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We discuss the possible origin of the Majorana mass scale(s) required for the “Neutrino Option”
where the electroweak scale is generated simultaneously with light neutrino masses in a type-I seesaw
model, by common dimension four interactions. We establish no-go constraints on the perturbative
generation of the Majorana masses required due to global symmetries of the seesaw Lagrangian.

I. INTRODUCTION AND MOTIVATION

Amongst the outstanding theoretical issues of the
Standard Model (SM), the origin(s) of neutrino masses
and the electroweak (EW) scale rank amongst the most
pressing. Experiment has established that at least two
neutrinos are massive, and that the Higgs mass mh ƒ

125 GeV ∫ ”m‹ = m‹1 ≠m‹2 . These experimental facts,
combined with the sensitivity of the Higgs mass to high
mass scale threshold corrections, are challenges to any
ultraviolet (UV) completion of the SM that seeks to ex-
plain the observed mass scales. Although they are most
often addressed independently, attempts at unified ex-
planations of these observed masses are of great interest.

An interesting and minimal possibility is that both the
mass scales, mh and m‹1 ≥ m‹2 , are generated simulta-
neously in a minimal extension of the SM from an under-
lying Majorana scale. Ref. [1] showed that this scenario,
dubbed the “Neutrino Option”, can be realized within
the simplest type-I seesaw model [2–6]. This approach
has been shown to be compatible with the observed neu-
trino mass and mixing patterns [7] and resonant leptoge-
nesis [8, 9]. It admits UV completions where approximate
scale invariance plays an important role [8, 10, 11] and
also non-perturbative ones, e.g. with strongly-interacting
hidden sectors that add viable Dark Matter candidates
to the spectrum [12], and in certain string compactifi-
cations [13]. In this setup, the traditional Higgs mass
hierarchy problem translates into a quest for a UV origin
of the underlying Majorana mass scale, with the required
pattern of threshold corrections.

In this paper, we study possible UV completions of
the Neutrino Option. We use the minimal scenario that
the Majorana scale required by the Neutrino Option is
generated perturbatively from a deep-UV scale associ-
ated with a very heavy Majorana state. We show how
symmetries of the seesaw Lagrangian, and the specific
parameter space required in the Neutrino Option, makes
minimal model scenarios relying on one-loop corrections
run up against seesaw model symmetry constraints. We
discuss minimal extensions that might evade our conclu-
sions. The primary results we present are some no-go
constraints for UV-completing the Neutrino Option in
the minimal setups we consider.

II. THE NEUTRINO OPTION

Consider the Type-I seesaw model, where the SM is ex-
tended with three right-handed (RH) spinors NR,p, with
p = {1, 2, 3}. The field Np defined by [14, 15]

Np = e
i◊p/2

NR,p + e
≠i◊p/2(NR,p)c

, (1)

with ◊p an arbitrary phase, satisfies the Majorana con-
dition Np = N

c
p [16]. Here the superscript c denotes

charge conjugation: Â
c = CÂ̄

T , with C = i“2“0 in the
chiral basis for the “i. The seesaw Lagrangian is 1
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c
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†
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,

where l is the left-handed (LH) SM lepton doublet and
— = {1, 2, 3} its associated flavor index. The resulting
mass matrix is orthogonal: (e≠i◊

M) = (MT
e

≠i◊) .
The phenomenology of LSM + LN at p

2
π M

2
p has

the Np fields integrated out in sequence and matched
to the SMEFT. The tree-level matching is known up to
dimension seven [15, 17–22] and at dimension five one
finds

L
(5) =

c
(5)
–—

2
!
l
T
– H̃

ú"
C

!
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†
l—

"
+ h.c. , (3)

c
(5)
–— =

!
Ê

T
M

≠1
Ê

"
–—

, (4)

One-loop matching introduces sub-leading corrections to
c

(5) and necessarily induces threshold matching contri-

butions to the SM Higgs mass from the same interac-

tions [1, 7, 8]:

V (H) = ≠
m

2
h0 + �m

2
h

2 H
†
H + (⁄0 + �⁄) (H†

H)2
. (5)

1 Chiral projection and charge conjugation do not commute. In
this paper Âc

L/R
denotes a field chirally projected and subse-

quently charge conjugated.
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The Type-I seesaw model (Minkowski ’77, et al.) is perhaps the most popular 
mechanism for generating light neutrino masses:

Upon integrating out heavy sterile neutrinos N, one induces a contribution to the 
(Weinberg ’79) operator of the dim-5 SM-EFT:

Upon EWSB, this then describes light, LH Majorana neutrinos in accord with data:
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2.2 Seesaw model

We use the notation and conventions of Refs. [28, 29] for the Seesaw model. In the Seesaw
model, the SM Lagrangian field content is extended with right handed singlet fields NR,p with
vanishing SU(3) ⇥ SU(2)L ⇥ U(1)Y charges. As these are singlet fermion fields they have
Majorana mass terms [30] of the form

N
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?
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where the charge conjugate of NR is N
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p in its mass eigenstate basis as [28, 31]
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Here p = {1, 2} runs over the heavy Np Majorana states (Mp ⇠ M), while � = {1, 2, 3} runs
over the SM lepton flavors. This formulation of the Seesaw model is mathematically equivalent
to the formulation where
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In this case, the Lagrangian is reduced using the charge conjugation identities and the Ma-
jorana condition for the field Np. Comparing calculations in these two formulations beyond
tree level uncovers an interesting subtlety in using the Wick expansion, which is discussed in
the Appendix.
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– 5 –

2.2 Seesaw model

We use the notation and conventions of Refs. [28, 29] for the Seesaw model. In the Seesaw
model, the SM Lagrangian field content is extended with right handed singlet fields NR,p with
vanishing SU(3) ⇥ SU(2)L ⇥ U(1)Y charges. As these are singlet fermion fields they have
Majorana mass terms [30] of the form

N
c
R,pMpr NR,r +NR,pM

?
pr N

c
R,r, (2.5)

where the charge conjugate of NR is N
c
R. We define a field satisfying the Majorana condition

as Np = N
c
p in its mass eigenstate basis as [28, 31]

Np = e
i✓p/2NR,p + e

�i✓p/2 (NR,p)
c
. (2.6)

With this choice, all Majorana phases ✓p shifted into the effective couplings and the relevant
terms in the UV Lagrangian are

LN =
1

2
N̄p(i/@�Mp)Np�

1

2

"
`
�
LH̃!

p,†
� Np+`

c�
L H̃

⇤
!
p,T
� Np+Np!

p,⇤
� H̃

T
`
c�
L +Np!

p
�H̃

†
`
�
L

#
. (2.7)

Here p = {1, 2} runs over the heavy Np Majorana states (Mp ⇠ M), while � = {1, 2, 3} runs
over the SM lepton flavors. This formulation of the Seesaw model is mathematically equivalent
to the formulation where

L
0
N =

1

2
N̄p(i/@ � Mp)Np �

"
`
�
LH̃!

p,†
� Np +Np!

p
�H̃

†
`
�
L

#
. (2.8)

In this case, the Lagrangian is reduced using the charge conjugation identities and the Ma-
jorana condition for the field Np. Comparing calculations in these two formulations beyond
tree level uncovers an interesting subtlety in using the Wick expansion, which is discussed in
the Appendix.

