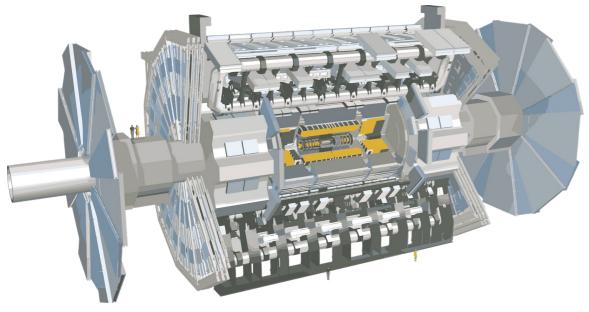
Highlights of the ATLAS top quark precision measurements

Pavol Bartoš


(Comenius University) On behalf of ATLAS collaboration

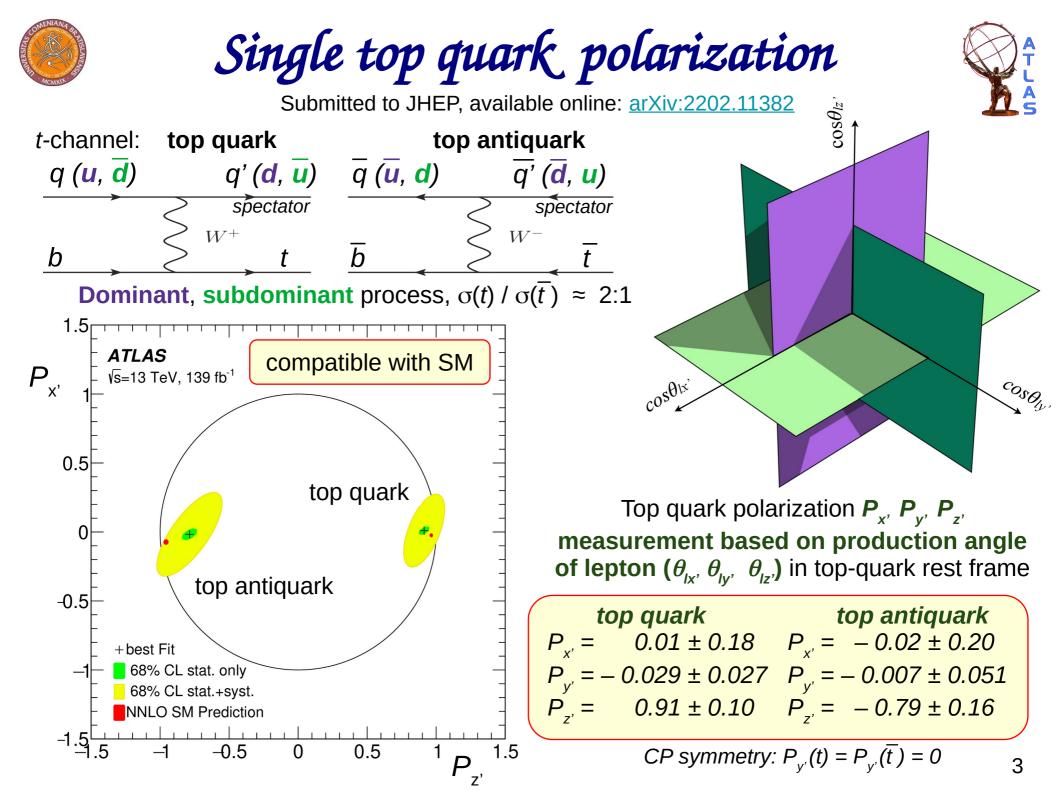
PHENO 2022, 9-11 May, Pittsburgh

ATLAS detector

Why is the top quark so attractive?

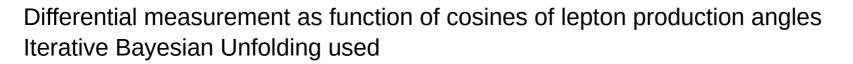
- Its large mass (~173 GeV) => short lifetime
- Top decays before hadronization
- Testing of Standard Model (SM) via crosssection measurements
- Top quark mass related to masses of W boson and Higgs boson
- Precise mass measurement test of electroweak sector of SM

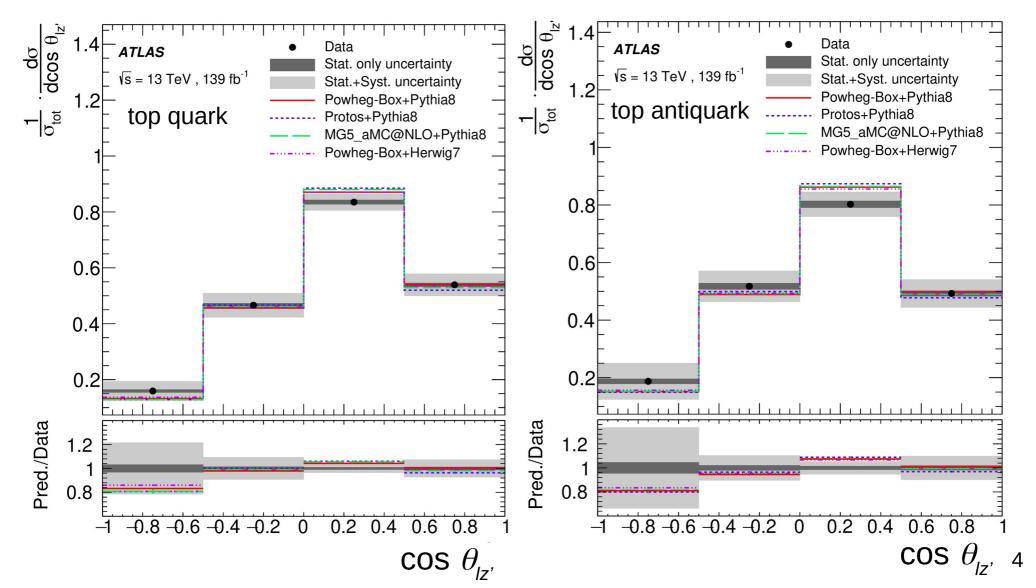
Topics covered in this talk:

