Correlating Gravitational Wave and Gamma-ray Signals from Primordial Black Holes

Steven J. Clark

Brown Theoretical Physics Center Department of Physics, Brown University

> Based Upon: arXiv: 2202.04653

In Collaboration with: Kaustubh Agashe, Jae Chang, Bhaskar Dutta, Yuhsin Tsai, and Tao Xu

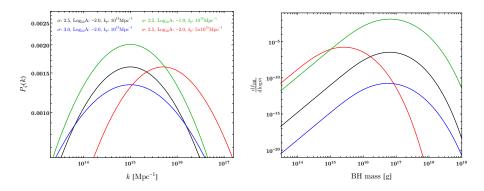
> Phenomenology Symposia 2022 May 10, 2022

- GW from black hole mergers have been measured by LIGO/VIRGO.
- Depending on their mass, black holes can also produce SM particles through Hawking radiation.
- Because the GW and EM signals are uniquely dependent on black hole parameters mass and spin, being able to measure both would provide valuable information about the black holes.

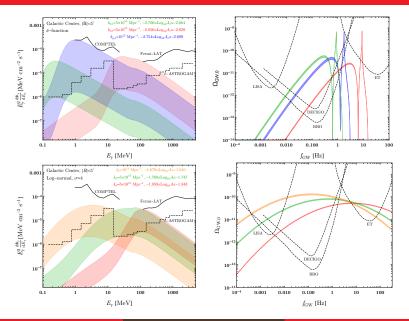
- Unfortunately, it is hard to measure the Hawking radiation and GW from merger events (Don't fall in the same observational window).
- Is there a mass range where it is possible to measure both GW and EM signals?
- If there is, what can we do with it?

- For Hawking radiation, the most ideal mass range is easy to find.
- We want the most brightest BH that are still around today.
- This corresponds to $M_{\rm BH} \sim 10^{14-16}$ g.
- Also, from EGB and CMB experiments, we know that the maximum observable monochromatic BH ($f_{\rm BH}=1$) is $M_{\rm BH}\sim 10^{17}$ g.
- Therefore, our search range is $M_{\rm BH} = 10^{14-17}$ g, i.e. asteroid mass.

- These masses correspond to Hawking temperatures around 0.1 100 MeV and will be measured by upcoming Gamma-ray detectors.
- This mass range cannot be produced by stellar collapse and falls under the name Primordial Black Holes (PBHs).
- Mergers of PBHs in this range cannot give a sizable GW signal.


- These masses correspond to Hawking temperatures around 0.1 100 MeV and will be measured by upcoming Gamma-ray detectors.
- This mass range cannot be produced by stellar collapse and falls under the name Primordial Black Holes (PBHs).
- Mergers of PBHs in this range cannot give a sizable GW signal.
- Remarkably, there is another source of GW!

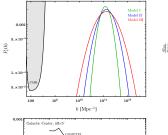
- Many theories predict the formation of PBHs through the gravitation collapse of order 1 density fluctuations. (2108.12475)
- These large density fluctuations also source GW. (1804.08577)
- Combining the two together, we can gain insight into the PBH production method.

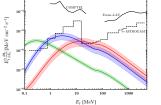

Density Perturbations

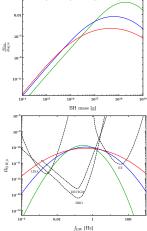
We consider the large curvature perturbations as either

• Delta:
$$P_{\zeta,\delta}(k) = A_{\delta} \,\delta\left(\log\left(\frac{k}{k_{p,\delta}}\right)\right)$$

• Log-Normal: $P_{\zeta}(k) = \frac{A}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(\log k - \log k_p)^2}{2\sigma^2}\right)$

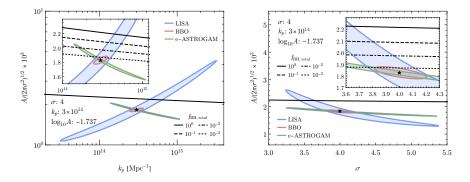


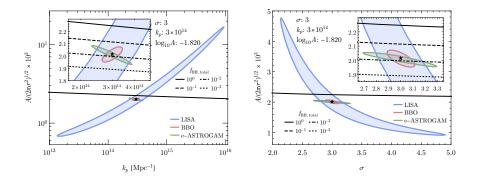

EM and GW Signals



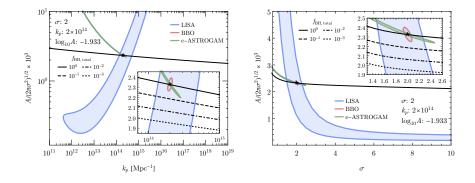
Example Models

Model	σ	$k_p \; [Mpc^{-1}]$	$\log_{10} A$	$A(2\pi\sigma^2)^{-\frac{1}{2}}$	$f_{\rm BH,total}$	m^{peak} [g]	σ_m	γ_{eff}
1	2	2×10^{14}	-1.933	2.327×10^{-3}	1.0	1.8×10^{18}	0.76	3.6
11	3	3×10^{14}	-1.820	2.013×10^{-3}	1.4×10^{-2}	6.1×10^{17}	1.0	2.8
- 111	4	3×10^{14}	-1.737	1.827×10^{-3}	3.7×10^{-4}	4.5×10^{17}	1.2	2.0




Model III

- High sensitivity to A and strong anti-correlation between the two data-sets permit a high precision determination of curvature parameters.
- Measurement with BBO can lead to further confidence in model.


Model II

• Because the EM signal is so sensitive to A, the associated region can vary greatly while the GW doesn't.

Model I

- Capable of obtaining $f_{\rm BH} = 1$.
- Individually, each experiment has poor confinement of parameters as large degenerate parameter spaces are found. (Note that most of these degenerate regions should be ruled out by other measurements.)

- The measurement of Hawking radiation from asteroid mass black holes produced by density perturbations can be correlated with the predicted GW signal from the density perturbations to lead to a smoking gun signal in order to distinguish them from other sources.
- Performing this correlation will allow for precise measurement of the Primordial Matter Spectrum at high *k*.
- Much more work needs to be done, particularly on theory leading to the generation of PBHs in order to be confident in the results.

Thank You!