2.2.1 L
(5)

matching

!
p
� is a C2⇥3 matrix, related to the physical light neutrino masses and mixings via matching

onto the Weinberg operator

L
(5) =

c
(5)
↵�

2
Q

(5)
↵� + h.c., c

(5)
↵� =

(!T )p↵ !
p
�

Mp
. (2.9)

Expanding the Higgs field around its classical background field gives

L
(5)

� �
m⌫,k

2
⌫
0c,k
L ⌫

0k
L + h.c., where m⌫,k = �

v
2

2
(UT )k↵ c5,↵� U�k,

and ⌫
0k
L are the mass eigenstates of the light neutrinos ⌫↵L = U↵k(⌫, L)⌫ 0kL . The matrix U(⌫, L)

rotates the neutrinos from their weak eigenstates to their mass eigenstates. Similarly, the
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FIG. 1: One loop corrections matching onto and generating
the Higgs potential at the scale(s) mp in the seesaw model.

where

F1 = 1 + log
µ
2

m2
p

, (4)

F2 = 1 �
mpmq log

m2
p

m2
q
+m

2
q log

µ2

m2
q

� m
2
p log

µ2

m2
p

(m2
p � m2

q)
,(5)

and �pq = 5 (!q · !p,?)(!p · !q,?)/(64⇡2). Here the re-
peated indicies are summed over and the results can be
compared to past results in Ref. [10, 11]. We have used
dimensional regularization in d = 4 � 2✏ dimensions and
MS here and below. The counterterms of the SM and
the full theory including the Np states cancel the ✏ di-
vergences in each case. The mismatch of the SMEFT
Lagrangian and the full theory in the limit p

2
/m

2
p ! 0

(with kinematic invariants denoted p
2) defines the thresh-

old matching. The renormalization scale dependent logs
in the result can be neglected when also neglecting the
(net) two loop e↵ects due to running between the thresh-
old matchings.

Considering the parameterization of the Higgs poten-
tial (Vc) as

Vc(H
†
H) = �m

2

2
(H†

H) + � (H†
H)2, (6)

neglecting the e↵ect of running down from the scale(s)
µ = mp, and assuming the mass di↵erences are paramet-
rically smaller than intrinsic mass scales in the Majorana
sector ((m2

q � m
2
p)/m

2
p,q < 1) we find

�m
2 = m

2
p
|!p|2

8⇡2
, �� = �5

(!q · !p,?)(!p · !q,?)

64⇡2
. (7)

Note that the � threshold corrections can be subdomi-
nant to other quantum corrections in the full CW poten-
tial in the parameter space of interest where |!p| ⌧ 1
and mp � 246GeV.

III. Induced CW potential. The threshold correc-
tions to H

†
H can be naturally dominant in defining the

Higgs potential below the scales µ ' mp. The reason
is that the SM is classically scale invariant in the limit
that the vacuum expectation value (vev) of the Higgs
v ! 0 [7, 14–16] (m ! 0 in Eqn. 6). This point of
enhanced symmetry is anomalous, even before its soft

breaking by the threshold matching. However, the addi-
tional SM breakings of scale invariance through quantum
corrections are associated with dimensionful parameters
that are smaller than m

2
p in a consistent version of this

scenario at the threshold matching scale.
A breaking of the scaleless limit of the SM is due

to QCD, which generates the scale ⇤QCD by dimen-
sional transmutation [7] at low scales as (⇤QCD/µ)b0 =
Exp

⇥
�8⇡/h̄g23(µ)

⇤
where b0 = 11�(2/3)nf [12, 13]. The

quark masses that result lead to Vc contributions such as

�m
2 =

Nc y
2
t ⇤

2
QCD

32⇡2

 
1 + 3 log

"
µ
2

⇤2
QCD

#!
+ · · · (8)

which subsequently induces a vev for the Higgs, lead-
ing to gauge boson masses / ⇤QCD. As we are assum-
ing m

2
p|!p|2 � ⇤2

QCD (for each p) these contributions

are naturally subdominant for H†
H, and anyway, at the

threshold matching scale we consider, the QCD coupling
has run to scales such that g3(mp) < 1. Renormalization
of the CW potential also introduces an anomalous break-
ing of scale invariance. Consider defining VCW (hH†

Hi)
as the one loop CW potential expanding around the scale-
less limit of the SM while neglecting the threshold correc-
tions. The standard result [7, 14, 15] can be minimized
via @VCW /@hH†

Hi = 0. The vev scale obtained is expo-
nentially separated from the renormalization scale. This
scale is associated with the asymptotic nature of the per-
turbative expansions used in constructing the CW poten-
tial, that also predict S-matrix elements that are used to
fix SMEFT Lagrangian parameters. This scale can be
either suppressed or enhanced depending on the net sign
of the quantum correction in the CW potential, and a
suppression is consistent with an EFT analysis.
In summary, the soft breaking of the scaleless limit of

the SM1 is such that the threshold corrections to H
†
H

due to integrating out the Np states can be a dominant
contribution to VCW fixing a high scale boundary condi-
tion for the Higgs potential. This occurs for interesting
parameter space when tuning of the threshold corrections
against bare parameters is avoided expanding around the
classically scaleless limit of the SM Lagrangian.
IV. Running down to the scale µ = m̂t. We as-

sume that the Higgs potential is (dominantly) given by
Eqn. 7 when integrating out the Majorana sector. This
condition can be obtained requiring (i) smaller breaking

1
Previous studies of the CW potential in this scaleless limit (not

advocating the Neutrino Option) include Refs. [16–23]. We have

introduced a hard breaking of scale invariance due to mp in

Eqn. 1. If such masses were spontaneously generated the break-

ing of scale invariance would be completely spontaneous and in-

troduce a dilaton [24] in the spectrum. This scenario is beyond

the scope of this work. We thank D. McGady for conversations

on this point.

But integrating out heavy N does more than just induce light neutrinos…

This is either (A) a direct manifestation of the EW hierarchy problem (Vissani 1998),

or (B) a route to a minimal solution of the EW hierarchy problem (Brivio, Trott 2017)!  
This scenario is the so-called Neutrino Option.

