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Lorentzian Asymptotic Safety?
The idea: Base ultraviolet (UV) completion of quantum gravity (QGR) as a quantum field
theory (QFT) on non-Gaussian fixed point (NGFP) of renormalization group flow.
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Main technique: (Euclidean) Functional Renormalization Group (FRG).
I Has produced strong evidence in support of the existence of a NGFP for quantum gravity.
I Associated finite-dimensional UV critical surface potentially leads to enhanced predictivity

in the infrared (IR).

Phenomenological implications studied by flowing from UV to IR
scales.

I Higgs mass prediction [M. Shaposknikov, C. Wetterich, Phys. Lett. B. 683 (2010)].

A (major) criticism: Results hinge strongly on use of Euclidean signature!

Wick rotation? Quantum state dependence?
[J. F. Donoghue, Front.in Phys. 8 (2020) 56]
[A. Bonanno et al., Front.in Phys (2020) 269]



Euclidean vs. Lorentzian FRG

I The FRG technique studies the non-linear response of Legendre Effective Action Γk
to scale-dependent mode modulation

S[χ; g] 7→ S[χ; g] + ∆Sk [χ; g] , ∆Sk [χ; g] =
εg
2
χ · Rk (g) · χ .

I On a foliated manifold M = I ×Σ, ds2 = εgN2dt2 + gijdx idx j , the Wetterich equation is

k∂k Γk [ϕ] = −
εg
√
εg~

2
Tr
{

k∂kRk ·Gk [ϕ]
}
,

[
δ2Γk

δϕδϕ
+ εgRk

]
·Gk [ϕ] = εg11 .

Euclidean covariant FRG
Ellipticity of the principal part of the Hessian Hk = Γ

(2)
k +Rk ensures the existence of a

unique inverse.
Heat kernel techniques for the generalized Hessian are central and account robustly for
UV behavior for flows.
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Lorentzian Euclidean
εg -1 1√
εg i 1



Lorentzian signature spatial FRG

Spatial modulation: Rk modulates only spatial modes, leaves temporal modes
unaffected.

Hyperbolicity of Hk = Γ
(2)
k −Rk implies inverse is non-unique. But needs to be of

Hadamard form!

Universal UV properties follow from Hadamard expansion of Hk ’s Green’s function (the
Hadamard parametrix). The heat-kernel does not exist, but not needed!

The IR properties are state-dependent, and each specific Hadamard state has its own IR
completion, dictated by whatever principle is used to construct it.

This talk: Self-interacting scalars on spatially flat Friedmann-Lemaı̂tre spacetimes.
I UV flow is state-independent.

I Evolution of the FRG flow to small k requires a choice of state. Once such a choice has been
made, the flow in the IR can be studied.
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Ultraviolet flow
Goal: renormalize the bare action SΛ[χΛ] = −

∫
d4y
√
−g
{

1
2 gµν∂µχΛ∂νχΛ + U(χ,R)

}
.

Compute divergent parts of one-loop Legendre effective action using one-loop FRG: insert
Γk [ϕ] = S[ϕ] + ~Γk,1[ϕ] + O(~2) into Wetterich equation for flow of one-loop correction

k∂k Γk,1[ϕ] = − i
2

Tr
{

k∂kRk Gk [ϕ]
}
, Gk [ϕ] =

[
S(2)[ϕ]−Rk ]−1 .

Key points:
I UV divergent part of the one-loop correction arises integrating the flow from k = µ to

k = Λ (with µ ≤ Λ sufficiently large).

I Large k -regime accessible through closed recursion (generalized resolvent expansion)*.
This avoids the ill-defined (pseudo-) heat kernel.

I The recursion coefficients are universal (reflecting the universality of the Hadamard
property), hence the UV divergent parts are state-independent!
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Λ is UV RG scale

k -independent

*[R. Banerjee, M. Niedermaier, J. Math. Phys. 61, 103511 (2020)]



Result: Γdiv
1 [ϕ] =

1
(4π)2

∫
dηdx a(η)4

{
q0(Λ4 − µ4) + g1(η)(Λ2 − µ2) + g2(η) ln(Λ/µ)

}
.

g1 = q̆R − q1(U ′′ − R/6) ,

g2 =
1
2

(U ′′ − R/6)2 − 1
6
∇2(U ′′ − R/6)+B1

a(4)

a5 + B2
a(1)a(3)

a6 + B3
a(2) 2

a6 + B4
a(1) 2a(2)

a7 + B5
a(1) 4

a8

+
(

B6
R
6

+ B7
a(1) 2

a4

)
(U ′′ − R/6) + B8

a(1)

a3 ∂η(U ′′ − R/6)

=
1
2

(U ′′ − R/6)2 − 1
6
∇2(U ′′ − R/6) + b1∇2R + b2

[
− RµνRµν +

1
3

R2
]

+ b3a−4∂η
[
aa(1)(U ′′ − R/6)

]
.
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Rk is non-covariant: modulates only spatial modes!

Re-covariantizes!



~Γdiv
1 [φ] =

~
(4π)2

∫
dηdx a4

{
q0(Λ4 − µ4) +

[
q̆R − q1(U ′′−R/6)

]
(Λ2 − µ2) +

1
2

(U ′′−R/6)2 ln(Λ/µ)

}
.

Summary of ultraviolet properties:

I Although spatial regulator breaks covariance, Γdiv
1 is manifestly covariant (computationally

non-trivial property, valid for any smooth Rk modulator).

