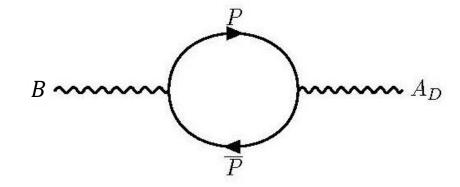

Kaluza Klein Portal Matter

GEORGE WOJCIK

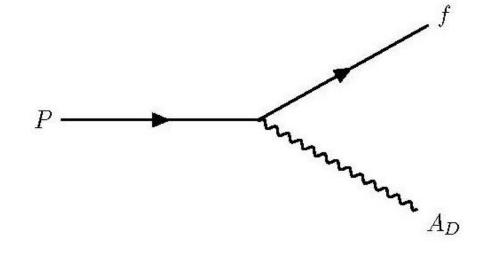
BASED ON ARXIV:2205.XXXXXX BY G. N. WOJCIK

Vector Portal/Kinetic Mixing DM


- •WIMP miracle: $\langle \sigma v \rangle \sim g_D^4/m_{DM}^2 \sim 10^{-26} \text{ cm}^3 \text{s}^{-1}$
- •If $g_D \sim g_{EW}$, $m_{DM} \sim \text{TeV}$
- •Expand this parameter space: DM is a particle χ that interacts only with a new "dark force" given by the gauge group $U(1)_D$. The portal is the dark $U(1)_D$ gauge boson A_D .
- The Standard Model (SM) is entirely uncharged under $U(1)_D$.
- •So, SM now couples with strength $\sim \epsilon eQ$ to A_D .
- • m_{DM} , $m_{A_D}\sim 0.1-1$ GeV, $\epsilon\sim 10^{-(3-4)}$ reproduces the correct relic abundance without running afoul of other experimental constraints.

$$\sim \frac{\epsilon}{2 c_W} B_{\mu\nu} A_D^{\mu\nu}$$

Portal Matter: Origins of ϵ


- •The minimal setup: DM and a dark photon A_D . The small parameter ϵ is added by hand.
- By asking where ϵ comes from, can we get a window into higher-energy physics?
- •A natural source for $\epsilon \sim 10^{-(3-4)}$ would be *portal* matter: Heavy particles charged under both $U(1)_D$ and SM hypercharge. Call the particle P, for portal matter.
- •To get finite and calculable ϵ , we need $\sum Q_{Y_i}Q_{D_i}=0$ to eliminate dependence on the renormalization scale μ .

$$\epsilon \propto \sum_{i} Q_{Y_i} Q_{D_i} \log \left(\frac{m_i^2}{\mu^2} \right)$$

Portal Matter Phenomenology 101

- •What can we say about portal matter? To keep it simple, we'll assume it's fermionic.
- •Precision electroweak constraints, $H \rightarrow gg$ branching ratio $\rightarrow P$ is **vector-like**.
- Portal matter has SM charge, so it has to decay quickly (cosmological measurements).
- •If portal matter P is a copy of an SM particle f, it can mix with that particle and decay via $P \to f A_D$. Depending on parameter space, A_D decays to either dark matter or charged SM fermions.
- •Simple portal matter can give atypical signatures (e.g., displaced lepton-jets). Highly suppressed decay via regular vector-like fermion decay channels, e.g. $P \rightarrow f Z$

Non-Minimal Portal Matter

- •Minimal portal matter:
 - No structure for requiring ϵ finite
 - Only additional gauge group is $U(1)_D$
- •Why does the SM have vector-like copies??
 - Extend the dark group to a larger gauge group $\mathcal{G}_D \supset U(1)_D$ and assume portal matter and an SM field are part of **the same multiplet** of \mathcal{G}_D .
- •Group structure of \mathcal{G}_D might guarantee finite mixing
- But then... Why are the $U(1)_D$ -neutral ones chiral & light? Why are the others vector-like?
- •How do we ensure light chiral states for one set of charge states, and heavy vector-like states for others?
- ■How do we break $\mathcal{G}_D \to U(1)_D$?