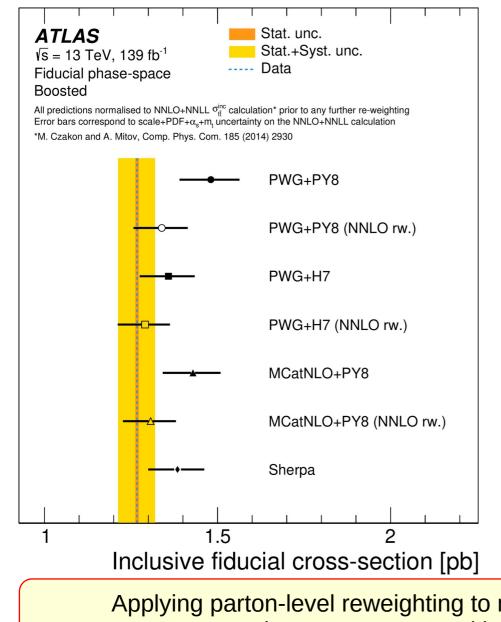

- Top quark polarization (single top *t*-channel production)
- Cross-section of top quark pair production (I+jets, all-had decay channels)
- r $t\overline{t}$ energy asymmetry
- News from top mass
- Studies with bb4l generator

For more top quark related results

see Jiri's talk

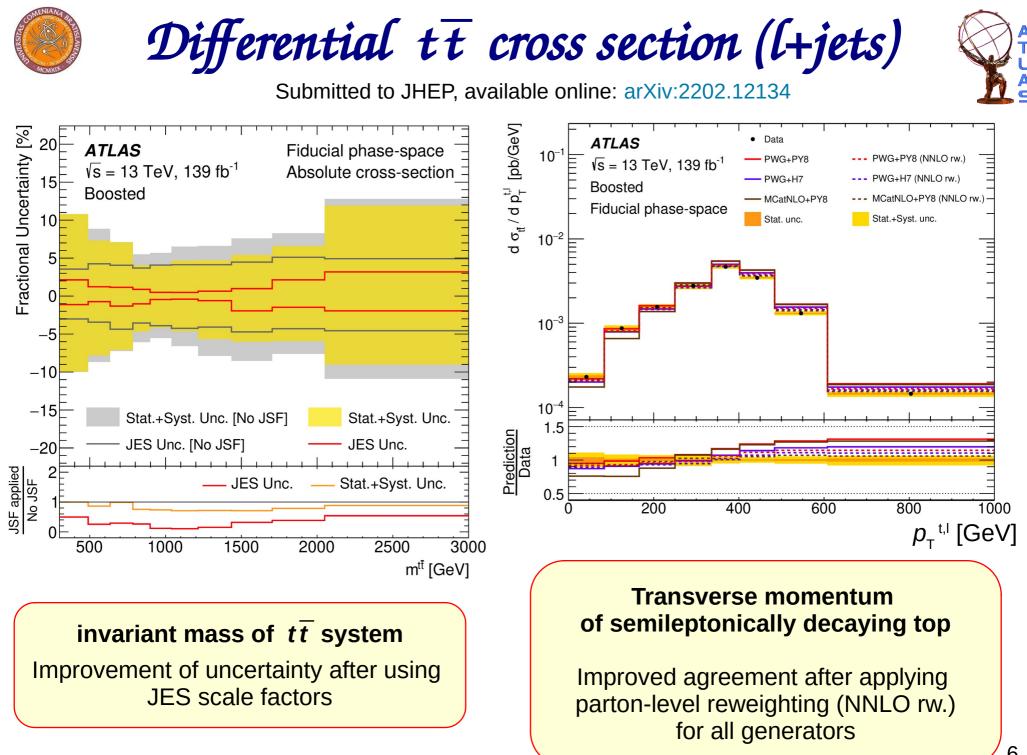

visit ATLAS Top WG public web page




Single top quark polarization

Differential tt cross section (l+jets)

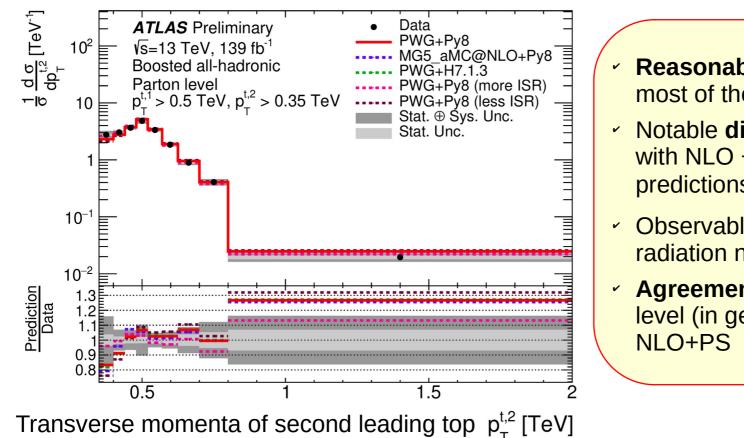
Submitted to JHEP, available online: arXiv:2202.12134