I The UV divergent parts, and hence the UV renormalization group flow of the couplings is
state-independent.

I Covariant pseudo heat kernel result almost identical

~Γdiv
1 [φ] =

~
(4π)2

∫
dηdx a4

{
qcov

0 (Λ4 − µ4) + qcov
1 (Λ2 − µ2)A2 + A4 ln(Λ/µ)

}
,

A2 ' −U ′′ + R/6 , A4 '
1
2

(U ′′ − R/6)2 .

The q̆R term is absent. The latter enters through the a(η) dependence of modulator Rk .
Gives rise to additional contribution to running of dimensionless Newton coupling.

Implications for quantum gravity?
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Infrared aspects of RG flow
I The small k regime of the flow equation is of interest: Phenomenological implications of

asymptotic safety, physics at large (super-Hubble) scales.

I In the Euclidean (εg = 1) setting, the small k form of the flow equation

k∂k Γk [ϕ] =
εg
√
εg~

2
Tr
{

k∂kRk Gk [ϕ]
}
,

is accessible for (a) maximally symmetric backgrounds; or (b) via (non-local) heat kernel.

I Conceptually, in Lorentzian setting expect state-dependent effects to appear at super-Hubble
scales when k � background curvature.

I Technically – how to extract ϕ dependence of RHS for small k?

Are there effects distinct from (non-local) heat kernel?

Results for generic(!) FL spacetimes? State dependence?
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Infrared aspects of RG flow
I The small k regime of the flow equation is of interest: Phenomenological implications of

asymptotic safety, physics at large (super-Hubble) scales.

I In the Euclidean (εg = 1) setting, the small k form of the flow equation

k∂k Γk [ϕ] =
εg
√
εg~

2
Tr
{

k∂kRk Gk [ϕ]
}
,

is accessible for (a) maximally symmetric backgrounds; or (b) via (non-local) heat kernel.

I Conceptually, in Lorentzian setting expect state-dependent effects to appear at super-Hubble
scales when k � background curvature.

I Technically – how to extract ϕ dependence of RHS for small k?

Are there effects distinct from (non-local) heat kernel?

Results for generic(!) FL spacetimes? State dependence?

Feasible (only?) for State of Low Energy (SLE) induced FRG (convergent small k expansion).
Complicated!
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[R. Banerjee, M. Niedermaier, J. Math. Phys. 61, 103511 (2020)][H. Olbermann, Class.Quant.Grav. 24 (2007) 5011-5030]



SLE induced flow in the deep infrared:
beyond the heat kernel
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k∂k V̀k (ϕ0) + (d +1) V̀k (ϕ0)− d−1
2

ϕ0
∂

∂ϕ0
V̀k (ϕ0) = `Q0

(
1| 0V ′′k

)
Autonomous

at lowest order

Well-defined
infrared fixed-point

equation
Analogous structure to flow equation in Minkowski spacetime.

Vk (ϕ0, t) =
∑
`≥0

`Vk (ϕ0)p`(t)



SLE induced flow in the deep infrared:
beyond the heat kernel
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k∂k V̀k (ϕ0) + (d +1) V̀k (ϕ0)− d−1
2

ϕ0
∂

∂ϕ0
V̀k (ϕ0) = `Q0

(
1| 0V ′′k

)
− k2

2J2
0
`Q1

(
1| V̀ ′′k

) ∑
`1,`2≥0

`1V ′′k (ϕ0)`2V ′′k (ϕ0)E`1,`2

+
k2

J0

∑
`1≥0

`1V ′′k (ϕ0)

(
`Q0

(
`1 | 0V ′′k

)
− 1

2J0
`Q1

(
E`1 | 0V ′′k

))

+
k2

J0

(
`Q0

(
| 0V ′′k

)
− 1

2J0
`Q1

(
E | 0V ′′k

))
+ O(k4) .

Autonomous
at lowest order

Well-defined
infrared fixed-point

equation

Non-autonomous
higher order
corrections

Not visible
in non-local
heat kernel

Support of f (t)

I Non-autonomous character from temporal averaging in SLE.
I J0, E`1,`2 , . . . depend explicitly on SLE window function f – absent in non-local heat kernel!
I Applicable to all FL spacetimes. Specializes to Minkowski correctly.



Outlook
The longterm goal of this project is to study asymptotically safe quantum gravity manifestly
in Lorentzian signature.

First step: FRG for scalars on generic cosmological backgrounds.

Next steps:
I Non-perturbative flow of inflationary power-spectrum.

I Infrared FP structure under investigation (specific to SLE?).

I Quantum gravity extension?

Thank you for your attention!
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Back-up slides

The spatial FRG and Hadamard states on cosmological spacetimes Banerjee



Hadamard Expansion

GHad
ε (y , y ′) = Hε(y , y ′) + W (y , y ′) ,

Hε(y , y ′) =


U(y , y ′)

σε(y , y ′)
d−1

2

+ V (y , y ′) lnµ2σε(y , y ′) , d odd

U(y , y ′)

σε(y , y ′)
d−1

2

, d even
.

Relation to heat kernel coefficients for d ≥ 3 odd

Un(y , y ′) =

(
(d−3)/2− n

)
!

2n
(
(d−3)/2

)
!

An(y , y ′) , n = 0,1, . . . (d−3)/2 ,

Vn(y , y ′) =
(−)n+1

2n+(d−1)/2n!
(
(d−3)/2

)
!
An+(d−1)/2(y , y ′) , n ∈ N .
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