PeV Sterile Masses via Parametric Suppressions — Comments on Realizing

(Non-)Perturbative Neutrino Options

Jim Talbert1

1Niels Bohr International Academy, Niels Bohr Institute,
University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark

We examine the possibility that sterile Majorana neutrino masses Mp are generated non-
perturbatively within the preferred range of the Neutrino Option resolution to the electroweak
hierarchy and neutrino mass problems of the Standard Model, i.e. Mp ≥ PeV. If such a mechanism
exists in the deep ultraviolet (UV), then recent no-go limitations on perturbative scale generation in
the Neutrino Option can be circumvented, thereby resolving the largest open question in the Neu-
trino Option paradigm. After studying the parameter space in a bottom-up fashion, we examine
two explicit (top-down) mechanisms present in the literature: (1) instantonic interactions in certain
classes of string compactifications (e.g. Type IIA orientifold models with intersecting D-branes),
and (2) gravitational condensation via Schwinger-Dyson relations. While neither approach is fully
satisfactory at present, further research is motivated due to the simplicity of such UV-completed
Neutrino Options.

I. INTRODUCTION AND MOTIVATION

The Neutrino Option [1, 2] is a paradigm for simul-
taneously resolving the electroweak (EW) hierarchy and
neutrino mass problems of the Standard Model (SM) by
assuming that the dominant threshold corrections to the
mass of the Higgs scalar, and therefore also the genera-
tion of the EW scale, come from integrating out heavy
Majorana masses Mp in the e�ective field theory (EFT)
defined by the seesaw mechanism for light neutrino mass
generation [3–6]. Indeed, it is inevitable that when a
Type-I seesaw Lagrangian of the form

LN = 1
2Np

!
i /̂ ≠ Mp

"
Np ≠

Ë
l
—
LH̃Ê

p,†
— Np + NpÊ

p
—H̃

†
l
—
L

È
,

(1)
with Np = N

c
p the mass-eigenstate sterile Majorana state

defined by [7, 8]

Np = e
i◊p/2

NR,p + e
≠i◊p/2(NR,p)c

, (2)

is matched to the SMEFT after integrating out heavy
Np, a threshold correction to the Higgs boson mass of
the form

≠
m

2
0

2 H
†
H ≠æ

A
≠

m
2
0

2 ≠
M

2
p |Êp|

2

16fi2

B
H

†
H (3)

necessarily appears at one-loop order — see Figure 1 for
Feynman diagrams relevant to this matching, and [9] for a
complete tree-level analysis up to dimension seven. Here
m0 is the bare Higgs mass, ◊p is an arbitrary phase, and
the p, — œ {1, 2, 3} indices in (1)-(3) are respectively Ma-
jorana and SM lepton flavour indices. The Higgs thresh-
old correction in (3) of course occurs in addition to the
seesaw generation of the active light neutrino masses m‹ ,
such that

m‹ ≥
Ê

2
pv̄

2
T

Mp
, mh ≥

ÊpMp

4fi
, v̄T ≥

ÊpMp

4
Ô

2fi
Ô

⁄
, (4)

N

¯̀c
L

H̃
⇤

`L

H̃
†

! !
T

,

N

`L

H H
†

! !
†

FIG. 1: Threshold corrections generating the EW and
neutrino mass scales in the Neutrino Option.

where
Ô

2H†H © v̄T defines the EW scale and ⁄ is the
Higgs self coupling. As noted by Vissani [10], the correc-
tion to mh can represent a manifestation of the hierarchy
problem in the context of the seesaw model, if extreme
fine-tuning is required to realize the experimental value of
mh ≥ 125 GeV. However, in the Neutrino Option (with
degenerate or only mildly hierarchical Mp) one instead
recognizes that with the parameter space [1, 2],1

M . 104 TeV = 10 PeV, with |Ê| ƒ
TeV
M

, (5)

the threshold corrections associated to Mp can instead
minimize fine-tuning by in fact defining and generating
the observed v̄T . In this way the same mechanism ex-
plains the origins of both the EW and neutrino mass
scales, and in a manner which can also accommodate
successful resonant leptogenesis if M & 1 PeV [11] (also
see [12]). Hence an important theoretical question to ad-
dress is how the Mp ≥ PeV scale arises. While any value

1 This estimate was made in the simplifying limit of M1 = 0,
which yields a successful seesaw, but can also be generalized to
a complete three-eigenvalue analysis, with the expectation that
(assuming minimal hierarchies in Êp

—) M1 . M2,3 as well, in order
to avoid unnatural threshold corrections to mh. The bounds are
also largely stable against variations of other input parameters,
e.g. the top quark mass and neutrino mixing elements.
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No-go limitations on UV completions of the Neutrino Option
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We discuss the possible origin of the Majorana mass scale(s) required for the “Neutrino Option”
where the electroweak scale is generated simultaneously with light neutrino masses in a type-I seesaw
model, by common dimension four interactions. We establish no-go constraints on the perturbative
generation of the Majorana masses required due to global symmetries of the seesaw Lagrangian.

I. INTRODUCTION AND MOTIVATION

Amongst the outstanding theoretical issues of the
Standard Model (SM), the origin(s) of neutrino masses
and the electroweak (EW) scale rank amongst the most
pressing. Experiment has established that at least two
neutrinos are massive, and that the Higgs mass mh ƒ

125 GeV ∫ ”m‹ = m‹1 ≠m‹2 . These experimental facts,
combined with the sensitivity of the Higgs mass to high
mass scale threshold corrections, are challenges to any
ultraviolet (UV) completion of the SM that seeks to ex-
plain the observed mass scales. Although they are most
often addressed independently, attempts at unified ex-
planations of these observed masses are of great interest.

An interesting and minimal possibility is that both the
mass scales, mh and m‹1 ≥ m‹2 , are generated simulta-
neously in a minimal extension of the SM from an under-
lying Majorana scale. Ref. [1] showed that this scenario,
dubbed the “Neutrino Option”, can be realized within
the simplest type-I seesaw model [2–6]. This approach
has been shown to be compatible with the observed neu-
trino mass and mixing patterns [7] and resonant leptoge-
nesis [8, 9]. It admits UV completions where approximate
scale invariance plays an important role [8, 10, 11] and
also non-perturbative ones, e.g. with strongly-interacting
hidden sectors that add viable Dark Matter candidates
to the spectrum [12], and in certain string compactifi-
cations [13]. In this setup, the traditional Higgs mass
hierarchy problem translates into a quest for a UV origin
of the underlying Majorana mass scale, with the required
pattern of threshold corrections.

In this paper, we study possible UV completions of
the Neutrino Option. We use the minimal scenario that
the Majorana scale required by the Neutrino Option is
generated perturbatively from a deep-UV scale associ-
ated with a very heavy Majorana state. We show how
symmetries of the seesaw Lagrangian, and the specific
parameter space required in the Neutrino Option, makes
minimal model scenarios relying on one-loop corrections
run up against seesaw model symmetry constraints. We
discuss minimal extensions that might evade our conclu-
sions. The primary results we present are some no-go
constraints for UV-completing the Neutrino Option in
the minimal setups we consider.