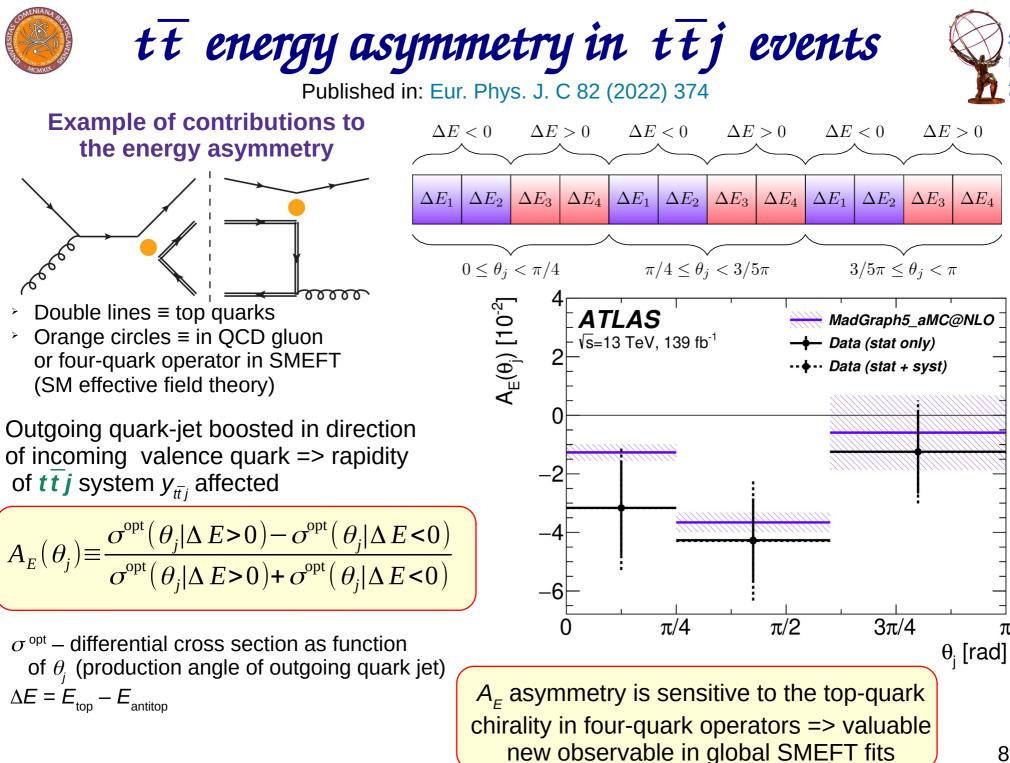


Method:

- mass of large-R jet used to derive Jet Energy (JES) scale factors => reduction of JES systematic
- W+jet, single top suppressed by:
 ≥ 2 *b*-jets,
 - invariant mass of lepton and *b*-jet to be < 180 GeV</p>
- IBU unfolding to particle level
- Measured in fiducial phase-space
- Differential measurements:
 - Characteristics of top quark kinematic: $p_T^{t,l}, p_T^{t,h}, |y^{t,l}|, |y^{t,h}|, m^{t\bar{t}}, |y^{t\bar{t}}|...$
 - > Probe of additional radiation:
 - > p_{T}^{t} , # of additional jets N^{j} , their p_{T} , ...
 - > 4 two-dimensional measurements: > $p_{\tau}^{j,1}$ vs $p_{\tau}^{t,h}$ (or vs N^{j}), $\Delta \phi$ (j_{1} , t_{h}) vs $p_{\tau}^{t,h}$...

Applying parton-level reweighting to match NNLO QCD predictions gives better agreement with data for all generators e,µ

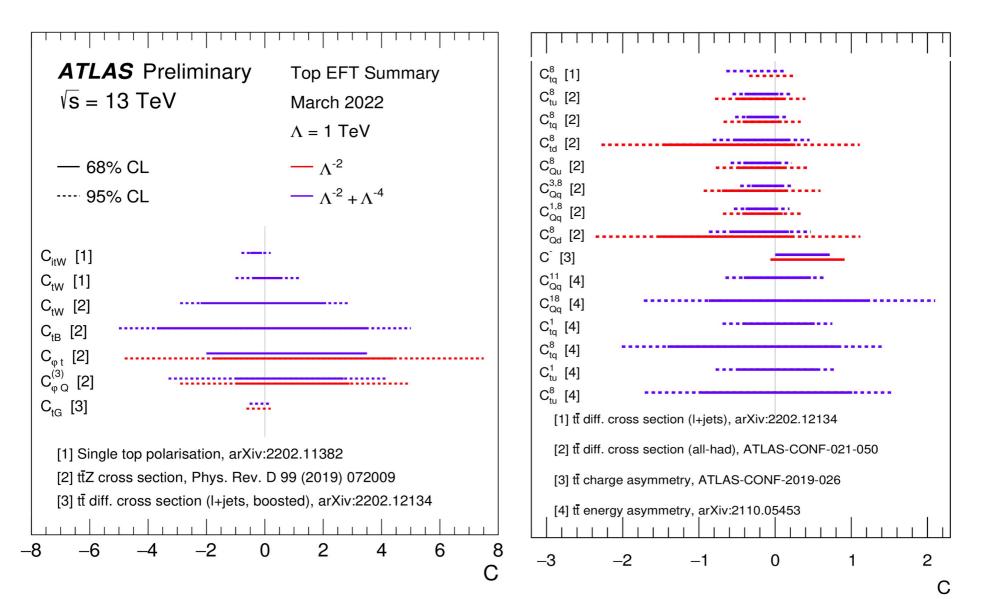

h


Differential $t\overline{t}$ cross section (all-had)

Submitted to JHEP, available online: arXiv:2205.02817

- Single-, double-, triple- differential cross-section
- measured for several variables (p_{T} , y of top quarks, p_{T} , y, m of $t\bar{t}$ system, ...)
- Unfolding to particle and/or parton fiducial phase-space
- Uncertainty reduction factor of 2-5 (depending on differential bin)
 w.r.t previous measurement
- $\, {\scriptstyle \checkmark}\,$ NLO, NNLO prediction obtained from MATRIX program

- Reasonable agreement found for most of the NLO models
- Notable disagreement of data with NLO + parton shower (PS) predictions for 2nd leading top p_T
- Observables sensitive to gluon radiation not well described
- Agreement with NNLO at parton level (in general) better than with NLO+PS



SMEFT interpretation of results

Published in: ATL-PHYS-PUB-2022-014

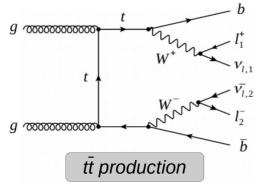
Many results provide constraints on Wilson coefficients in SMEFT interpretation

