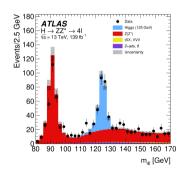
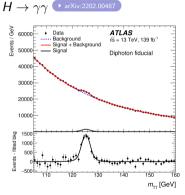
Measurement of Higgs boson Differential and Fiducial Cross Sections with the ATLAS Detector

Benedict Winter on behalf of the ATLAS Collaboration

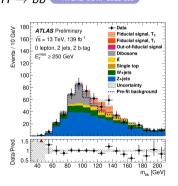
University of Freiburg

Pheno 2022, Pittsburgh, 09 May 2022



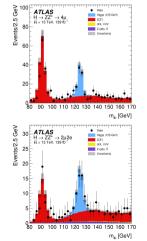

Probing the Standard Model with Higgs Boson Events

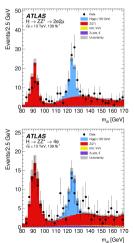
1. Common Higgs production and complex 4-body decay

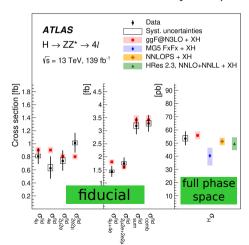

 $H \rightarrow 77^* \rightarrow 4\ell$ PEPJC 80 (2020) 942

2. Expand to less common **production** processes

4. Rare ZH or WH processes with $E_{\rm T}^{\rm miss} > 150 \, {\rm GeV}$ $H \rightarrow hh$ ATLAS-CONF-2022-015

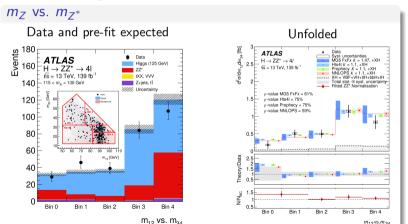

3. $H \rightarrow ZZ$ plus $H \rightarrow \gamma \gamma$ combination • ATLAS-CONF-2022-002

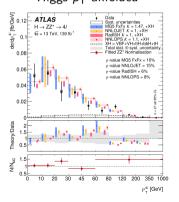

Full Run 2 dataset utilized for all these measurements



$H o ZZ^* o 4\ell$ Fiducial PEPJC 80 (2020) 942

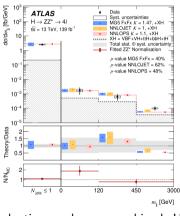
- Select $\ell^{\pm}\ell^{\mp}\ell'^{\pm}\ell'^{\mp}$ (with $\ell,\ell'=e,\mu$) as inclusive as feasible \to cuts in backup
- Binned fit of m_{AB} in 105–160 GeV window per final state
- Main backgrounds normalized from data (ZZ^* continuum; reducible i.e. Z+jets, $t\bar{t}$)



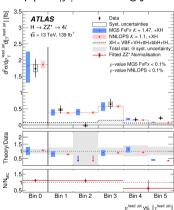


$H \rightarrow 4\ell$ Differential PEPJC 80 (2020) 942

- Fit $m_{4\ell}$ per differential (1D or 2D) bin. **In-likelihood unfolding**, i.e. correction for detector effects via the detector response matrix is embedded in likelihood fit
- No regularization, bias would counterbalance reduction of fluctuations



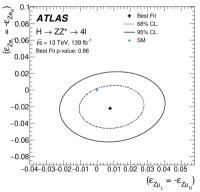
Higgs p_T unfolded



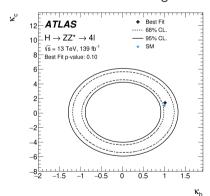
$H ightarrow 4\ell$ Differential • further distributions in EPJC 80 (2020) 942

Di-jet mass spectrum

p_{T} vs |y| for leading jet



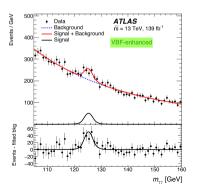
- Production modes are combined. However, e.g. VBF enhanced for large m_{ii}
- Some features (largest on right) but overall data are consistent with Standard Model