II. THE NEUTRINO OPTION

Consider the Type-I seesaw model, where the SM is ex-
tended with three right-handed (RH) spinors NR,p, with
p = {1, 2, 3}. The field Np defined by [14, 15]

Np = e
i◊p/2

NR,p + e
≠i◊p/2(NR,p)c

, (1)

with ◊p an arbitrary phase, satisfies the Majorana con-
dition Np = N

c
p [16]. Here the superscript c denotes

charge conjugation: Â
c = CÂ̄

T , with C = i“2“0 in the
chiral basis for the “i. The seesaw Lagrangian is 1

LN = 1
2

!
N̄pi /̂Np ≠ N̄pMprNr

"
≠

#
N̄p Êp— H̃

†
l— + h.c.

$

= 1
2

Ë
N̄R,pi/̂NR,p + N

c
R,p i/̂N

c
R,p

È
(2)

≠

5
1
2e

≠i◊p N̄R,p MprN
c
R,r + e

≠i◊p/2
N̄R,p Êp— H̃

†
l— + h.c.

6
,

where l is the left-handed (LH) SM lepton doublet and
— = {1, 2, 3} its associated flavor index. The resulting
mass matrix is orthogonal: (e≠i◊

M) = (MT
e

≠i◊) .
The phenomenology of LSM + LN at p

2
π M

2
p has

the Np fields integrated out in sequence and matched
to the SMEFT. The tree-level matching is known up to
dimension seven [15, 17–22] and at dimension five one
finds

L
(5) =

c
(5)
–—

2
!
l
T
– H̃

ú"
C

!
H̃

†
l—

"
+ h.c. , (3)

c
(5)
–— =

!
Ê

T
M

≠1
Ê

"
–—

, (4)

One-loop matching introduces sub-leading corrections to
c

(5) and necessarily induces threshold matching contri-

butions to the SM Higgs mass from the same interac-

tions [1, 7, 8]:

V (H) = ≠
m

2
h0 + �m

2
h

2 H
†
H + (⁄0 + �⁄) (H†

H)2
. (5)

1 Chiral projection and charge conjugation do not commute. In
this paper Âc

L/R
denotes a field chirally projected and subse-

quently charge conjugated.
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FIG. 1: One loop corrections matching onto and generating
the Higgs potential at the scale(s) mp in the seesaw model.

where

F1 = 1 + log
µ
2

m2
p

, (4)

F2 = 1 �
mpmq log

m2
p

m2
q
+m

2
q log

µ2

m2
q

� m
2
p log

µ2

m2
p

(m2
p � m2

q)
,(5)

and �pq = 5 (!q · !p,?)(!p · !q,?)/(64⇡2). Here the re-
peated indicies are summed over and the results can be
compared to past results in Ref. [10, 11]. We have used
dimensional regularization in d = 4 � 2✏ dimensions and
MS here and below. The counterterms of the SM and
the full theory including the Np states cancel the ✏ di-
vergences in each case. The mismatch of the SMEFT
Lagrangian and the full theory in the limit p

2
/m

2
p ! 0

(with kinematic invariants denoted p
2) defines the thresh-

old matching. The renormalization scale dependent logs
in the result can be neglected when also neglecting the
(net) two loop e↵ects due to running between the thresh-
old matchings.

Considering the parameterization of the Higgs poten-
tial (Vc) as

Vc(H
†
H) = �m

2

2
(H†

H) + � (H†
H)2, (6)

neglecting the e↵ect of running down from the scale(s)
µ = mp, and assuming the mass di↵erences are paramet-
rically smaller than intrinsic mass scales in the Majorana
sector ((m2

q � m
2
p)/m

2
p,q < 1) we find

�m
2 = m

2
p
|!p|2

8⇡2
, �� = �5

(!q · !p,?)(!p · !q,?)

64⇡2
. (7)

Note that the � threshold corrections can be subdomi-
nant to other quantum corrections in the full CW poten-
tial in the parameter space of interest where |!p| ⌧ 1
and mp � 246GeV.

III. Induced CW potential. The threshold correc-
tions to H

†
H can be naturally dominant in defining the

Higgs potential below the scales µ ' mp. The reason
is that the SM is classically scale invariant in the limit
that the vacuum expectation value (vev) of the Higgs
v ! 0 [7, 14–16] (m ! 0 in Eqn. 6). This point of
enhanced symmetry is anomalous, even before its soft

breaking by the threshold matching. However, the addi-
tional SM breakings of scale invariance through quantum
corrections are associated with dimensionful parameters
that are smaller than m

2
p in a consistent version of this

scenario at the threshold matching scale.
A breaking of the scaleless limit of the SM is due

to QCD, which generates the scale ⇤QCD by dimen-
sional transmutation [7] at low scales as (⇤QCD/µ)b0 =
Exp

⇥
�8⇡/h̄g23(µ)

⇤
where b0 = 11�(2/3)nf [12, 13]. The

quark masses that result lead to Vc contributions such as

�m
2 =

Nc y
2
t ⇤

2
QCD

32⇡2

 
1 + 3 log

"
µ
2

⇤2
QCD

#!
+ · · · (8)

which subsequently induces a vev for the Higgs, lead-
ing to gauge boson masses / ⇤QCD. As we are assum-
ing m

2
p|!p|2 � ⇤2

QCD (for each p) these contributions

are naturally subdominant for H†
H, and anyway, at the

threshold matching scale we consider, the QCD coupling
has run to scales such that g3(mp) < 1. Renormalization
of the CW potential also introduces an anomalous break-
ing of scale invariance. Consider defining VCW (hH†

Hi)
as the one loop CW potential expanding around the scale-
less limit of the SM while neglecting the threshold correc-
tions. The standard result [7, 14, 15] can be minimized
via @VCW /@hH†

Hi = 0. The vev scale obtained is expo-
nentially separated from the renormalization scale. This
scale is associated with the asymptotic nature of the per-
turbative expansions used in constructing the CW poten-
tial, that also predict S-matrix elements that are used to
fix SMEFT Lagrangian parameters. This scale can be
either suppressed or enhanced depending on the net sign
of the quantum correction in the CW potential, and a
suppression is consistent with an EFT analysis.
In summary, the soft breaking of the scaleless limit of

the SM1 is such that the threshold corrections to H
†
H

due to integrating out the Np states can be a dominant
contribution to VCW fixing a high scale boundary condi-
tion for the Higgs potential. This occurs for interesting
parameter space when tuning of the threshold corrections
against bare parameters is avoided expanding around the
classically scaleless limit of the SM Lagrangian.
IV. Running down to the scale µ = m̂t. We as-

sume that the Higgs potential is (dominantly) given by
Eqn. 7 when integrating out the Majorana sector. This
condition can be obtained requiring (i) smaller breaking

1
Previous studies of the CW potential in this scaleless limit (not

advocating the Neutrino Option) include Refs. [16–23]. We have

introduced a hard breaking of scale invariance due to mp in

Eqn. 1. If such masses were spontaneously generated the break-

ing of scale invariance would be completely spontaneous and in-

troduce a dilaton [24] in the spectrum. This scenario is beyond

the scope of this work. We thank D. McGady for conversations

on this point.
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FIG. 1. One-loop threshold corrections generating the EW
scale in the Neutrino Option. The one loop diagram is linked
to neutrino mass generation by connecting the lepton line.