$$egin{aligned} \mathcal{G}_{SM} imes SU(2)_I imes U(1)_I &
ightarrow \mathcal{G}_{SM} imes U(1)_D \ & (\mathbf{R},\mathbf{2})_{-rac{1}{2}}
ightarrow \mathbf{R}_0 + \mathbf{R}_{-1} \ & (\overline{\mathbf{R}},\mathbf{1})_{+1}
ightarrow \overline{\mathbf{R}}_{+1} \end{aligned}$$

R: Some representation of \mathcal{G}_{SM}

Black: SM fermion

Blue: Portal matter fermion

Portal Matter in an Extra Dimensions

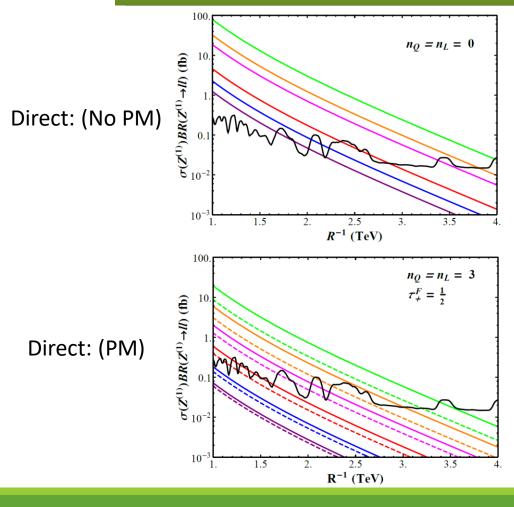
- In theories of extra dimensions, we already see light fermion modes + heavy vector-like particles.
- •Imagine a 5 D theory compactified on an $S_1/(Z_2 \times Z_2')$ orbifold
- •Fields can have Neumann (+) or Dirichlet (-) boundary conditions at boundaries $\phi=0,\pi$. In 5D to have a light mode, you need Neumann condition at both boundaries.
- On the right: Chiral SM fermion plus vector-like copies!

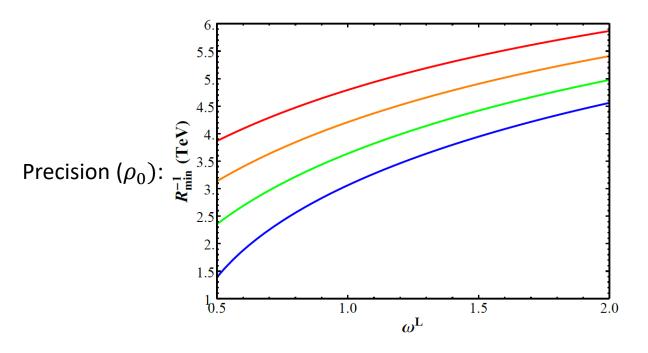
$$\mathcal{G}_{SM} \times SU(2)_D \to \mathcal{G}_{SM} \times U(1)_D$$

 $(\mathbf{F}, \mathbf{3}) \to \mathbf{F}^0 + \mathbf{F}^{+1} + \mathbf{F}^{-1}$

Fermion	$oldsymbol{\phi} = 0$	$oldsymbol{\phi}=\pi$
F_L^{0}	+	+
F_R^0	-	-
$F_L^{\pm 1}$	+	-
$F_R^{\pm 1}$	-	+

