Multiboson measurements in CMS

Saptaparna Bhattacharya Pheno 2022

University of Pittsburgh May 9th-11th, 2022

Multiboson measurements provide access to various processes

First observation of oppositely charge W-boson pairs with 2 jets

First observation of double parton scattering

Precision measurements of WZ, first observation of longitudinally polarized W

Multiboson measurements provide access to various processes

Multiboson cross section measurements

Span several orders of magnitude!

Diboson cross section measurements at several center of mass energies (\sqrt{s})

Vector Boson Scattering

First observation of the electroweak production of a leptonically decaying W^+W^- pair in association with two jets

- First observation of W^+W^- + 2 jets with 5.6 σ (5.2 σ) observed (expected) significance
- Vector boson scattering characterized by the presence of two high p_T jets
 - $M_{jj} > 300$ GeV, $\Delta \eta_{jj} > \lfloor 2.5 \rfloor$ (rapidity gap)
- Require oppositely charged pair of leptons
- Major backgrounds: Drell-Yan, tt̄
- Optimize signal significance: categorization based on the centrality of the dilepton system w.r.t. to the tagging jets
- Deep neural network (DNN) trained with (indicative):
 - M_{jj} and $\Delta\eta_{jj}$

•
$$Z_{\ell_{1,2}} = \eta_{\ell_{1,2}} - \frac{1}{2} \left(\eta_{j_1} + \eta_{j_2} \right)$$

- Inclusive cross section: 99 ± 20 fb
- Largest uncertainty associated with QCD-induced W^+W^- normalization

CMS-PAS-SMP-21-001

Search for vector boson scattering at the LHC Run 2 with CMS data in the semi-leptonic $\ell\nu qq$ final state

- First evidence of electroweak WW/WZ vector boson scattering ($\ell \nu qq$) with 4.4 σ (5.1 σ) observed (expected) significance
- DNN trained with (indicative):
 - Lepton η, p_T, M_{jj}

- Two different event categories:
 - based on reconstruction regime of hadronically decaying W
- Uncertainties arise from choice of renormalization and factorization scales

Looking for new physics with multi bosons

- Extended Higgs sectors → couplings of gauge bosons to (singly or doubly) charged Higgs bosons
- First search for charged Higgs bosons using vector boson fusion
 - WWjj and WZjj studied
- Variables of interest:

•
$$M_{jj}$$
 and $m_T^{VV} \left(m_T^{VV} = \sqrt{\left(\sum_i E_i\right)^2 - \left(\sum_i p_{z,i}\right)^2} \right)$

- Constraints on resonant charged Higgs boson derived
- Model independent limits for $\sigma \times$ BF set for charged Higgs mass [200, 3000] GeV

Double Parton Scattering

- First observation of double parton scattering with 6.2 σ (6.7 σ) observed (expected) significance
- Inclusive cross section: $\sigma_{\rm AB}^{\rm DPS} = \frac{n}{2} \frac{\sigma_A \sigma_B}{\sigma_{\rm eff}}$ $0.16 \pm 0.02 \; ({\rm stat.}) \pm 0.02 \; ({\rm syst.}) \pm 0.02 \; ({\rm model}) \; {\rm pb}$

- Boosted decision tree (BDT) classifier trained against WZ and non prompt backgrounds
 - Use p_T of the two leptons, p_T^{miss} , $|\eta^{\ell_1}| + |\eta^{\ell_2}|, \eta^{\ell_1} \times \eta^{\ell_2}, \text{ azimuthal correlation between the leptons and } p_T^{\text{miss}}$ as input variables
- BDT score mapped to 2D plane in both classifiers → combined to map into 52 independent one dimensional bins

Measurement of the WZ process

- Electroweak process: sensitive to the PDFs of u and d quarks; relatively unaffected by the gluon
- High WZ cross section makes it the dominant process that can be studied in the trilepton final state
- . Ratio of $\frac{W^+Z}{W^-Z}$ cross section is one of the most precisely measurable quantities
- Constitutes first measurement of longitudinally polarized W-bosons
- $\theta_{\rm W}$: angular distance between the momenta of the W boson and the charged lepton from its primary decay