Here mh0, ⁄0 are the “bare” parameters defining the clas-
sical scalar potential at µ ƒ M and �m

2
h, �⁄ are the

loop-induced threshold corrections. Assuming a nearly
conformal classical Lagrangian implies mh0 ƒ 0, while ⁄0
is free and generally of perturbative size. As �⁄ Ã Ê

4,
this contribution is typically negligible for perturbative
Yukawa couplings |Êp— | < 1. On the other hand2

�m
2
h = 1

8fi2 Tr
!
Ê

†
M

2
Ê

"
, (6)

is generally large and directly sensitive to the Majorana
mass scale. This contribution has been long known and
is a direct representation of the hierarchy problem in the
seesaw model, see e.g. Refs. [23–25]. The key idea of the
Neutrino Option is that, taking mh0 ƒ 0, �m

2
h can be in-

terpreted as a radiatively generated Higgs mass. It is in-
teresting that Fermi statistics in this minimal setup fixes
the sign of this threshold correction to be negative, as re-
quired to induce a low scale Higgs’d phase of electroweak
symmetry breaking in the SM with massive neutrinos.
Requiring that both the observed EW scale and neutrino
mass-squared di�erences are accommodated identifies the
parameter space [1, 7]3

M . 104 TeV ƒ 10 PeV . |Ê| ƒ
TeV
M

. (7)

Requiring successful resonant leptogenesis introduces an
additional lower limit on the Majorana scale [8]

M & 1 PeV . (8)

Finer structure of the allowed parameter space can be
identified specifying the neutrino mixing parameters and
CP violating phases. These exact results are sensitive to
the top quark mass, the order of the RG equations used,
and the details of the seesaw model, such as the number
of RH neutrinos introduced and the structure of the M

matrix. On the other hand, the orders of magnitude
in Eqs. (7), (8) have a negligible dependence on these
choices.

2 This expression is derived in the basis where M is diagonal.
3 The requirement |Ê| ≥ TeV/M stems from �m2

h ƒ (100 GeV)2.
Inserting it in the expression for light neutrino masses and re-
quiring m‹ & 0.01 eV ≥ �m§ identifies the upper limit on M .

A. Symmetries of the seesaw Lagrangian

The Lagrangian has the following global symmetries:

• The kinetic term of the N fields respects a global
U(3)N flavour symmetry, that can be decomposed
into U(1)N,3 ◊SU(3)N, where the U(1)N,k term rep-
resents an N -lepton number under which k flavors
transform. The kinetic term of the l doublet has a
U(3)l = U(1)l,3 ◊ SU(3)l symmetry.

• Discrete and continuous symmetries are associated
to massive and massless Np states. With n non-
zero eigenvalues, the Majorana mass term breaks
the U(3)N down to

U(1)N,2 ◊ SU(2)N ◊ Z2 (n = 1) , (9)
U(1)N ◊ Z2 ◊ Z2 (n = 2) , (10)
Z2 ◊ Z2 (n = 3) . (11)

The Klein four group Z2 ◊ Z2 is the maximal dis-
crete symmetry of Mpr [26, 27].

• The neutrino Yukawa term preserves only the di-
agonal lepton number U(1)l+N ∏ U(1)l,3 ◊ U(1)N,3
and breaks explicitly all the remaining flavor sym-
metries.

The Z2 symmetries, if preserved, protect the Higgs
mass against corrections proportional to the associated
Majorana mass. Consider for instance a case where M

is diagonal with only M33 ”= 0. The associated preserved
mass-eigenstate Z2 transformation can be represented in
flavour space by

Np ≠æ Tpr Nr , with Tpr = diag (1, 1, ≠1) . (12)

Invariance of the Yukawa terms then implies

N̄ Ê H̃
†

l
!= N̄ T

†
Ê H̃

†
l

∆ T
†

Ê = Ê ∆ Ê3— © 0 . (13)

Comparing to Eq. (6), this indicates that an exact Z2
symmetry forbids contributions to �m

2
h from M33. This

also occurs if there are two heavy mass states, both of
which respect an associated Z2.

III. PERTURBATIVE GENERATION OF THE
MAJORANA MASS

The origin of the scale M ≥ 10 PeV is the main theoret-
ical question left open in the formulation of the Neutrino
Option. Even though the model only contains interac-
tions up to dimension four, a generation mechanism for
M is required to ensure the validity of the key assump-
tion in this construction, namely that the Majorana mass
term is generated without other large threshold correc-
tions, and also in a manner that dominantly breaks the
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FIG. 1. One-loop threshold corrections generating the EW
scale in the Neutrino Option. The one loop diagram is linked
to neutrino mass generation by connecting the lepton line.

Here mh0, ⁄0 are the “bare” parameters defining the clas-
sical scalar potential at µ ƒ M and �m

2
h, �⁄ are the

loop-induced threshold corrections. Assuming a nearly
conformal classical Lagrangian implies mh0 ƒ 0, while ⁄0
is free and generally of perturbative size. As �⁄ Ã Ê

4,
this contribution is typically negligible for perturbative
Yukawa couplings |Êp— | < 1. On the other hand2

�m
2
h = 1

8fi2 Tr
!
Ê

†
M

2
Ê

"
, (6)

is generally large and directly sensitive to the Majorana
mass scale. This contribution has been long known and
is a direct representation of the hierarchy problem in the
seesaw model, see e.g. Refs. [23–25]. The key idea of the
Neutrino Option is that, taking mh0 ƒ 0, �m

2
h can be in-

terpreted as a radiatively generated Higgs mass. It is in-
teresting that Fermi statistics in this minimal setup fixes
the sign of this threshold correction to be negative, as re-
quired to induce a low scale Higgs’d phase of electroweak
symmetry breaking in the SM with massive neutrinos.
Requiring that both the observed EW scale and neutrino
mass-squared di�erences are accommodated identifies the
parameter space [1, 7]3

M . 104 TeV ƒ 10 PeV . |Ê| ƒ
TeV
M

. (7)

Requiring successful resonant leptogenesis introduces an
additional lower limit on the Majorana scale [8]

M & 1 PeV . (8)

Finer structure of the allowed parameter space can be
identified specifying the neutrino mixing parameters and
CP violating phases. These exact results are sensitive to
the top quark mass, the order of the RG equations used,
and the details of the seesaw model, such as the number
of RH neutrinos introduced and the structure of the M

matrix. On the other hand, the orders of magnitude
in Eqs. (7), (8) have a negligible dependence on these
choices.

