A Step in Understanding the Hubble Tension

Melissa Joseph

Daniel Aloni, Asher Berlin, Martin Schmaltz, Neal Weiner arXiv: 2111.00014

H₀ Tension

- Local measurement: $73.2 \pm 1.3 \text{ km/s/Mpc}$ (Riess et al 2021)
 - Distance ladder w/ Type 1a SN & Cepheids
- Value from Λ CDM (fit to CMB): 67.4 ± 0.5 km/s/Mpc (Planck 2018)

~ 4σ tension

$D_{\rm CMB} \propto 1/H_0$

 $r_s = \int_{z_{max}}^{\infty} dz \frac{c_s^2}{H(z)}$ ~rec

 $H(z) \propto \sqrt{\rho}$

Simplest extension of ACDM - add extra radiation

$\Delta N_{\rm eff} = \frac{\rho_{DR}}{\rho_{1\nu}}$ $\Lambda \text{CDM}: N_{\text{eff}} = 3.044$

Radiation is dark

Free-streaming (no interactions) radiation

S

Strongly interacting radiation

S

Free-streaming radiation model is too constrained

Free Streaming Strongly Interacting

Interacting radiation (SIDR) is better but still > 3σ

Consider a simple model with two particle species Wess-Zumino Dark Radiation (WZDR)

Massive scalar - ϕ (~eV) Massless fermion - ψ

What happens at the mass threshold?

Massive particles become non-relativistic and decay

Massive particles become non-relativistic and decay

A mix of relativistic ~ a^{-4} and non-relativistic ~ a^{-3} particles

What happens at the mass threshold?

Massive particles become non-relativistic and decay

A mix of relativistic ~ a^{-4} and non-relativistic ~ a^{-3} particles

What happens at the mass threshold?

What happens at the mass threshold?

Massive particles become non-relativistic and decay

A mix of relativistic ~ a^{-4} and non-relativistic ~ a^{-3} particles

What happens at the mass threshold?

Massive particles become non-relativistic and decay

A mix of relativistic ~ a^{-4} and non-relativistic ~ a^{-3} particles

Massive particles become non-relativistic and decay

A mix of relativistic ~ a^{-4} and non-relativistic ~ a^{-3} particles

What happens at the mass threshold?

Entropy Conservation:

$$S = a^3 \frac{\rho(T) + P(T)}{T} = \text{constant}$$

Melissa Joseph, Boston University

15

In Planck 2018 TT, EE, TE and Lensing, BAO(6dF, MGS, BOSS DR12), Pantheon

BOSS DR12), Pantheon, SHOES

Data

Results

Model	Tension	$\Delta \chi^2$
$\Lambda \text{CDM} + N_{\text{eff}}$	3.7σ	-5.7
SIDR	3.1 σ	-10.6
WZDR	2.7σ	-15.1

The H_o Olympics: A fair ranking of proposed models [Schöneberg *et.al.* 2107.10291]

Summary

• Simplest extensions of ACDM include adding extra radiation

• If the radiation is interacting: a simple model includes a massive particle (WZDR)

- WZDR does well in external metrics comparing solutions to the Hubble tension
- Next: Natural extensions include interactions with the dark matter

A More General Model

- A more general model allows arbitrary number of massless and massive species
 - We can vary the $N_{\rm eff}$ in the UV and IR independently

We find the WZDR case is still the preferred region

 $\dot{d}_{\gamma} + k^2 c_s^2 d_{\gamma} \simeq 0$

Superhorizon equations

 $d_{\gamma} \simeq C_1 \cos(kc_s \tau) + C_2 \sin(kc_s \tau)$

 $d_{\gamma} = -3\zeta \qquad \dot{d}_{\gamma} \propto H^{-1}$

 $\Delta \tau \simeq \int_{-\infty}^{\infty} dz \left(\frac{1}{H_{\rm WZI}} \right)^{\infty}$

$$\frac{1}{ZDR}(z) - \frac{1}{H_{SIDR}(z)} \right) ,$$

 $d_{\gamma}(z) \propto \begin{cases} \cos[c_{\gamma} k \tau(z)] & (k \ll k_t) \\ \cos[c_{\gamma} k (\tau(z) + \Delta \tau)] & (k \gg k_t) \end{cases},$