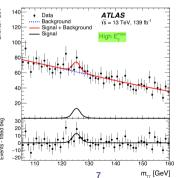

Interpretation of $H o 4\ell$ Differential PPJC 80 (2020) 942

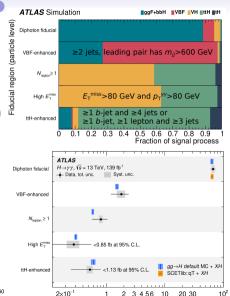
- Probe 4 scenarios with **BSM contact interactions** from JHEP 10 (2018) 073 via m_Z vs. m_{Z^*}
- Constrain **Yukawa couplings** to b- and c-quarks via Higgs p_T

Limits for BSM flavour non-universal axial-vector contact terms

Utilize changes of Higgs p_T differential cross section and branching ratios

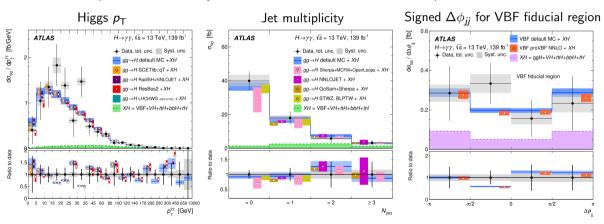



 $H \rightarrow 4\ell$ results limited by data stat. or data-limited syst. (background normalization/closure)


$H o \gamma \gamma$ Fiducial ightharpoonup arXiv:2202.00487

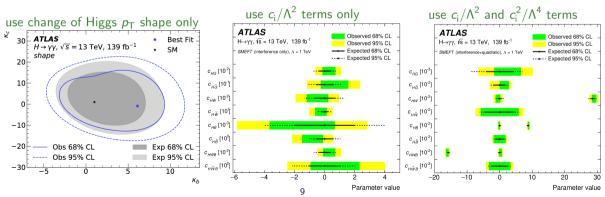
- Select γ -pairs within precision region of EM calo with $E_{\rm T}^{\gamma \ \rm lead}/m_{\gamma\gamma} > 0.35$ and $E_{\rm T}^{\gamma \ \rm sublead}/m_{\gamma\gamma} > 0.25$
- **Sub-regions** enhanced in VBF, VH, or top+H
- Unbinned $m_{\gamma\gamma}$ fit within 105–160 GeV per region

Incl. diphoton: stat \simeq syst (largest: spurious signal, E^{γ} resolution)



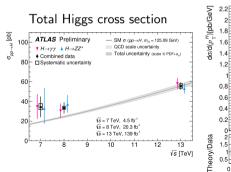
$H o \gamma \gamma$ Differential • arXiv:2202.00487

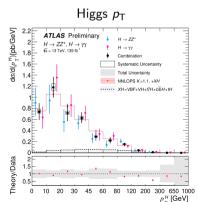
- Measure differentially for inclusive diphoton and VBF fiducial regions
- Fit $m_{\gamma\gamma}$ per bin with in-likelihood unfolding and without regularization

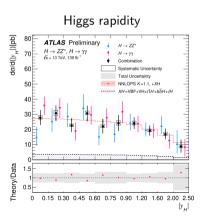

Observed spectra are limited by stat. uncertainties and consistent with predictions

Interpretation of $H o \gamma \gamma$ Differential Parkiv-2202.00487

- Constrain **Yukawa couplings** to b- and c-quarks via Higgs p_T
- Constrain **SMEFT** dimension-6 **operators** in Warsaw basis
 - measure one Wilson coefficient at a time setting all others to 0
 - employ simultaneous fit of p_T^H , N_{iets} , m_{ii} , $\Delta \phi_{ii}$, $p_T^{j_1}$ distributions
 - strong limits for CP-even operators, loose limits for some CP-odd. *Mind* 10^X scaling in plots