2 This expression is derived in the basis where M is diagonal.
3 The requirement |Ê| ≥ TeV/M stems from �m2

h ƒ (100 GeV)2.
Inserting it in the expression for light neutrino masses and re-
quiring m‹ & 0.01 eV ≥ �m§ identifies the upper limit on M .

A. Symmetries of the seesaw Lagrangian

The Lagrangian has the following global symmetries:

• The kinetic term of the N fields respects a global
U(3)N flavour symmetry, that can be decomposed
into U(1)N,3 ◊SU(3)N, where the U(1)N,k term rep-
resents an N -lepton number under which k flavors
transform. The kinetic term of the l doublet has a
U(3)l = U(1)l,3 ◊ SU(3)l symmetry.

• Discrete and continuous symmetries are associated
to massive and massless Np states. With n non-
zero eigenvalues, the Majorana mass term breaks
the U(3)N down to

U(1)N,2 ◊ SU(2)N ◊ Z2 (n = 1) , (9)
U(1)N ◊ Z2 ◊ Z2 (n = 2) , (10)
Z2 ◊ Z2 (n = 3) . (11)

The Klein four group Z2 ◊ Z2 is the maximal dis-
crete symmetry of Mpr [26, 27].

• The neutrino Yukawa term preserves only the di-
agonal lepton number U(1)l+N ∏ U(1)l,3 ◊ U(1)N,3
and breaks explicitly all the remaining flavor sym-
metries.

The Z2 symmetries, if preserved, protect the Higgs
mass against corrections proportional to the associated
Majorana mass. Consider for instance a case where M

is diagonal with only M33 ”= 0. The associated preserved
mass-eigenstate Z2 transformation can be represented in
flavour space by

Np ≠æ Tpr Nr , with Tpr = diag (1, 1, ≠1) . (12)

Invariance of the Yukawa terms then implies

N̄ Ê H̃
†

l
!= N̄ T

†
Ê H̃

†
l

∆ T
†

Ê = Ê ∆ Ê3— © 0 . (13)

Comparing to Eq. (6), this indicates that an exact Z2
symmetry forbids contributions to �m

2
h from M33. This

also occurs if there are two heavy mass states, both of
which respect an associated Z2.

III. PERTURBATIVE GENERATION OF THE
MAJORANA MASS

The origin of the scale M ≥ 10 PeV is the main theoret-
ical question left open in the formulation of the Neutrino
Option. Even though the model only contains interac-
tions up to dimension four, a generation mechanism for
M is required to ensure the validity of the key assump-
tion in this construction, namely that the Majorana mass
term is generated without other large threshold correc-
tions, and also in a manner that dominantly breaks the
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Figure 3: Numerical comparison between the values of the threshold correction �m
2(M1)

compatible with neutrino physics constraints in the degenerate M1 = M2 case (blue band)
and when M2 = 10M1 (orange band) with the running Higgs mass m

2(µ) determined by the
SM RGE and the measured SM parameters (red line). The running effect is not appreciable
in the scale shown because m

2(µ) varies vary little compared to �m
2(M1). This plot assumes

normal ordering of neutrino masses (NH) and m̂t = 173.2 GeV.

independent scans are performed; assuming either normal or inverted neutrino mass hierarchy
and either degenerate (M1 = M2) or nearly-degenerate (M1 . M2 . 10M1) Np states.15

The values of {m
2(µ),�(µ)} that are compatible with the measured {m̂h, �̂ = ĜF m̂

2
h/2}

are then determined. These are the solutions to the SM RGE system [42] with the matching
conditions in Table 2 (right) fixed at µ = m̂t. We consider RGEs with nRGE = {1, 2, 3} with
order (nRGE � 1) matching and three benchmark values for m̂t = {171, 173.2, 175} GeV.

We then compare the results obtained in these steps. Unlike in Ref. [8], for the sake of
generality we allow here for a term �0(H†

H)2 in the scalar potential. The neutrino option is
then realized for values of (M1, �0) that satisfy simultaneously

m
2(M1) ' �m

2(M1), (4.2a)
�(M1) ' �0 +��(M1) . (4.2b)

4.2 Case mt = 173.2 GeV and normal neutrino mass hierarchy

The results of the analysis are shown in Figs. 3, 4 for the case of normal neutrino mass
hierarchy and m̂t = 173.2GeV. Fig. 3 shows m

2(µ) (red line) vs. �m
2(M1) for degenerate

Np states (blue band) and for M2 = 10M1 (orange band). Eqn. (4.2a) is satisfied in the region
15

We do not consider cases where M2 � M1 as a different numerical treatment would be required in this

case. The choice of nearly-degenerate Majorana states can be consistent with resonant leptogenesis [46].
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FIG. 3: Value of
p

m2 extrapolated at µ = m̂t as a func-
tion of |!|. The dashed black horizontal line indicates the
value consistent with the measured Higgs mass, while the red
solid line is obtained for mp = 101.3 PeV. The red shaded
region corresponds to the uncertainty on the top quark mass,
consistent with Fig. 2 and the grey region is disfavoured due
to ⇤ CDM cosmology limits on the sum of neutrino masses
(Eqn. 17). The neutrino mass scales predicted (in eV) are the
three solid lines.

FIG. 4: The emergence of the Higgs potential due to running
the seesaw boundary conditions down to µ ⇠ m̂t.

This scenario can lead to a SM-like Higgs potential
emerging from the combined e↵ect of the threshold cor-
rections and the SM RGEs in a non-trivial fashion as
shown in Fig. 4.

V. Cosmological and low energy constraints.
The sum of the observed neutrino masses is

P
i m

i
⌫ '

3 |!|2/2
p
2ĜF mp in the tree level approximation used

here, while neglecting running e↵ects. Assuming a
⇤ CDM cosmology, combined CMB, supernovae and
Baryon Acoustic Oscillation data limits this sum [28].

