

Electroweak phase transition in the 2HDM: collider and gravitational wave complementarity

Ajay Kaladharan

With Dorival Gonçalves and Yongcheng Wu

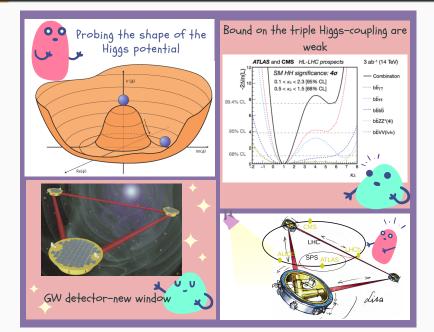
Arxiv:2108.05356

May 9, 2022

Pheno 2022

Oklahoma State University

Collider and GW Complementarity

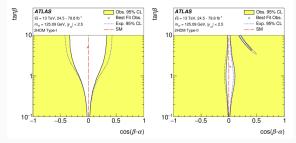


CP-conserving THDM

• CP-conserving 2HDM with a softly broken \mathbb{Z}_2 symmetry.

$$\begin{split} V(\Phi_1, \Phi_2) &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + h.c.) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 \\ &+ \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{\lambda_5}{2} \left((\Phi_1^{\dagger} \Phi_2)^2 + h.c. \right), \end{split}$$

• \mathbb{Z}_2 symmetry transformations $\Phi_1 \to \Phi_1$ and $\Phi_2 \to -\Phi_2$

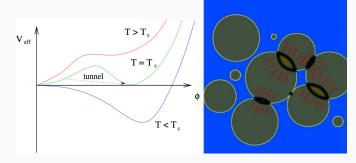


 t_{eta} - $C_{eta-lpha}$ plot, left side corresponds to type I and right side corresponds to type II

$$tan\beta = \frac{v_2}{v_1}$$

First order phase transition

At the critical temperature, T_C symmetry broken and unbroken vacuum are degenerate.



$$\frac{S_3(T_n)}{T_n} \approx 140.$$

$$\alpha = \frac{\rho_{\text{vac}}}{\rho_{\text{rad}}} = \frac{1}{\rho_{\text{rad}}} \left[T \frac{d\Delta V}{dT} - \Delta V \right]_{T_n},$$

$$\beta = \left(HT\frac{d(s_3/T)}{dT}\right)_{T_n}.$$

(C.Grojean, G.Servant 2007)

Electroweak phase transition

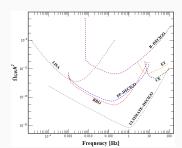
- To study the thermal evolution of the universe.
- For successful completion of electroweak baryogenesis, EWPT requires to be strongly first order, and the condition is given by,

$$\xi_c \equiv rac{v_c}{T_c} \geq 1$$
 .

- FOPT in the early universe show detectable GW signals today.
- GW signal is detectable in detector if SNR > 10.

$$SNR = \sqrt{ au \int_{f_{min}}^{f_{max}} df \left[rac{\Omega_{GW}(f)h^2}{\Omega_{sens}(f)h^2}
ight]^2}.$$

(C.Caprini et al., 2016)

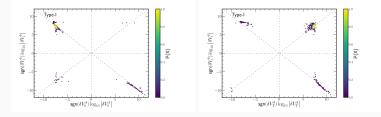


$$V_{\text{eff}}(\omega_1, \omega_2, T) = V_0(\omega_1, \omega_2) + V_{CW}(\omega_1, \omega_2) + V_{CT}(\omega_1, \omega_2, T) + V_T(\omega_1, \omega_2)$$

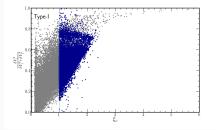
= $V_0(\omega_1, \omega_2) + V_1(\omega_1, \omega_2) + V_T(\omega_1, \omega_2).$

(P.B Arnold, O.Espinosa, 1993)

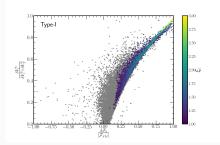
Shape of the potential



In the $\xi_c > 1$ regime, the phase transition is mostly one-loop driven.



If the fraction of the barrier height provided by the one-loop contribution is close to 100%, the tunnelling from the false vacuum to the true vacuum is more challenging. For this reason, the universe with $\xi_c > 2.5$ trapped in the false vacuum.



The barrier height provided by the one-loop contribution is correlated to $\Delta \mathcal{F}_0/|\mathcal{F}_0^{\rm SM}|$ which measures the vacuum upliftment at zero temperature.

 \mathcal{F}_0 is the vacuum energy density of the 2HDM at T = 0 defined as

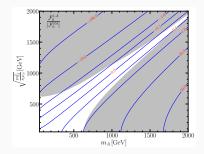
$$\mathcal{F}_0 \equiv V_{\text{eff}}(v_1, v_2, T = 0) - V_{\text{eff}}(0, 0, T = 0),$$

and $\mathcal{F}_0^{\rm SM} = -1.25 \times 10^8 \mbox{ GeV}^4.$

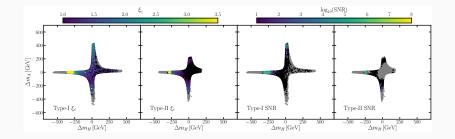
Vacuum upliftment $\Delta \mathcal{F}_0 / |\mathcal{F}_0^{SM}|$

The individual contributions from H, A, and H^{\pm} to \mathcal{F}_0 are of the same form.