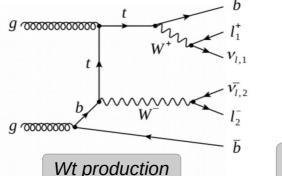
9

Top mass parameter in MC @ ATLAS

Available online: ATL-PHYS-PUB-2021-034

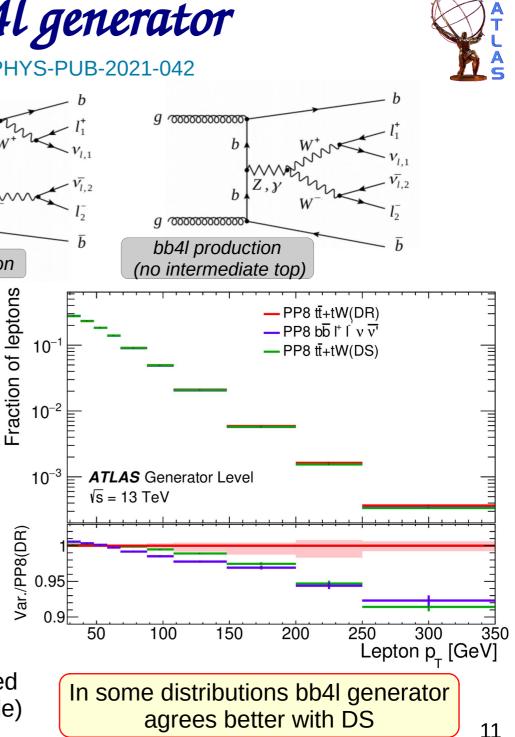
Top mass measured in direct measurements Vormalized events / 500 MeV using template method 0.09 ATLAS Simulation Preliminary 0.03 pp \rightarrow t \overline{t} , XCone *R*=1.0 jets 0.08 0.025 However top mass para-0.02 Soft-drop (z_{cut} =0.01, β =2) 0.015E meter m_t^{MC} used by 0.07 1000 GeV < $p_{_{
m T}}$ < 1500 GeV generator is measured 0.06 Powheg + Pythia8 ••••• NLL prediction, MSR mass 0.05 - Difference w.r.t. m_t^{MSR} (1 GeV) and NLL prediction, pole mass 0.04 m_{t}^{pole} estimated by template method using Theory Unc. templates of tree parameters: 0.03 m_t^{MSR} (1 GeV), $\Omega_{1a}^{(0)}$, and x_2 0.02 0.01 parameters in NLL code affecting hadronization 165 170 175 180 185 190 - Fit is done in 3 bins of top p_{τ} Large-R jet mass [GeV] $m_t^{\text{MC}} = m_t^{\text{MSR}} (1 \,\text{GeV}) + 80_{-410}^{+350} \text{ MeV}$ $m_t^{\text{MC}} = m_t^{\text{pole}} + 350^{+300}_{-360} \text{ MeV}$


Technique based on:


M. Butenschoen et al., "Top Quark Mass Calibration For Monte Carlo Event Generators"

Available online: ATL-PHYS-PUB-2021-042

Advantages:


- Takes into account quantum interference effects between diagrams with same final state
- Includes off-shell effects
- Top quark decay modelled at NLO

Cons:

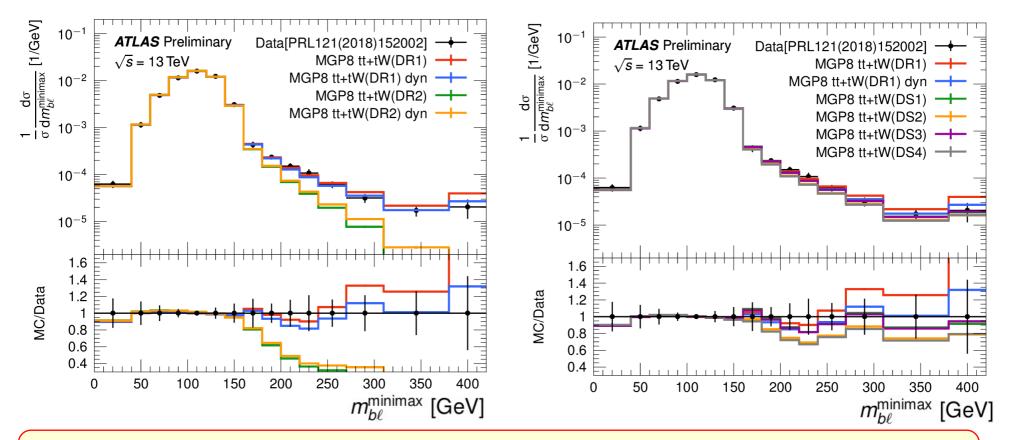
· Produce only different flavour dilepton events (*ee*, $\mu\mu$, $\tau\tau$ not included)

Used for multiple studies:

- bb4l compared to simulated tt and Wt samples with Diagram Removal (DR) and/or Diagram Subtraction (DS)
- template fit of top mass
- Comparison of DR/DS schemes with unfolded dilepton tt differential cross-section (next slide)

Powheg bb4l generator

Available online: ATL-PHYS-PUB-2021-042



Comparison of DR/DS schemes with unfolded dilepton $t\bar{t}$ differential cross-section

DR1 vs DR2 – difference in subtraction of double resonant diagrams

DS1, DS2 (DS3, DS4) – reshuffling performed on initial- (final-) state particles

 $m_{b\ell}^{\min} = \min\{\max(m_{b_1,\ell_1}, m_{b_2,\ell_2}), \max(m_{b_2,\ell_1}, m_{b_1,\ell_2})\}$

DR2 schemes can be excluded. Dynamic scale choice for the DR1 improves agreement. DS1 and DS3 schemes agree well with data.