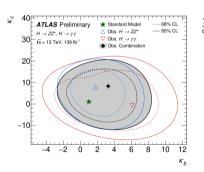

Results agree with Standard Model predictions

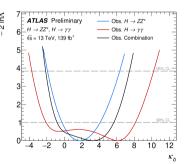


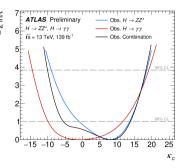

Combination of $H o \gamma \gamma$ and $H o 4\ell$ • ATLAS.CONF-2022-002

- Measure p_T^H , y^H , N_j , $p_T^{j_1}$ spectra after extrapolating individual results to **full phase space**. Extrapolate assuming SM considering theory syst. Acceptance $\sim 50\%$ for both channels
- \bullet $\sim\!\!20-40\%$ more accurate than individually despite larger extrapolation uncertainties

Results agree with Standard Model predictions and are primarily stat limited

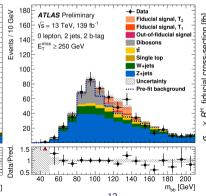


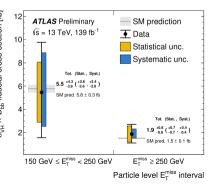




Combination of $H o \gamma \gamma$ and $H o 4\ell$ (*ATLAS-CONF-2022-002)

- Constrain b- and c-Yukawa couplings via p_T^H using the shape of the distribution only
- ullet Observed constraints are looser for combination than $H o 4\ell$
 - Reason: quadratic dependency of differential cross-section creates double local minimum for $H \to \gamma \gamma$





Measurement of H o bb with large $E_{\mathrm{T}}^{\mathrm{miss}}$ • ATLAS-CONF-2022-015

- Measure ZH and WH in fiducial regions with $150 \le E_{\rm T}^{\rm miss} < 250\,{\rm GeV}$ and $E_{\rm T}^{\rm miss} \ge 250\,{\rm GeV}$
- Based on resolved VH(bb) analysis EPJC 81 (2021) 178 SR is 0ℓ channel, $1/2\ell$ channels used as CRs to normalize Z+HF, W+HF and ttbar
- ullet Fit m_{bb} with in-likelihood unfolding. Have separate reco-level SRs and CRs for 2/3 jets
- Largest systematics: background theory, hadronic jets measurements, out-of-fiducial signal

Conclusions

- Fiducial and differential Higgs measurements reach up to $\mathcal{O}(10\%)$ precision and reach to sparsely populated regions of phase space
- Powerful tests of Standard Model and constraints for BSM physics (EFT, κ_b and κ_c , contact interactions)
- Measurements are generally stat limited, can expect large improvements with Run 3 data.
 Stay tuned!

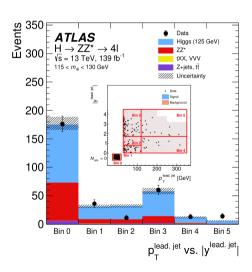
Backup: Selection for $H \rightarrow ZZ^* \rightarrow 4\ell$