Search for exclusive $\gamma\gamma \to WW$ and $\gamma\gamma \to ZZ$ production in final states with jets and forward protons

- Both protons tagged by the precision proton spectrometer (PPS)
- The $\gamma\gamma \to WW$ process allows the study of the quartic coupling
- Events selected based on properties of jets, the protons and their correlation
- First search for anomalous highmass $\gamma\gamma \to WW$ and $\gamma\gamma \to ZZ$ using reconstructed forward protons
 - Limits 15-20x more stringent than previous results

Future multiboson measurements

- Higgs boson will turn 10 years old in July 2022!
 - 10 years of the LHC = 8 million Higgs bosons!
- Understanding electroweak symmetry breaking → crucial part of LHC physics program
 - Longitudinally polarized scattering of W and Z complementary to direct measurements of the Higgs coupling to gauge bosons
- Analysis projected from Run II to 3000 fb⁻¹

Outlook

- Presented several multiboson analyses with full Run II dataset
- Many rare processes predicted by the Standard Model becoming accessible at the LHC
 - Ubiquitous use of advanced deep learning techniques

- These novel topologies used to look for new physics
- Precision studies of diboson processes possible ©

The future is bright and precise!

Additional Material

Outline of the talk

- CMS-PAS-SMP-21-014: Search for exclusive $\gamma\gamma \to WW$ and $\gamma\gamma \to ZZ$ production in final states with jets and forward protons
- CMS-PAS-SMP-21-013: Observation of WW from double parton scattering in proton-proton collisions at $\sqrt{S}=$ 13 TeV
- CMS-PAS-SMP-21-001: First observation of the electroweak production of a leptonically decaying W^+W^- pair in association with two jets in $\sqrt{S}=$ 13 TeV pp collisions
- CMS-PAS-SMP-20-013: Search for vector boson scattering at the LHC Run 2 with CMS data in the semi-leptonic $\ell\nu qq$ final state
- CMS-PAS-SMP-19-012: Measurements of production cross sections of same-sign WW and WZ boson pairs in association with two jets in proton-proton collisions at $\sqrt{S}=$ 13 TeV (HIG-20-017 and EXO-21-003)

Multiboson measurements provide access to various processes

Multiboson measurements provide access to various processes

First observation of double parton scattering

First observation of oppositely charge W-boson pairs with 2 jets

Precision measurements of WZ, first observation of longitudinally polarized W

First observation of the electroweak production of a leptonically decaying W^+W^- pair in association with two jets

.
$$Z_{\ell\ell}=rac{1}{2}\left|Z_{\ell_1}+Z_{\ell_2}\right|$$
 , where $Z_{\ell}=\eta_{\ell}-rac{1}{2}\left(\eta_{j_1}+\eta_{j_2}\right)$

Looking for new physics with VBS topology

 Neutrino mass arises in the SM → Weinberg operator:

$$\mathcal{L} = C_5^{ll'}/\Lambda[\Phi.\bar{L}_{\ell}^c][L_{\ell'}.\Phi]$$

First observation of the electroweak production of a leptonically decaying W^+W^- pair in association with two jets

- Backgrounds from Drell-Yan and $t\bar{t}$ studied in dedicated control regions
 - Z-peak used to study Drell-Yan
 - b-veto inverted to study $t\bar{t}$ background
- Drell-Yan contributes when lepton pair is reconstructed with high $p_T^{\rm miss}$ \to instrumental effects

Two separate regions defined by $\Delta\eta_{jj} < 5$ and > 5 for pileup mitigation

Looking for new physics with VBS topology

- First search probing Majorana neutrinos and the Weinberg operator in vector boson fusion topology at the LHC
- Major backgrounds to mitigate: WZ, $t\bar{t}$
- Discriminating variable: $H_T/p_T^{\mu_1} \rightarrow$ measure of the ratio of hadronic to leptonic activity
 - Sensitive to color structure
 - Lower values for signal events
- For Majorana neutrinos, upper limits set in the mass (m_N) range [75 GeV, 250 TeV]

