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Coherent and squeezed states
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Aren’t quantum fluctuations incredibly tiny?

@ Observed gravitational
waves are We”_descrlbed by Hanford, Washington (H1) Livingston, Louisiana (L1)
classical GR, with quantum
corrections typically Planck
suppressed.

@ Indeed if gravitational
waves are assumed to be a
coherent superposition of
many gravitons, quantum
fluctuations are then very
small: ¢ ~ ho10719.

With these assumptions, one
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concludes there is nothing Time () Time ()
(quantum) to see here.
e.g. Dyson (2013)
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Quantum gravitational noise enhanced by squeezing

New interest in quantum fluctuations in gravitational waves observed at
detectors inspired by recent work by Parikh, Wilczek, and Zahariade
([2005.07211], [2010.08205], [2010.08208]).

Studying test particles in the presence of a graviton background —
geodesic deviation modified by the quantum noise of gravitons,
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Neglecting radiation reaction, (€) = (1+ 2) ¢ and o = £(N3). In the
vacuum or coherent state,
o~ olp=e.
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Quantum gravitational noise enhanced by squeezing

New interest in quantum fluctuations in gravitational waves observed at
detectors inspired by recent work by Parikh, Wilczek, and Zahariade
([2005.07211], [2010.08205], [2010.08208]).

Studying test particles in the presence of a graviton background —
geodesic deviation modified by the quantum noise of gravitons,
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Neglecting radiation reaction, (€) = (1+ 2) ¢ and o = £(N3). In the
vacuum or coherent state,
o~ olp=e.

Amplified if the gravitational wave is in a squeezed state: .

See also Kanno, Soda, Tokuda [2007.09838], [2103.17053)].
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Squeezed state two-point function
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a=12 k p

hyp = % (h1kp + i hokp), classical background hok,(t).
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Squeezed state two-point function
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a=12 k p
hyp = % (h1kp + i hokp), classical background hok,(t).
Now Sakp(t) = tanh (tanh_l(ﬁakp) + ikt), with 3 = Bakp.

Ultimately want o = 1/ ((8h,)?) , so we compute
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Which modes to squeeze

Now need to decide at least on the k dependence of the squeezing.

@ Squeeze only one mode:
2¢ s 3, %3 % %
Bap = 1+ T2CET [53(k — k*) 4 83 (k + k)]

@ Smoothed squeezing:
(kg —k*) (kg k*)?

Baep = 1+ LCKE 504 )5k )L (67 77 & a2
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Which modes to squeeze

Now need to decide at least on the k dependence of the squeezing.

@ Squeeze only one mode:
2¢ s 3, %3 % %
Bap = 1+ T2CET [53(k — k*) 4 83 (k + k)]

(kg—k*)? (kg +k*)?

@ Smoothed squeezing:

Baep = 1+ ZZCE (k0 )5(ky) s |67 7 e a

Can also insert a modulating function in & so that fluctuations are more
realistically localized to the center of the classical wave packet

e.g. for k = k2, take My(z,t) = exp [—(x — t — ¢2)/A2]
or keep in mind that we are focusing on the center of the wave packet.
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Full two-point function

@ Monochromatic squeezing:
Opp’ 4Gh
T x—=x|2—(t—t)?
+ Oppr 8T Ghe*Sr k*? sin(k*t) sin(k*t') cos(k* - (x — X))

gp(xa X/7 t7 t/) =

Sinusoidal in both t and t/, not very realistic squeezing.

@ Smoothed squeezing:

Spp 4Gh

x,x, t, t') =&
Sx X, 1) T x—x|2—(t—t')?

+ Oppr 21 GheXe k23 e (N2 cog [k* (2 — 2') £ (t — t'))]
+

More realistically only a function of t — t’.
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Detector response

Spp' 4Gh
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+ Oppr2mGheXr k23" e (N2 cos [k* (2 — 2') £ (t — t'))]
+

gp(x7 X/7 t» t/) =

Integrating over all k — oo, even the coherent part diverges at x = x’.
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Detector response

Spp' 4Gh
T |x—x|2—(t—t')?
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+
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Unrealistic to expect a detector to see arbitrarily high frequencies.
Introduce a response function to suppress high k modes:
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Ep(x =Xt t"\r = ppr

e.g. Taking R(k) = exp (—k/kmax) =

2 2 )2
max - t—t ..
Ep(x =X, t,t')r = 4 (k . ) L= Ko ) 5 = finite.
T\ WPl [1+ k2, (t—t)?]
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Upper bound on ¢,

Hanford - Observed

15

o (residual) = (data) — (numerical GR) 116

naively Gaussian around zero with .
o~ 10721,

@ From GW150914 LIGO data:
Oobs ~ 0.16 x 10721
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Upper bound on ¢,

Hanford - Observed

15
o (residual) = (data) — (numerical GR) 116
naively Gaussian around zero with st
—21 g
o~ 107 = 00
@ From GW150914 LIGO data: g 05
Oobs ~ 0.16 x 10721 ® g
Compare to squeezed state -15 : ‘
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k* Time [sec].
o5 = \/Heg" ( ) ‘ HanfordTRe5|duaI
wp| 04r
with k* = 27f* taken to be the peak g‘g e
frequency in the data, f* ~ 200Hz: E 0.0 Wv | V”( | ‘I‘ Il " '|I
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Summary and outlook

Direct observational bound on a quantum gravitational effect.

The bound of , < 41 may be somewhat improved by more detailed
analysis including more events.

Astrophysical sources of squeezed gravitational waves?
o Mergers, particularly of black holes?

@ Is there a similar mechanism as in the time-dependent background
of the early universe to set up waves in a squeezed state?
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