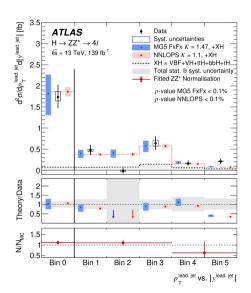
Detector-level selection

Detector-level selection			
Leptons and jets			
Muons	$p_T > 5 \text{ GeV}, \eta < 2.7$		
Electrons	$E_{\rm T} > 7 \; {\rm GeV}, \eta < 2.47$		
Jets	$p_T > 30 \text{ GeV}, \eta < 4.5$		
Lepton selection and pairing			
Lepton kinematics	$p_T > 20, 15, 10 \text{ GeV}$		
Leading pair (m_{12})	SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $		
Subleading pair (m_{34})	Remaining SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $		
Event selection (at most one Higgs boson candidate per channel)			
Mass requirements	$50 \text{ GeV} < m_{12} < 106 \text{ GeV}$ and $m_{\text{threshold}} < m_{34} < 115 \text{ GeV}$		
Lepton separation:	$\Delta R(\ell_i, \ell_j) > 0.1$		
Lepton/Jet separation	$\Delta R(\mu_i(e_i), \text{jet}) > 0.1(0.2)$		
J/ψ veto	$m(\ell_i, \ell_i) > 5 \text{ GeV for all SFOC lepton pairs}$		
Impact parameter	$ d_0 /\sigma(d_0)$; 5 (3) for electrons (muons)		
Mass window	$105 \ GeV < m_{4\ell} < 160 \ GeV$		
Vertex selection:	$\chi^2/N_{\rm dof}$; 6 (9) for 4μ (other channels)		
If extra lepton with $p_{\rm T}>12~{\rm GeV}$	Quadruplet with largest matrix element (ME) value		

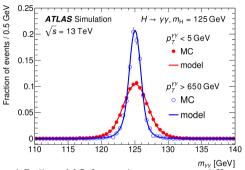
Fiducial region

Tiddelai region			
Leptons and jets			
Leptons	$p_T > 5 \text{ GeV}, \eta < 2.7$		
Jets	$p_T > 30 \text{ GeV}, y < 4.4$		
Lepton selection and pairing			
Lepton kinematics	$p_T > 20, 15, 10 \text{ GeV}$		
Leading pair (m_{12})	SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $		
Subleading pair (m_{34})	remaining SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $		
Event selection (at most one quadruplet per event)			
Mass requirements	$50 \text{ GeV} < m_{12} < 106 \text{ GeV}$ and $12 \text{ GeV} < m_{34} < 115 \text{ GeV}$		
Lepton separation	$\Delta R(\ell_i, \ell_j) > 0.1$		
Lepton/Jet separation	$\Delta R(\ell_i, \text{jet}) > 0.1$		
J/ψ veto	$m(\ell_i, \ell_j) > 5 \text{ GeV}$ for all SFOC lepton pairs		
Mass window	$105 \text{ GeV} < m_{4\ell} < 160 \text{ GeV}$		
If extra lepton with $p_T > 12 \text{ GeV}$	Quadruplet with largest matrix element value		


- 49% of $H \rightarrow 4\ell$ events lie in fiducial region
- 45% of events in fiducial region pass detector-level selection
- 1.6% of events passing detector-level selection lie outside fiducial region


Backup: Differential Observables in $H \to 4\ell$ Analysis

	Higgs boson kinematic-related variables		
$p_{\rm T}^{4\ell}, y_{4\ell} $	Transverse momentum and rapidity of the four-lepton system		
m_{12}, m_{34}	Invariant mass of the leading and subleading lepton pair		
$ \cos \theta^* $	Magnitude of the cosine of the decay angle of the leading lepton pair in		
	the four-lepton rest frame relative to the beam axis		
$\cos \theta_1, \cos \theta_2$	Production angles of the anti-leptons from the two Z bosons, where the		
	angle is relative to the Z vector.		
ϕ , ϕ_1	Two azimuthal angles between the three planes constructed from the		
	Z bosons and leptons in the Higgs boson rest frame.		
Jet-related variables			
$N_{\text{jets}}, N_{b\text{-jets}}$	Jet and b-jet multiplicity		
$N_{ m jets}, N_{b ext{-jets}}$ $p_{ m T}^{ m lead. jet}, p_{ m T}^{ m sublead. jet}$	Transverse momentum of the leading and subleading jet, for events with		
	at least one and two jets, respectively. Here, the leading jet refers to the		
	jet with the highest $p_{\rm T}$ in the event, while subleading refers to the jet		
	with the second-highest $p_{\rm T}$.		
$m_{jj}, \Delta \eta_{jj} , \Delta \phi_{jj}$	Invariant mass, difference in pseudorapidity, and signed difference in ϕ		
00 00	of the leading and subleading jets for events with at least two jets		
Higgs boson and jet-related variables			
$p_{\mathrm{T}}^{4\ell\mathrm{j}},m_{4\ell j}$	Transverse momentum and invariant mass of the four-lepton system and		
-	leading jet, for events with at least one jet		
$p_{\rm T}^{4\ell{ m jj}},m_{4\elljj}$	Transverse momentum and invariant mass of the four-lepton system and		
	leading and subleading jets, for events with at least two jets		