- Top quark polarization compatible with SM predictions
- Top-quark pair production measurements with improved sensitivity shows agreement with NNLO better then with NLO
- Energy asymmetry compatible with SM predictions
 "" and high any the black" for subbal SMEET fits
 - \rightarrow "new kid on the block" for global SMEFT fits
- Constraints on Wilson coefficients in SMEFT interpretation presented
- First step towards understanding relation between top mass parameter in MC and theoretical-well defined top quark mass scheme done
- bb4l generator compared to the currently used MC simulations

More results at: Top-quark physics at ATLAS - public page

Thank you for your attention!

Single top quark polarization

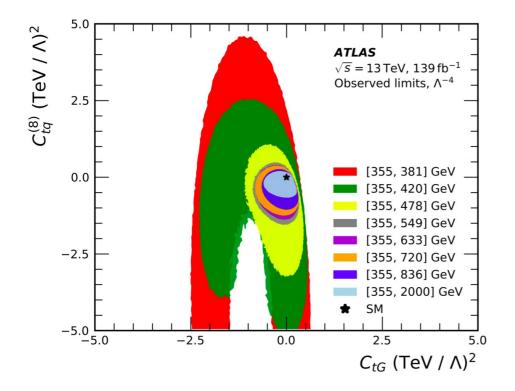
Common event selection criteria									
Exactly one electron or muon									
Veto secondary low- $p_{\rm T}$ charged loose leptons									
	Exactly two jets								
	$E_{\rm T}^{\rm miss} > 35{ m GeV}$								
		$m_{\rm T}(\ell, E_{\rm T}^{\rm mis})$							
	$p_{\mathrm{T}}(\ell) > 5$	$50\left(1-\frac{\pi-1}{2}\right)$	$\frac{\Delta\phi(p_{\rm T}(j_1),}{\pi-1}$	$\frac{ p_{\mathrm{T}}(\ell) }{ }$ GeV					
Preselection region	Signal region		$t\bar{t}$ contr	ol region	W+	jets control region			
Exactly one <i>b</i> -tagged	d jet Exactly one <i>b</i> -tag	ged jet	Exactly	two <i>b</i> -tagged jet		actly one b-tagged jet			
	$m_{\ell b} < 153 \text{ GeV}$					_b > 153 GeV			
	$m_{j\ell\nu b} > 320 \mathrm{GeV}$				5	$e_{\nu b} < 320 \text{GeV}$			
	Trapezoidal requi	rement				to trapezoidal requirement			
	$H_{\rm T} > 190 { m ~GeV}$ $H_{\rm T} < 190 { m ~GeV}$								
		A				· · · ·			
Process	Preselection region	Signal	<u> </u>	$t\bar{t}$ control region		W+ jets control region			
<i>t</i> -channel	219000 ± 11000		± 3500	13480 ± 680		148200 ± 7400			
$t\bar{t}, tW, s$ -channel	736000 ± 39000	43 200		147800 ± 840		693000 ± 37000			
W+ jets	590000 ± 200000	26 200	± 8900	16100 ± 5500		560000 ± 190000			
Z + jets, diboson	52900 ± 5100	2120	± 350	2620 ± 360		50800 ± 4900			
Others	494 ± 38	30	± 4	79 ± 6		464 ± 36			
Multijet	52000 ± 10000	3500	± 640	5500 ± 180	00	48500 ± 9400			
Total expected	1650000 ± 210000	145 600	± 9900	186000 ± 100	000	1510000 ± 200000			
Data	1750918	1543	361	188 326		1 596 557			
S/B	0.15 ± 0.02	0.94	± 0.13	0.08 ± 0.0	1	0.11 ± 0.02			
Data/Prediction	1.06 ± 0.13	1.06	± 0.07	1.02 ± 0.0	6	1.06 ± 0.14			

Single top quark polarization

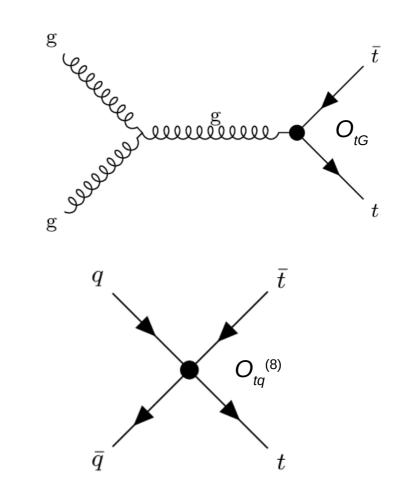
Submitted to JHEP, available online: <u>arXiv:2202.11382</u>