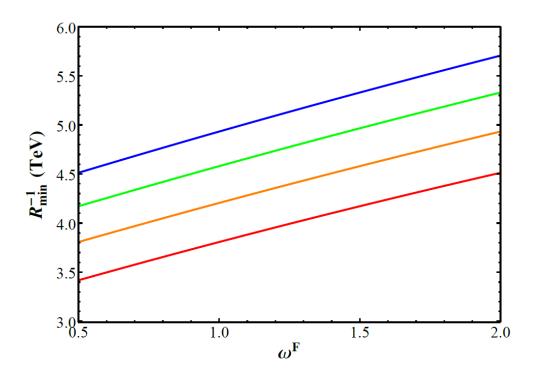
Portal Matter in an Extra Dimension II

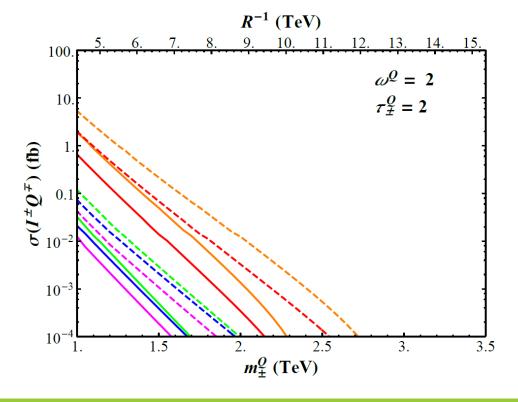

WHAT HAVE WE GAINED


- •Consistent boundary conditions also break $SU(2)_D \rightarrow U(1)_D$ at $\phi = \pi$ there's our high-scale symmetry breaking!
- • $U(1)_D$ broken on $\phi = \pi$ brane by scalar: Simpler Higgs sector!
- No-muss, anomaly-free, simple non-minimal portal matter— vector-like and chiral fields come out of the same multiplet
- •Automatically satisfy $\sum Q_{Y_i}Q_{D_i}=0$
- Scale motivation?

WHAT HAVE WE ADDED

- Kaluza Klein states for SM fields
 – can be produced directly or affect precision measurements
- Three new gauge bosons: A_D , I^+ , I^- . Only A_D has a zero mode.
- **Lighter** Kaluza Klein states for portal matter, I^{\pm} .
- •Need brane-localized kinetic terms for appropriate magnitude KM— we assume BLKT's for all fermions and $SU(2)_D$ gauge bosons. Call these various param's τ 's and ω 's

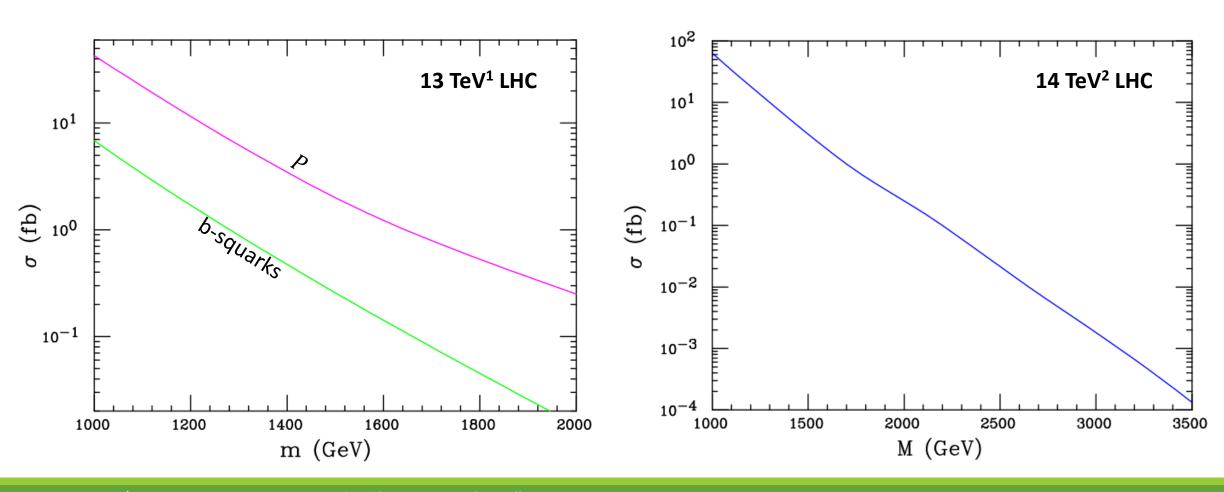

Phenomenology: SM-Only Constraints



Phenomenology: Portal Matter

HADRONIC PM PAIR PRODUCTION

CROSS SECTION FOR PORTAL MATTER+I


Conclusions

- •The scenario where vector-like copies of SM fermions act as portal matter is straightforwardly realized in the context of an extra dimension
- Leads to simpler Higgs sectors and fewer ad hoc particle introductions than equivalent in 4D
- Even in 5D, the naïve 4D condition for finite and calculable KM still works!
- •Kaluza Klein portal matter will likely be the **lightest** new KK modes appearing in the theory and their existence weakens other direct KK mode searches— could be the first direct evidence we'd find of a TeV-scale extra dimension!
- Paper coming out very soon!

Thank You!

Backup Slides

QCD Pair Production

