with quantum numbers n, `, and estimate the
lowest order transition rates. Furthermore, we investi-
gated the impact of NLO corrections to bound state de-
cays. We further discuss the relevance of NLO effects on
bound-state formation and decay in App. B.

We then solved the coupled Boltzmann equation for
the mediator and the dark matter particle in a t-channel
model and assessed the impact of bound states for coanni-
hilations as well as conversion-driven freeze-out. On the
one hand, in ionization equilibrium, the effective media-
tor annihilation cross section is insensitive to the bound-
state formation but directly proportional to the bound
state decay rates. Including excited states increases the
effective cross section by about 20% in that case. On
the other hand, after the breakdown of ionization equi-
librium of the ground state, higher excitations become
increasingly important. At the same time, a large bound-
state formation rate extends the duration of ionization
equilibrium down to smaller temperatures. Neverthe-
less, we found that freeze-out significantly extends be-
yond the period of ionization equilibrium for small rela-
tive mass splittings between the mediator and dark mat-
ter, phenomenologically most relevant in the region of
high masses, m�

>
⇠ 2TeV. In this region of parameter

space, our fiducial approximation that neglects bound
state transitions is expected to underestimate the effects
of excited bound states, motivating further studies. In
addition, we demonstrated that NLO corrections to the
bound-state formation rate itself play only a moderate
role in the setup considered here.

Evaluating the cosmologically viable parameter space,
we found that the region for which conversion-driven
freeze-out is relevant extends significantly when including
bound-state effects, ranging up to the multi-TeV region.
In addition, our findings imply that significantly higher
dark matter masses are viable also within the coannihi-
lation region. This has immediate consequences for dark
matter searches. For instance, considering a mass split-
ting of 20 GeV and a coupling of ⇠ 0.169, as predicted in
the MSSM, the dark matter mass that matches the relic
density is shifted from around 900 GeV to 1.8 TeV by the
inclusion of the discussed effects. On the other hand,
when keeping the masses fixed at m� = 900 GeV and
�m = 20 GeV, the coupling would change from 0.169 to
around 5⇥10�7 as it lies in the conversion-driven freeze-
out regime.

Dark matter produced via conversion-driven freeze-out
is compatible with (in)direct detection limits due to a

~1.4 TeV
⇒ xs ~ 0.4 fb
~ 50 events
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▪ t-channel mediator models provide rich pheno 

▪ Conversion-driven freeze-out less explored terrain 

▪ Prolonged freeze-out process: Bound states relevant,
   higher excitation important at low energies

▪ General formalism to include arbitrary excitations

▪  Viable parameter space significantly enlarged

▪ Important for long-lived particle searches at LHC
    H ~ Γ: Lifetimes naturally O(1-100cm) 

Summary