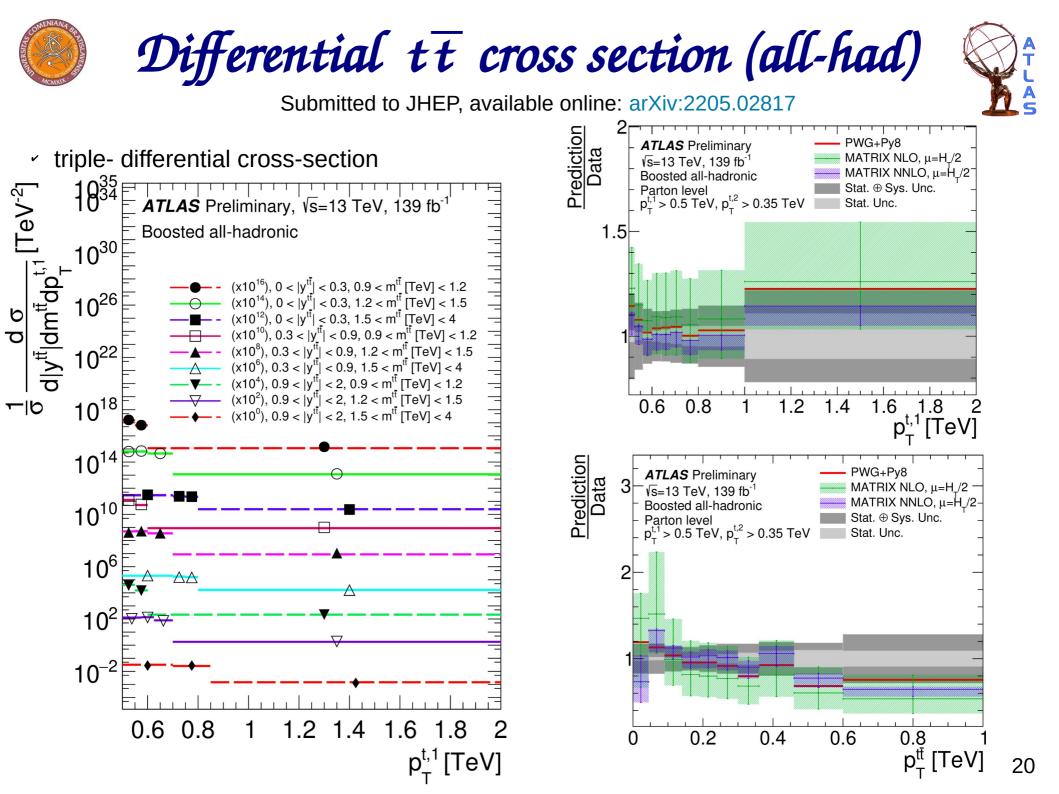
Uncertainty source	$\Delta P_{x'}^t$	$\Delta P_{x'}^{\bar{t}}$	$\Delta P_{y'}^t$	$\Delta P_{y'}^{\bar{t}}$	$\Delta P_{z'}^t$	$\Delta P_{z'}^{\bar{t}}$
Modelling						
Modelling (<i>t</i> -channel)	± 0.037	± 0.051	± 0.010	± 0.015	± 0.061	± 0.061
Modelling $(t\bar{t})$	±0.016	± 0.021	± 0.004	±0.016	± 0.003	±0.016
Modelling (other)	±0.013	± 0.031	± 0.003	± 0.006	± 0.026	± 0.043
Experimental						
Jet energy scale	± 0.045	± 0.048	± 0.005	± 0.007	± 0.033	± 0.025
Jet energy resolution	±0.166	± 0.185	± 0.021	± 0.040	± 0.070	± 0.130
Jet flavour tagging	± 0.004	± 0.002	< 0.001	± 0.001	± 0.007	± 0.009
Other experimental uncertainties	±0.015	± 0.029	± 0.002	± 0.007	± 0.014	± 0.026
Multijet estimation	± 0.008	± 0.021	< 0.001	± 0.001	± 0.008	±0.013
Luminosity	± 0.001	± 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Simulation statistics	± 0.020	± 0.024	± 0.008	±0.015	±0.017	±0.031
Total systematic uncertainty	±0.174	±0.199	±0.025	± 0.048	±0.096	±0.153
Total statistical uncertainty	±0.017	±0.025	±0.011	±0.017	±0.022	±0.034

Object	Detector-level requirements		Particle-level requirements	
Leptons	Exactly 1 lepton in event <u>Electrons</u> $p_{\rm T} > 27 \text{ GeV}$ $ \eta < 1.37 \text{ or } 1.52 < \eta < 2.47$		Exactly 1 lepton in event $p_{\rm T} > 27 \text{ GeV}$ $ \eta < 2.5$	
Small- R jets ($R = 0.4$)	$p_{\mathrm{T}} > 26 \text{ GeV}$ $ \eta < 2.5$		Same as detector-level	
<i>b</i> -tagged jets ($R = 0.4$)	DL1r multivariate tagger at 77% efficiency $\geq 1 \ b$ -tagged jet is constituent of top-jet $\geq 1 \ b$ -tagged jet near lepton: $\Delta R(\ell, b) < 2.0$		Jet ghost-matched to <i>b</i> -hadron Same as detector-level	
Hadronic top-jet ($t, R = 1.0$) ($R = 0.4$ jets as input)	≥ 1 top-tagged large-R jet candidate $p_T > 355 \text{ GeV}$ $ \eta < 2.0$ 120 GeV < m < 220 GeV ≥ 1 b-tagged sub-jet		Same as detector-level	
$E_{\mathrm{T}}^{\mathrm{miss}}$ & $\mathrm{m}_{\mathrm{T}}^{\mathrm{W}}$	$E_{\rm T}^{\rm miss} > 20 \text{ GeV}$ $E_{\rm T}^{\rm miss} + m_{\rm T}^{\rm W} > 60 \text{ GeV}$		Same as detector-level	
Electron isolation	$\Delta \mathbf{R}(e,t) > 1.0$		Same as detector-level	
$m_{\ell b}$	$m_{\ell b} < 180 \text{ GeV}$		Same as detector-level	



Source	Uncertainty [%]	Uncertainty [%] (no JSF)
Statistical (data)	±0.4	±0.4
JSF statistical (data)	± 0.4	—
Statistical (MC)	±0.2	±0.1
Hard scatter	±0.5	± 0.8
Hadronisation	± 2.0	± 1.8
Radiation (ISR/FSR + h_{damp})	+1.0 -1.6	$^{+1.4}_{-2.3}$
PDF	±0.1	±0.1
Top-quark mass	+0.8 -1.1	±0.1
Jets	± 0.7	± 4.2
<i>b</i> -tagging	± 2.4	±2.4
Leptons	± 0.8	± 0.8
$E_{\mathrm{T}}^{\mathrm{miss}}$	± 0.1	± 0.1
Pile-up	± 0.4	± 0.0
Luminosity	± 1.8	± 1.8
Background modelling	±0.6	±0.6
Total systematic uncertainty	+4.1 -4.3	+5.8 -6.0
Total	$^{+4.1}_{-4.3}$	+5.8 -6.0





Evolution of the 95% observed credible region when adding the bins of the measured $p_{T}^{t,h}$