$$\begin{split} \mathcal{F}_{0}^{1,A}(c_{\beta-\alpha}=0) &= \frac{1}{512\pi^{2}} \left[\left(3m_{h}^{2} + 2m_{A}^{2} - 6\frac{m_{12}^{2}}{s_{\beta}c_{\beta}} \right) \left(m_{h}^{2} + \boxed{2m_{A}^{2} - 2\frac{m_{12}^{2}}{s_{\beta}c_{\beta}}} \right) \\ &+ \left(m_{h}^{2} - 2\frac{m_{12}^{2}}{s_{\beta}c_{\beta}} \right)^{2} \log \left(\frac{4m_{A}^{4}}{(m_{h}^{2} - 2m_{12}^{2}/(s_{\beta}c_{\beta}))^{2}} \right) \right] \end{split}$$

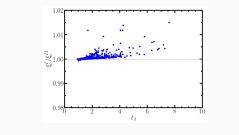


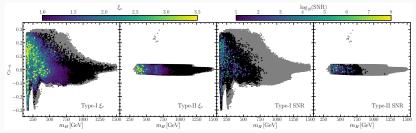
The individual contribution $\mathcal{F}_0^{1,A}/|\mathcal{F}_0^{\mathrm{SM}}|$ from A (blue solid line) in $m_{A^-}\sqrt{m_{12}^2/(s_\beta c_\beta)}$ plane. The grey shaded region is excluded by unitarity and perturbativity constraints assuming $t_\beta = 1$, $c_{\beta-\alpha} = 0$, and $m_A = m_{H^{\pm}} = m_H + 100$ GeV.



- $\Delta m_H = m_H m_{H^{\pm}}$ and $\Delta m_A = m_A m_{H^{\pm}}$.
- For type II, $m_{H^{\pm}} < 580$ GeV has been excluded by the measurements of BR($B \rightarrow X_s \gamma$).
- $m_H < m_{H^{\pm}} \approx m_A$ (left branch): most favourable for SFOEWPT. $m_{12}^2/(s_\beta c_\beta)$ is closer to m_H^2 , this leads to large and positive contributions from A and H^{\pm} to \mathcal{F}_0
- $m_H \approx m_{H^{\pm}} \approx m_A$ (central region): depleted number of SFOEWPT points.

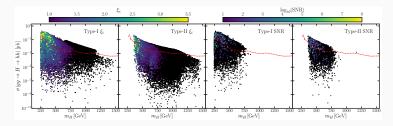
 $c_{\beta-\alpha}-m_H$



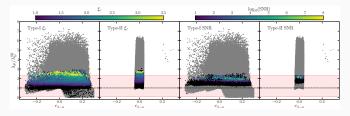


Grey: all points passing HiggsBounds and HiggsSignal. Black: all points with first order phase transition. The heat map tracks ξ_c (left) and SNR (right).

Resonant and Non-Resonant di-Higgs Searches

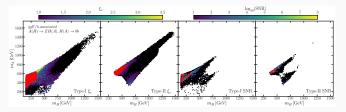


The cross section $\sigma(gg \to H) \times BR(H \to hh)$ vs. m_H . The red dashed line indicates the projected limits from ATLAS with 3000 fb⁻¹ by scaling current limits.



 $\lambda_{h^3}/\lambda_{h^3}^{SM}$ as function of $c_{\beta-\alpha}$. The HL-LHC projected 95% CL sensitivity for non-resonant di-Higgs production is also shown $0.1 < \lambda_{h^3}/\lambda_{h^3}^{SM} < 2.3$ (light red)

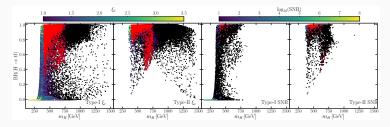
$A \rightarrow ZH$ and $H \rightarrow ZA$ Searches



The $A \rightarrow ZH$ constraints on m_H - m_A plane. The red crosses are the points that can be probed by the HL-LHC through $A \rightarrow ZH \rightarrow \ell\ell b\bar{b}$ searches, where A is produced through gluon fusion or via b-associated production

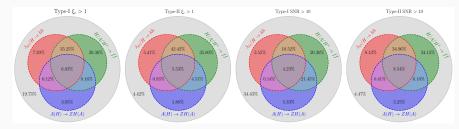
- The widely discussed A(H) → ZH(A) channel in the context of EWPT in 2HDM is still relevant but for a smaller fraction of points compared to other searches.
- Whereas the H → bb channel generally provides the strongest limits for this channel, it quickly becomes subdominant once the scalar mass is beyond top-pair threshold.
- The $H \to WW$ channel shows smaller sensitivity as it is suppressed by $c_{\beta-\alpha}$.

Scalar Decays to Heavy Fermions



Branching fraction $\mathcal{BR}(H \to t\bar{t})$ as function of m_H . The red crosses are the points with $\xi_c > 1$ (left panels) and SNR > 10 (right panels) that can be probed by HL-LHC through resonant searches decaying to top quark pair.

- The resonant searches with heavy fermionic final states is crucial for SFOPEWPT sensitivity at the HL-LHC.
- Type-II 2HDM is more constrained at the HL-LHC for ξ_c > 1 points as the type-II have a stronger lower bound on scalar masses favoring the H/A → tt̄ search.



The summary of the capabilities of corresponding search channels at the HL-LHC.

The summary of the capabilities of the HL-LHC and GW experiments.

Summary

- Type I and Type II have similar phase transition behaviour and GW signals.
- The barrier formation in the Higgs potential of the 2HDM is driven by the one-loop and thermal corrections, with the dominance of the one-loop terms for large order parameter $\xi_c > 1$
- Scalar decays to heavy fermions H[±], H, A → tb, tt is the most promising smoking gun signature for SFOEWPT at the HL-LHC, followed by the di-Higgs searches.
- In contrast to the HL-LHC, LISA is going to be sensitive to a significantly smaller parameter space region, whereas it renders to complementary sensitivities where the correspondent LHC cross-section is suppressed.

Thank you!