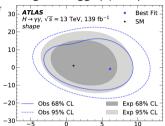

Additionally 2D measurements for various combinations of these

Backup: Closer Look at Observable with Feature for $H o 4\ell$

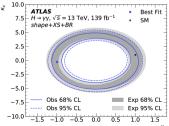
Backup: Signal and Background Models for $H \rightarrow \gamma \gamma$

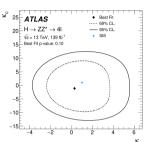
Signal:

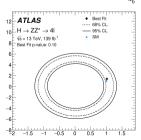
- Fit double-sided Crystal Ball to MC for each category or differential bin
- MC has $m_H = 125.00 \, \text{GeV}$ instead of $m_H = 125.09 \, \text{GeV}$, so shift Gaussian mean by 90 MeV Background:
 - Alter photon ID/iso to measure $\gamma\gamma$, γj , and jj fractions per category. It is 66–92% for $\gamma\gamma$
 - ullet Parametrise $\gamma\gamma$ from MC and γj from data with looser photon ID. Use γj template for jj
 - Select function based on goodness of fit and spurious signal tests. Mitigate fluctuations via gaussian process regression for spurious signal tests

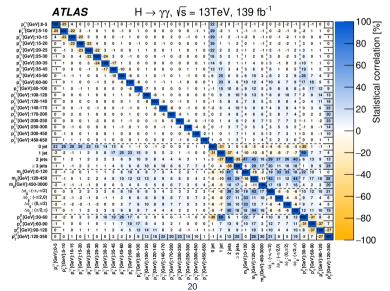

Backup: Differential Variables and Binning for $H \to \gamma \gamma$

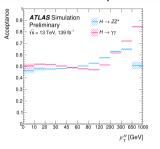
Variable	Bin Edges		
$p_{\mathrm{T}}^{\gamma\gamma}$	0, 5, 10, 15, 20, 25, 30, 35, 45, 60, 80, 100, 120, 140, 170, 200, 250, 300, 450, 650, 13000	20	
y _{yy}	0, 0.15, 0.3, 0.45, 0.6, 0.75, 0.9, 1.2, 1.6, 2.0, 2.5	10	
$p_{_{\mathrm{T}}}^{\dot{\gamma}\dot{1}}/m_{\gamma\gamma}$	0.35, 0.45, 0.5, 0.55, 0.6, 0.65, 0.75, 0.85, 0.95, 10	9	
$ \dot{y}_{\gamma\gamma} = p_{\mathrm{T}}^{\gamma_1}/m_{\gamma\gamma} = p_{\mathrm{T}}^{\gamma_2}/m_{\gamma\gamma}$	0.25,0.35,0.4,0.45,0.5,0.55,0.65,0.75,0.85,10	9	
N _{jets}	0, 1, 2, ≥3	4	
$N_{b ext{-jets}}$	$N_{\rm jets}^{\rm central} = 0 \text{ or } N_{\rm lep} > 0, N_{b ext{-jets}} = 0, \ge 1$	3	
$p_{\mathrm{T}}^{l_1}$	30, 60, 90, 120, 350, 13000	5	
$\dot{H_{ m T}}$	30, 60, 140, 200, 500, 13000	5	