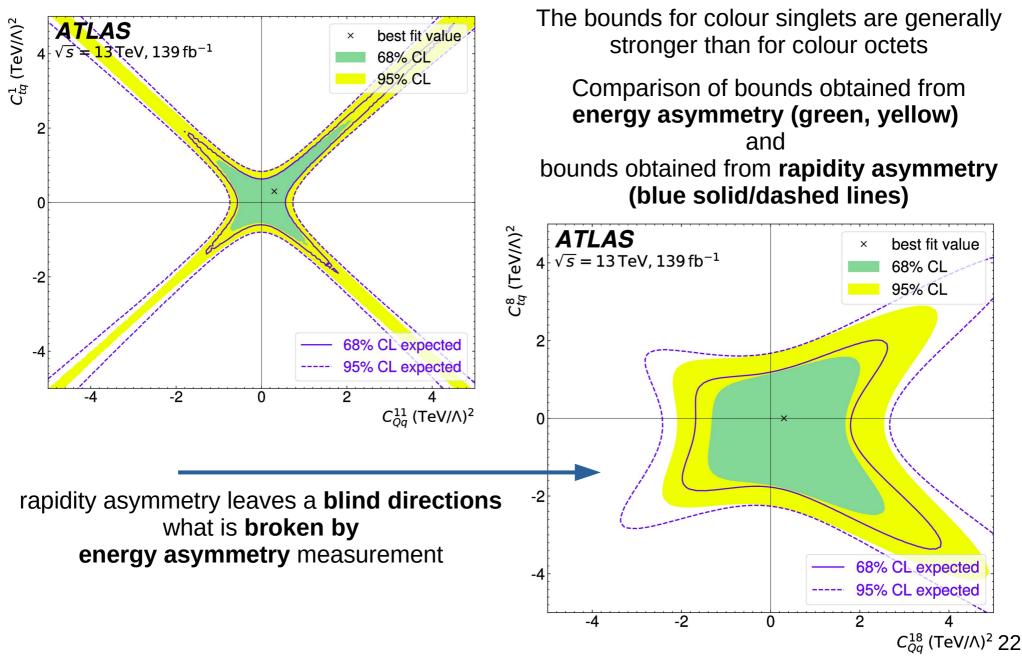
Differential $t\bar{t}$ cross section (all-had)

Parton level

Source	Relative Uncertainty [%]
Top-tagging	7.8
${ m JES} \oplus { m JER}$	4.2
$ m JMS \oplus m JMR$	1.1
Flavor tagging	2.9
Alternative hard-scattering model	5.3
Alternative parton-shower model	2.8
ISR/FSR + scale	5.9
PDF	0.9
Luminosity	1.7
Monte Carlo sample statistics	0.4
Systematics	12.9
Statistics	1.0
Total Uncertainty	13.0

Limits on Wilson coefficients

$Q(\mathbf{D}, \mathbf{V}, \mathbf{A})^2$	$\mathcal{O}(\Lambda$	⁻⁴)	$\mathcal{O}(\Lambda^{-2})$			
$C({ m TeV}/\Lambda)^2$	68% CL	95% CL	68% CL	95% CL		
$C_{Oa}^{3,8}$	[-0.31, 0.10]	[-0.46, 0.25]	$[-0.93 \ , \ 0.10]$	[-1.42, 0.61]		
$C^{3,8}_{Qq} \ C^{1,8}_{Qq}$	[-0.39, 0.04]	[-0.55, 0.19]	[-0.47, 0.08]	$[-0.74\ ,\ 0.34]$		
C_{Qu}^8	$[-0.42 \ , \ 0.05]$	[-0.59 , 0.22]	[-0.58 , 0.08]	$[-0.90\;,0.41]$		
C_{Qd}^8	[-0.58 , 0.18]	[-0.88 , 0.48]	[-1.55 , 0.26]	[-2.43, 1.13]		
C_{tq}^8	[-0.38 , 0.03]	[-0.54 , 0.18]	$[-0.46 \ , \ 0.07]$	$[-0.71 \ , \ 0.32]$		
C_{tu}^8	$[-0.40 \ , \ 0.04]$	[-0.57 , 0.21]	[-0.57 , 0.07]	$[-0.88 \ , \ 0.38]$		
C_{td}^8	$[-0.55 \ , \ 0.18]$	[-0.83 , 0.46]	[-1.53 , 0.25]	[-2.39 , 1.12]		


21

Published in: Eur. Phys. J. C 82 (2022) 374

Available online: ATL-PHYS-PUB-2021-034

 m_t^{MSR} (1 GeV) = 172.42 ± 0.10 GeV Ω_{1q} = 1.49 ± 0.03 GeV x_2 = 0.52 ± 0.09

Source	Size [MeV]	Comment
Theory (higher-order corrections)	+230/-310	Envelope of NLL scale variations
Fit methodology	± 190	Choice of fit range, $p_{\rm T}$ bins
Underlying Event model	± 155	A14 eigentune variations, CR models
Total Systematic	+340/-340	
Statistical Uncertainty	± 100	
Total Uncertainty	+350/-410	

Powheg bb4l generator

Available online: ATL-PHYS-PUB-2021-042

Final state	$tar{t}$	$bb4\ell$
Generator	hvq [10]	$bb4\ell$ [6]
Framework	Powheg-Box	Powheg-Box-Res
NLO matrix element	$t \overline{t}$	$bar{b}\ell^+\ell^{-'} uar{ u}'$
Decay accuracy	LO+PS	NLO+PS
NLO radiation	single	multiple
Spin correlation	approx.	exact
Off-shell $t\bar{t}$ effects	BW smearing	exact
tW and non-resonant effect	no	exact
<i>b</i> -quark massive	yes	yes