This translates into a constraint of

3
p
3

8⇡

|!|2

ĜF

p
�m2

<⇠ 0.23 eV, 95%C.L., (17)

which is shown as a grey exclusion region on Fig. 3.
The overall neutrino mass scale predicted is very sensi-

tive to the uncertainty on m̂t, the chosen order of RGEs,
and threshold loop corrections included in the numerical
simulation. In Fig. 3 we show the absolute neutrino mass
scales (grey lines) predicted at leading order as |m⌫ | =
3 |!|2/2

p
2 ĜF mp. One expects |m⌫ |2 >⇠ �m

2
21,�m

2

to avoid fine tuning and a requirement of further model
building in the Majorana sector.
In addition, a negative sign for � and m

2 indicates a
theory with a Hamiltonian unbounded from below. How-
ever, the corresponding decay time for the EW vacuum
is exponentially small [30–33]. We have checked that
the EW vacuum decays in this scenario are well approx-
imated by the (negligible) result in the SM in Ref. [34].
The ratio of the scales at which �(�) vanishes in the SM,
compared to the SM extension considered in this paper,
(which fixes the size of the action of the bounce) is ⇠
1.00011. The extrapolation of the theory far above the
scale mp is associated with a large theory uncertainty as
the Np could be embedded in an extended Majorana sec-
tor, with other states that can also modify the running
of the couplings above the scale µ ' mp.
VI. Numerical stability of the results. The re-

sults shown in Section IV are produced with one loop
matching conditions and one loop RGEs. Increasing the
RGE and threshold matching order used shows signif-
icant numerical sensitivity. This is essentially because
the coupling � is running to small and negative values
asymptotically which introduces a sensitivity to the scale
mp where the seesaw boundary conditions are matched.
This feeds into the required |!| to produce the Higgs
potential and EW scale, and subsequently the neutrino
mass scale. For this reason, the minimal scenario is fal-
sifiable. On the other hand, the uncertainty in m̂t is
significant. To illustrate this we show in Fig. 5 the best
fit points for the cases where the boundary conditions of
the scenario are evolved with one loop SM RGEs, two
loop SM RGEs, and one loop RGEs for �m and � and
two loop RGEs for the remaining SM parameters.3 This
last case is shown as these parameters do not have a
tree level matching coe�cient in this scenario. Despite
this, we have confirmed that using one loop or two loop
RGE’s the measured neutrino mass di↵erences can be
reproduced, see Section VIII.

3
Formally the running should be described using the SMEFT

RGEs which include the e↵ect of higher dimensional operators

feeding into the running of the SM couplings [29]. We have

checked that this e↵ect is numerically sub-dominant in this model

and neglected it.

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

H0 J = 0

In the following H
0 refers to the signal that has been discovered in

the Higgs searches. Whereas the observed signal is labeled as a spin

0 particle and is called a Higgs Boson, the detailed properties of H0

and its role in the context of electroweak symmetry breaking need to
be further clarified. These issues are addressed by the measurements
listed below.

Concerning mass limits and cross section limits that have been ob-
tained in the searches for neutral and charged Higgs bosons, see
the sections “Searches for Neutral Higgs Bosons” and “Searches for

Charged Higgs Bosons (H± and H
±±)”, respectively.

H0 MASSH0 MASSH0 MASSH0 MASS
VALUE (GeV) DOCUMENT ID TECN COMMENT

125.10±0.14 OUR AVERAGE125.10±0.14 OUR AVERAGE125.10±0.14 OUR AVERAGE125.10±0.14 OUR AVERAGE

124.86±0.27 1 AABOUD 18BMATLS pp, 13 TeV, 36.1 fb−1,

γ γ, Z Z∗ → 4"
125.26±0.20±0.08 2 SIRUNYAN 17AV CMS pp, 13 TeV, Z Z∗ → 4"
125.09±0.21±0.11 1,3 AAD 15B LHC pp, 7, 8 TeV

• • • We do not use the following data for averages, fits, limits, etc. • • •

124.79±0.37 4 AABOUD 18BMATLS pp, 13 TeV, 36.1 fb−1,

Z Z∗ → 4"
124.93±0.40 5 AABOUD 18BMATLS pp, 13 TeV, 36.1 fb−1,

γ γ
124.97±0.24 1,6 AABOUD 18BMATLS pp, 7, 8, 13 TeV, γ γ,

Z Z∗ → 4"
125.07±0.25±0.14 3 AAD 15B LHC pp, 7, 8 TeV, γ γ

125.15±0.37±0.15 3 AAD 15B LHC pp, 7, 8 TeV, Z Z∗ → 4"
126.02±0.43±0.27 AAD 15B ATLS pp, 7, 8 TeV, γ γ

124.51±0.52±0.04 AAD 15B ATLS pp, 7, 8 TeV, Z Z∗ → 4"

125.59±0.42±0.17 AAD 15B CMS pp, 7, 8 TeV, Z Z∗ → 4"

125.02+0.26
−0.27

+0.14
−0.15

7 KHACHATRY...15AMCMS pp, 7, 8 TeV

125.36±0.37±0.18 1,8 AAD 14W ATLS pp, 7, 8 TeV
125.98±0.42±0.28 8 AAD 14W ATLS pp, 7, 8 TeV, γ γ

124.51±0.52±0.06 8 AAD 14W ATLS pp, 7, 8 TeV, Z Z∗ → 4"

125.6 ±0.4 ±0.2 9 CHATRCHYAN14AA CMS pp, 7, 8 TeV, Z Z∗ → 4"
122 ±7 10 CHATRCHYAN14K CMS pp, 7, 8 TeV, τ τ
124.70±0.31±0.15 11 KHACHATRY...14P CMS pp, 7, 8 TeV, γ γ

125.5 ±0.2 +0.5
−0.6

1,12 AAD 13AK ATLS pp, 7, 8 TeV

126.8 ±0.2 ±0.7 12 AAD 13AK ATLS pp, 7, 8 TeV, γ γ

124.3 +0.6
−0.5

+0.5
−0.3

12 AAD 13AK ATLS pp, 7, 8 TeV, Z Z∗ → 4"

125.8 ±0.4 ±0.4 1,13 CHATRCHYAN13J CMS pp, 7, 8 TeV

126.2 ±0.6 ±0.2 13 CHATRCHYAN13J CMS pp, 7, 8 TeV, Z Z∗ → 4"
126.0 ±0.4 ±0.4 1,14 AAD 12AI ATLS pp, 7, 8 TeV
125.3 ±0.4 ±0.5 1,15 CHATRCHYAN12N CMS pp, 7, 8 TeV

1Combined value from γ γ and Z Z∗ → 4" final states.
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Table 3. Three-flavor oscillation parameters from our fit to global data. The numbers in the 1st
(2nd) column are obtained assuming NO (IO), i.e., relative to the respective local minimum. Note
that �m2

3` ⌘ �m2
31 > 0 for NO and �m2

3` ⌘ �m2
32 < 0 for IO. The results shown in the upper

(lower) table are without (with) adding the tabulated SK-atm ��2.
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�0.012 0.269 ! 0.343