$p_{\mathrm{T}}^{\gamma\gamma j}$	0, 30, 60, 120, 13000	4	
$m_{\gamma\gamma j}$	120, 220, 300, 400, 600, 900, 13000	6	
$\tau_{C,j1}$	0, 5, 15, 25, 40, 13000	5	
$\sum \tau_{C,j}$	5, 15, 25, 40, 80, 13000	5	
p _T γγ, jet veto 30 GeV	0, 5, 10, 15, 20, 30, 40, 50, 100, 13000	9	
ργγ, jet veto 40 GeV	0, 5, 10, 15, 20, 30, 40, 50, 60, 100, 13000	10	
$p\gamma\gamma$, jet veto 50 GeV	0, 5, 10, 15, 20, 30, 40, 50, 60, 70, 100, 13000	11	
$p_{\mathrm{T}}^{\mathrm{T}}$, jet veto 60 GeV	0, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 100, 13000	12	
m_{jj}	0, 120, 450, 3000, 13000	4	
$\Delta \phi_{jj}$	$-\pi, -\frac{\pi}{2}, 0, \frac{\pi}{2}, \pi$	4	
$\pi - \Delta \phi_{\gamma \gamma, jj} $	$0, 0.1\overline{5}, 0.6\overline{5}, \pi$	3	
$p_{\mathrm{T},\gamma\gamma jj}$	0, 30, 60, 120, 13000	4	
VBF-enhanced: $p_T^{j_1}$	30, 120, 13000	2	
VBF-enhanced: $\Delta \phi_{jj}$	$-\pi, -\frac{\pi}{2}, 0, \frac{\pi}{2}, \pi$	4	
VBF-enhanced: $ \eta^* $	0, 1, 2, 10	3	
VBF-enhanced: $p_{T,\gamma\gamma jj}$	0, 30, 13000	2	

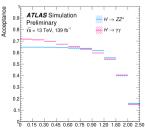

Additionally 2D measurements for various combinations of these

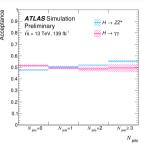

Comparison of $H \to 4\ell$ and $H \to \gamma\gamma$ limits for κ_b and κ_c

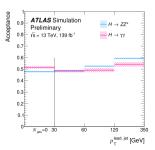

Only use change of Higgs p_T shape


Consider p_{T}^H differential cross section and branching ratios

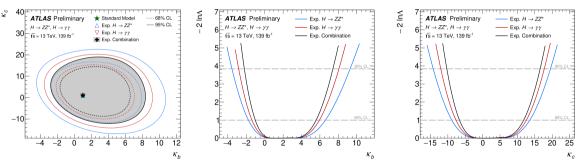




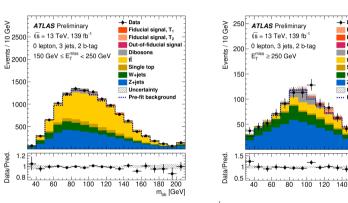

Backup: Bin Correlations for $H \to \gamma \gamma$ EFT Measurement (Bootstrapping)

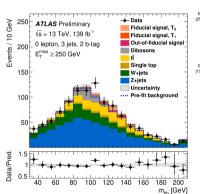


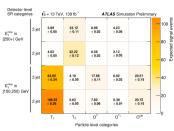
Acceptance wrt full phase space $H o \gamma \gamma$ and $H o 4\ell$ Patlas-conf-2022-002

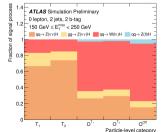


Expected κ_b vs. κ_c limits for $H \to \gamma \gamma$ and $H \to 4\ell$ (ATLAS-CONF-2022-002)