NLO generator cross-sections for different DR/DS schemes

	Generator			$\mu_{\mathbf{R}}, \mu_{\mathbf{F}}$	DR1	DR	$\overline{2}$	
	POWHEG+PYTHIA 8			$m_{ m top}$	7.99			
${ m MadGraph5_aMC@NLO+Pythia8}$			m_{top}	7.98	7.15)		
	MadGraph5_aMC@NL	О+Рутн	IA 8	$H_{\rm T}/2$	7.57	6.94	<u> </u>	
Generator		$\mu_{\mathbf{R}}, \mu_{\mathbf{F}}$	\mathbf{pdf}	flux	DS1	DS2	DS3	DS4
Powheg+I	PYTHIA 8	$m_{ m top}$			7.83			
MADGRAPH	15_aMC@NLO+Pythia8	$m_{ m top}$	true	true	7.68	6.35	7.84	7.68
MADGRAPH	I5_aMC@NLO+Pythia8	$m_{ m top}$	false	true	7.77	7.59	7.79	7.65
MADGRAPH	I5_aMC@NLO+Pythia8	$m_{ m top}$	true	false	7.74	7.26	7.82	7.68
MADGRAPH	I5_aMC@NLO+Pythia8	$m_{ m top}$	false	false	7.72	7.72	7.76	7.63

Powheg bb4l generator

Theory from arXiv:1607.05862

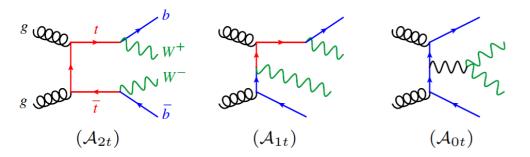


Fig. 2 Examples of doubly resonant (left), singly resonant (center) and non-resonant (right) diagrams contributing to WbWb production. The first two diagrams on the left (with the t line cut) describe the NLO real-emission contribution to the tW^- process.

$$|\mathcal{A}_{tWb}|^2 = |\mathcal{A}_{1t} + \mathcal{A}_{2t}|^2$$
$$= |\mathcal{A}_{1t}|^2 + 2\operatorname{Re}(\mathcal{A}_{1t}\mathcal{A}_{2t}^*) + |\mathcal{A}_{2t}|^2$$

DR1 (no interference term):

$$|\mathcal{A}_{tWb}|^2_{\mathrm{DR1}} = |\mathcal{A}_{1t}|^2$$
 as $\mathcal{A}_{2t} = 0$

DR2 (with interference term):

$$|\mathcal{A}_{tWb}|^2_{\mathrm{DR2}} = |\mathcal{A}_{1t}|^2 + 2\mathrm{Re}(\mathcal{A}_{1t}\mathcal{A}^*_{2t})$$

DR is based on removing contributions all over the phase space => not gauge invariant

DS scheme

$$|\mathcal{A}_{tWb}|_{\mathrm{DS}}^2 = |\mathcal{A}_{1t} + \mathcal{A}_{2t}|^2 - \mathcal{C}_{2t}$$

\mathcal{C}_{2t} , by definition, must

- 1. cancel exactly the resonant matrix element $|\mathcal{A}_{2t}|^2$ when the kinematics is exactly on top of the resonant pole;
- 2. be gauge invariant;
- 3. decrease quickly away from the resonant region.

$$C_{2t}(\{p_i\}) = f(p_{Wb}^2) \left| \mathcal{A}_{2t}(\{q_i\}) \right|^2,$$

where $p_{Wb} = (p_W + p_b)$, and $\{p_i\}$ is the set of momenta of the external particles (i.e. the phase-space point), while $\{q_i\}$ are the external momenta after a reshuffling that puts the internal anti-top quark on mass-shell, i.e.

$$\{q_i\} : q_{Wb}^2 \equiv (q_W + q_b)^2 = m_t^2$$

DS1, DS2 – reshuffling done on initial state particles

DS1:

1

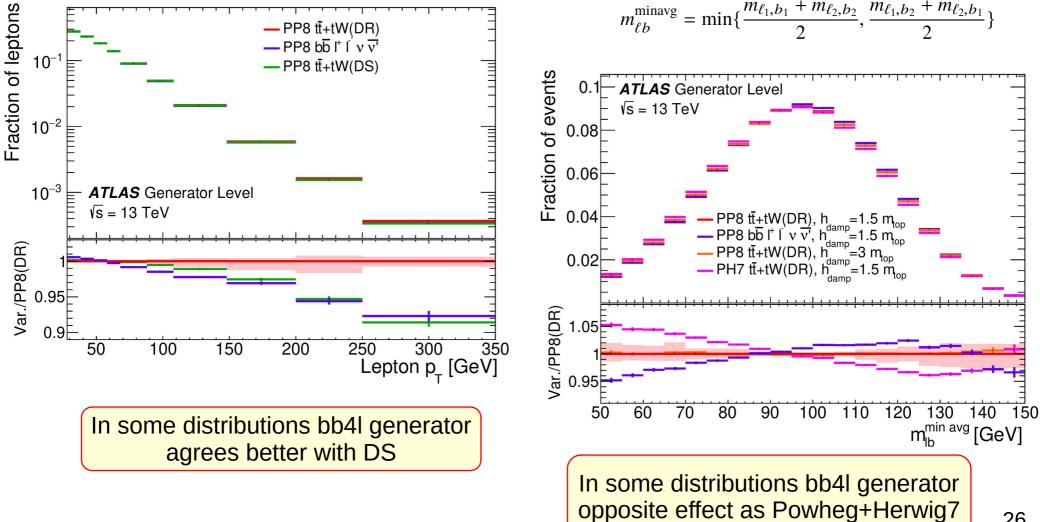
DS2:

$$f_1(s) = \frac{(m_t \Gamma_t)^2}{(s - m_t^2)^2 + (m_t \Gamma_t)^2} \qquad f_2(s) = \frac{(\sqrt{s} \Gamma_t)^2}{(s - m_t^2)^2 + (\sqrt{s} \Gamma_t)^2}$$

DS3, DS4 – reshuffling done on final state particles

Powheg bb4l generator

Available online: ATL-PHYS-PUB-2021-042



Used for multiple studies:

bb4l compared to simulated tt and Wt samples with Diagram Removal (DR) and/or Diagram Subtraction (DS)

Used for multiple studies:

bb4l compared to simulated tt and Wt (DR) for different h_{damp} and to Powheg+Herwig7

