A Step in Understanding the Hubble Tension

Melissa Joseph

Daniel Alloni, Asher Berlin, Martin Schmaltz, Neal Weiner arXiv: 2111.00014

H_{0} Tension

- Local measurement: $73.2 \pm 1.3 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$ (Riess et al 2021)
- Distance ladder w/ Type 1a SN \& Cepheids
- Value from Λ CDM (fit to CMB): $67.4 \pm 0.5 \mathrm{~km} / \mathrm{s} /$ Mpc (Planck 2018)
$\sim 4 \sigma$ tension

$$
r_{s}=\int_{z_{\text {rec }}}^{\infty} d z \frac{c_{s}^{2}}{H(z)}
$$

$$
H(z) \propto \sqrt{\rho}
$$

Simplest extension of $\Lambda \mathrm{CDM}$ - add extra radiation

$$
\begin{gathered}
\Delta N_{\mathrm{eff}}=\frac{\rho_{D R}}{\rho_{1 \nu}} \\
\Lambda \mathrm{CDM}: N_{\mathrm{eff}}=3.044
\end{gathered}
$$

Radiation is dark

Free-streaming (no interactions) radiation

Strongly interacting radiation

$$
c_{s}^{2}=1 / 3
$$

Free-streaming radiation model is too constrained

Free Streaming
Strongly Interacting

Interacting radiation (SIDR) is better

 but still $>3 \sigma$
Consider a simple model with two particle species

Wess-Zumino Dark Radiation (WZDR)

What happens at the mass threshold?

Massive particles
 become non-relativistic and decay

What happens at the mass threshold?

Massive particles become non-relativistic and decay

A mix of relativistic $\sim a^{-4}$ and non-relativistic $\sim a^{-3}$ particles

What happens at the mass threshold?

Massive particles become non-relativistic and decay

A mix of relativistic $\sim a^{-4}$ and non-relativistic $\sim a^{-3}$ particles

What happens at the mass threshold?

Massive particles become non-relativistic and decay

A mix of relativistic $\sim a^{-4}$ and non-relativistic $\sim a^{-3}$ particles

What happens at the mass threshold?

Massive particles become non-relativistic and decay

A mix of relativistic $\sim a^{-4}$ and non-relativistic $\sim a^{-3}$ particles

What happens at the mass threshold?

Massive particles become non-relativistic and decay

A mix of relativistic $\sim a^{-4}$ and non-relativistic $\sim a^{-3}$ particles

Entropy Conservation:

$$
S=a^{3} \frac{\rho(T)+P(T)}{T}=\mathrm{constant}
$$

Data

\mathscr{D} - Planck 2018 TT, EE, TE and Lensing, BAO(6dF, MGS, BOSS DR12), Pantheon

D+ - Planck 2018 TT, EE, TE and Lensing, BAO(6dF, MGS, BOSS DR12), Pantheon, SHOES

Results

Model	Tension	$\Delta \chi^{2}$
$\Lambda \mathrm{CDM}+N_{\text {eff }}$	3.7σ	-5.7
SIDR	3.1σ	-10.6
WZDR	2.7σ	-15.1

The H_{o} Olympics: A fair ranking of proposed models [Schöneberg et.al. 2107.10291]

Summary

- Simplest extensions of $\Lambda \mathrm{CDM}$ include adding extra radiation
- If the radiation is interacting: a simple model includes a massive particle (WZDR)
- WZDR does well in external metrics comparing solutions to the Hubble tension
- Next: Natural extensions include interactions with the dark matter

A More General Model

A more general model allows arbitrary number of massless and massive species

We can vary the $N_{\text {eff }}$ in the UV and IR independently

We find the WZDR case is still the preferred region

$$
\begin{gathered}
\dot{d}_{\gamma}+k^{2} c_{s}^{2} d_{\gamma} \simeq 0 \\
d_{\gamma} \simeq C_{1} \cos \left(k c_{s} \tau\right)+C_{2} \sin \left(k c_{s} \tau\right)
\end{gathered}
$$

Superhorizon equations

$$
d_{\gamma}=-3 \zeta \quad \dot{d}_{\gamma} \propto H^{-1}
$$

$$
\begin{gathered}
\mathscr{H}^{-1}(z)= \begin{cases}\tau(z) & z \ll z_{t} \\
\tau(z)+\Delta \tau & z \gg z_{t}\end{cases} \\
\Delta \tau \simeq \int_{z_{t}}^{\infty} d z\left(\frac{1}{H_{\mathrm{WZDR}}(z)}-\frac{1}{H_{\mathrm{SIDR}}(z)}\right), \\
d_{\gamma}(z) \propto \begin{cases}\cos \left[c_{\gamma} k \tau(z)\right] & \left(k \ll k_{t}\right) \\
\cos \left[c_{\gamma} k(\tau(z)+\Delta \tau)\right] & \left(k \gg k_{t}\right)\end{cases}
\end{gathered}
$$