Here the combination outperforms both channels as is to be assumed


Backup: Selection for H o bb with large $E_{\rm T}^{\rm miss}$


Selection	Detector-level	Particle-level
	No electrons or muons $p_T > 7 \text{ GeV}$	
	Electrons Muons	No electrons or muons
Leptons	$ \eta < 2.47$ $ \eta < 2.7$	$p_{\mathrm{T}} > 7\mathrm{GeV}$ Electrons Muons
	LooseLH Loose	
	$ d_0/\sigma_{d_0} < 5$ $ d_0/\sigma_{d_0} < 3$ $ z_0 \sin \theta < 0.5 \text{ mm}$ $ z_0 \sin \theta < 0.5 \text{ mm}$	$ \eta < 2.47$ $ \eta < 2.7$
	$ z_0 \sin \theta < 0.5 \min$ $ z_0 \sin \theta < 0.5 \min$ Loose track-isolation	
	$p_{\mathrm{T}} > 20\mathrm{GeV}$	
Hadronic τ	$ \eta < 1.37$ or $1.52 < \eta < 2.5$	τ -labelled central jets
	Medium	
	From topological clusters	From collider-stable particles
Anti- $k_t\ R=0.4$ Jets	≥ 2 central jets	≥ 2 central jets
	Central Forward	Central Forward
	$p_T > 20 \text{ GeV}$ $p_T > 30 \text{ GeV}$ $ \eta < 2.5$ $2.5 < \eta < 4.5$	$p_{\rm T} > 20 { m GeV}$ $p_{\rm T} > 30 { m GeV}$
b-jets	$ \eta < 2.5$ $2.5 < \eta < 4.5$ 2 b-tagged central jets, MV2 (70% efficiency)	$ \eta < 2.5$ $2.5 < \eta < 4.5$ 2 b-labelled central jets
o-jets	At least one b-jet with $p_T > 45 \text{ GeV}$	At least one b-labelled jet with $p_T > 45 \text{GeV}$
Jet categories	Two, with exactly 2 and 3 jets	One, with 2 or 3 jets
Overlap removal	Between e, μ, τ and jets	Remove e/μ within $\Delta R = 0.4$ of a jet, remove $\tau\text{-labelled}$ jets
$E_{\mathrm{T}}^{\mathrm{miss}}$	Negative vectorial sum of p_T of	Negative vectorial sum of p_T of all
	jets, leptons, taus and photons	stable interacting particles with $ \eta < 5$,
	plus a track-based soft term > 150 GeV	including muons with $p_T > 6 \text{ GeV}$ > 150 GeV
H_{T}	> 120 GeV (2 jets), > 150 GeV (3 jets)	> 120 GeV (2 jets), > 150 GeV (3 jets)
$\min \Delta \phi(\vec{E}_{T}^{miss}, \vec{j})$	> 20° (2 jets), > 130 GeV (3 jets) > 20° (2 jets), > 30° (3 jets)	> 120 GeV (2 jets), > 130 GeV (3 jets) > 20° (2 jets), > 30° (3 jets)
$\Delta \phi(\vec{E}_{T}^{miss}, \vec{b}_{1} + \vec{b}_{2})$	> 120°	> 120°
$\Delta \phi(\vec{b}_1, \vec{b}_2)$	< 140°	< 140°
$\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}})$	$< 90^{\circ}$	_
$E_{\mathrm{T}}^{\mathrm{miss}}$ regions	$150 \text{GeV} \le E_{\text{T}}^{\text{miss}} < 250 \text{GeV}$	$150 \text{GeV} \le E_{\text{T}}^{\text{miss}} < 250 \text{GeV}$
	$E_{\mathrm{T}}^{\mathrm{miss}} \geq 250 \mathrm{GeV}$	$E_{\mathrm{T}}^{\mathrm{miss}} \geq 250 \mathrm{GeV}$

Backup: Additional SRs and Signal Composition for $V + (H \rightarrow bb)$

- $T_{1/2}$: fiducial signal with true E_T^{miss} 150–250/ \geq 250 GeV
- : non-fiducial with $E_{ extsf{T}}^{ ext{miss}} < 150\, ext{GeV}/150 ext{-}250/> 250\, ext{GeV}$