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Collider and GW Complementarity
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CP-conserving THDM

e CP-conserving 2HDM with a softly broken Z, symmetry.
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First order phase transition

At the critical temperature, T¢ symmetry broken and unbroken vacuum
are degenerate.
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(C.Grojean, G.Servant 2007)



Electroweak phase transition

e To study the thermal evolution of the universe.
e For successful completion of electroweak baryogenesis, EWPT requires to
be strongly first order, and the condition is given by,

Ve
c=—>1.
=2

e FOPT in the early universe show detectable GW signals today.
e GW signal is detectable in detector if SNR > 10.

:
max QGW(f)
SR = \/ / sens(f)/ﬂ} '

(C.Caprini et al., 2016)
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Effective potential

Vet (w1, w2, T) = Vo(wr,w2) + Vew (w1, w2) + Ver(wr, wa, T) + Vr(wi, wo)
= Vo(w1, w2) + Vi(wr, w2) + V7 (wi, w2).

(P.B Arnold, O.Espinosa, 1993)



Shape of the potential
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In the & > 1 regime, the phase transition is mostly one-loop driven.

If the fraction of the barrier height provided by the one-loop contribution is close to
100%, the tunnelling from the false vacuum to the true vacuum is more challenging.
For this reason, the universe with {¢ > 2.5 trapped in the false vacuum. 6



Shape of the potential
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The barrier height provided by the one-loop contribution is correlated to Afo/|]-'OSIVI|
which measures the vacuum upliftment at zero temperature.

Fo is the vacuum energy density of the 2HDM at T = 0 defined as
Fo = Veg(vi,v2, T =0) — Ve (0,0, T = 0),

and F§M = —1.25 x 10® GeV*.



Vacuum upliftment AF,/|F5M|
The individual contributions from H, A, and H* to Fo are of the same form.
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The individual contribution Fé’A/|]-'§’M| from A (blue solid line) in ma-4/m3,/(sgcp)
plane. The grey shaded region is excluded by unitarity and perturbativity constraints

assuming tg =1, cg_q =0, and my = my+ = my + 100 GeV
A H
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Amy = my — my+ and Ama = ma — my=+.

For type Il, my+ < 580 GeV has been excluded by the measurements of
BR(B — Xsv).

muy < my+ ~ ma (left branch): most favourable for SFOEWPT.
m,/(spcp) is closer to m, this leads to large and positive contributions
from A and HT to Fo

my ~ my+ ~ my (central region): depleted number of SFOEWPT points.
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Grey: all points passing HiggsBounds and HiggsSignal. Black: all points with first
order phase transition. The heat map tracks & (left) and SNR (right).
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Resonant and Non-Resonant di-Higgs Searches

250 500 750 1000 1250 1600 250 5000 ki 10001250 1500 250 500 TH0 1000 1250 1500 250 500 750 100001250 150K
my [GeV my [GeV] my [GeV] my [GeV]

The cross section o(gg — H) x BR(H — hh) vs. my. The red dashed line indicates
the projected limits from ATLAS with 3000 fb—! by scaling current limits.
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A — ZH and H — ZA Searches
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The A — ZH constraints on my-my plane. The red crosses are the points that can be
probed by the HL-LHC through A — ZH — ({bb searches, where A is produced
through gluon fusion or via b-associated production

e The widely discussed A(H) — ZH(A) channel in the context of EWPT in
2HDM is still relevant but for a smaller fraction of points compared to
other searches.

e Whereas the H — bb channel generally provides the strongest limits for
this channel, it quickly becomes subdominant once the scalar mass is
beyond top-pair threshold.

e The H — WW channel shows smaller sensitivity as it is suppressed by

CB—a-
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Scalar Decays to Heavy Fermions
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Branching fraction BR(H — tt) as function of my. The red crosses are the points
with & > 1 (left panels) and SNR > 10 (right panels) that can be probed by HL-LHC
through resonant searches decaying to top quark pair.

e The resonant searches with heavy fermionic final states is crucial for
SFOPEWRPT sensitivity at the HL-LHC.

e Type-ll 2HDM is more constrained at the HL-LHC for £ > 1 points as the
type-Il have a stronger lower bound on scalar masses favoring the
H/A — tt search.
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Combined Results
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The summary of the capabilities of corresponding search channels at the HL-LHC.
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The summary of the capabilities of the HL-LHC and GW experiments. v



e Type | and Type Il have similar phase transition behaviour and GW signals.

e The barrier formation in the Higgs potential of the 2HDM is driven by the
one-loop and thermal corrections, with the dominance of the one-loop
terms for large order parameter £ > 1

e Scalar decays to heavy fermions H* H,A — tb, tt is the most promising
smoking gun signature for SFOEWPT at the HL-LHC, followed by the
di-Higgs searches.

e In contrast to the HL-LHC, LISA is going to be sensitive to a significantly
smaller parameter space region, whereas it renders to complementary
sensitivities where the correspondent LHC cross-section is suppressed.

Thank you!
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