✓12/
�

33.44+0.78
�0.75 31.27 ! 35.86 33.45+0.78

�0.75 31.27 ! 35.87

sin
2 ✓23 0.570+0.018

�0.024 0.407 ! 0.618 0.575+0.017
�0.021 0.411 ! 0.621

✓23/
�

49.0+1.1
�1.4 39.6 ! 51.8 49.3+1.0

�1.2 39.9 ! 52.0

sin
2 ✓13 0.02221+0.00068

�0.00062 0.02034 ! 0.02430 0.02240+0.00062
�0.00062 0.02053 ! 0.02436

✓13/
�

8.57+0.13
�0.12 8.20 ! 8.97 8.61+0.12

�0.12 8.24 ! 8.98

�CP/
�

195
+51
�25 107 ! 403 286

+27
�32 192 ! 360

�m2
21

10�5 eV
2 7.42+0.21

�0.20 6.82 ! 8.04 7.42+0.21
�0.20 6.82 ! 8.04

�m2
3`

10�3 eV
2 +2.514+0.028

�0.027 +2.431 ! +2.598 �2.497+0.028
�0.028 �2.583 ! �2.412

w
it
h
S
K

a
t
m
o
s
p
h
e
r
ic

d
a
t
a

Normal Ordering (best fit) Inverted Ordering (��2
= 7.1)

bfp ±1� 3� range bfp ±1� 3� range

sin
2 ✓12 0.304+0.012

�0.012 0.269 ! 0.343 0.304+0.013
�0.012 0.269 ! 0.343

✓12/
�

33.44+0.77
�0.74 31.27 ! 35.86 33.45+0.78

�0.75 31.27 ! 35.87

sin
2 ✓23 0.573+0.016

�0.020 0.415 ! 0.616 0.575+0.016
�0.019 0.419 ! 0.617

✓23/
�

49.2+0.9
�1.2 40.1 ! 51.7 49.3+0.9

�1.1 40.3 ! 51.8

sin
2 ✓13 0.02219+0.00062

�0.00063 0.02032 ! 0.02410 0.02238+0.00063
�0.00062 0.02052 ! 0.02428

✓13/
�

8.57+0.12
�0.12 8.20 ! 8.93 8.60+0.12

�0.12 8.24 ! 8.96

�CP/
�

197
+27
�24 120 ! 369 282

+26
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�m2
21

10�5 eV
2 7.42+0.21

�0.20 6.82 ! 8.04 7.42+0.21
�0.20 6.82 ! 8.04

�m2
3`

10�3 eV
2 +2.517+0.026

�0.028 +2.435 ! +2.598 �2.498+0.028
�0.028 �2.581 ! �2.414

Table 3. Three-flavor oscillation parameters from our fit to global data. The numbers in the 1st
(2nd) column are obtained assuming NO (IO), i.e., relative to the respective local minimum. Note
that �m2

3` ⌘ �m2
31 > 0 for NO and �m2

3` ⌘ �m2
32 < 0 for IO. The results shown in the upper

(lower) table are without (with) adding the tabulated SK-atm ��2.
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What about the Majorana scale?!

What are the minimal options for UV-completing the 
Neutrino Option?

Hierarchy Problem  ————-


Neutrino Masses  —————


CP Violation / Leptogenesis -


Dark Matter ———————-


Flavour Problem —————-


…


✔︎

✔︎?
✔︎?

✔︎
✔︎

The Neutrino Option is consistent with a number of the outstanding issues of BSM 
physics!

BUT, an explanation for the required PeV scale Majorana neutrinos is needed…

K.Steegmans
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UV completions:  the minimal requirements

1.  generate at least two non-zero sterile neutrino masses.


2.  not introduce additional large threshold corrections to the Higgs 
mass, from beyond the Majorana mass sector.


3.  not generate unsuppressed EFT terms proportional to                  .


4.  not spoil the RGE of Higgs and neutrino parameters via new states.


5.  not introduce fine-tuning of parameter space.

3

approximate classical scale invariance in the rest of the
Lagrangian.

On very general grounds, a successful generation mech-
anism should have the following properties:

(i) It is required to generate at least 2 M eigenvalues
at the PeV scale. n Ø 2 is required for consistency
with the 2 non-zero mass splittings observed in the
light neutrino spectrum.

(ii) The Higgs mass term does not receive addi-
tional large threshold contributions besides those
in Eq. (6). This condition can be associated with
approximate classical scale invariance.

(iii) From an EFT perspective, any UV completion of
the seesaw Lagrangian generally extends it with
higher dimensional operators. Although most of
these can be safely neglected in the phenomenology
of the Neutrino Option, certain structures, such as
(N̄N)(H†

H), can potentially destabilize the Higgs
mass, and will not necessarily be protected by dis-
crete symmetries. The absence of these operators
was an implicit assumption in the original formula-
tion of the Neutrino Option, and they should not be
generated with unsuppressed Wilson coe�cients.

(iv) The RGE running of the Higgs and neutrino pa-
rameters is not spoiled by new light BSM states.

(v) The parameter space does not rely on strong tun-
ings. This latter condition can be associated
with technical naturalness, or be purely aesthetic.
Avoiding parameter tuning directly leads to the
idea that heavy UV mass scales should be as-
sociated with Fermionic states avoiding massive
Bosonic states, that can couple to H

†
H.

Here we consider the possibility that the PeV scale
originates perturbatively through threshold corrections
or RG evolution from some deeper UV Majorana scale,
which is arguably the minimal scenario, and a very simple
possibility, because then such perturbations arise due to
loop e�ects in the seesaw model itself. Potential one-loop
corrections, and low scale mass terms scale as

”
(1)
M = |Ê|

2

16fi2 MUV , æ ‘ = |Ê|
2

16fi2 , (14)

which, interestingly, is in the desired ballpark for values
of the Yukawa coupling that lie within the phenomeno-
logically allowed range for the Neutrino Option for some
interesting UV scales

”
(1)
M ƒ PeV for

I
|Ê| ƒ 10≠4

, (MUV ƒ MGUT )
|Ê| ƒ 10≠5.5

. (MUV ƒ MP l)
(15)

Following this numerical coincidence, a minimal hypoth-
esis is that the a UV mechanism that is flavor-blind leads

to the democratic texture

M = MUV

3

Q

a
1 1 1
1 1 1
1 1 1

R

b , (16)

that, once diagonalized, leaves two massless eigenstates,
and one massive state

M =

Q

a
0

0
MUV

R

b . (17)

In such a UV scenario, a super-heavy Majorana mass
scale MUV is assumed to emerge from high scale dynam-
ics. The democratic flavour blind mass generation mech-
anism is the minimal possibility as the Majorana fields
carry no (SM) quantum numbers. It has been argued
that such a mass matrix is a straightforward expectation
when the mass generation is associated with gravity [28].

In the presence of perturbations of order ‘ π 1 to
the texture in Eq. (16), the zero eigenvalues are gen-
erally lifted and replaced by O(‘ MUV ) quantities. For
‘ ≥ 10≠13(10≠10) and MUV = MP l(MGUT ), this would
successfully identify the PeV scale.

Unfortunately, this scenario is not realized at the one-
loop level in the most minimal setup we consider. In
order for a Majorana mass eigenvalue to be non-zero, its
associated lepton number must be violated by two units.
Given LN with the mass matrix in Eq. (17), no tree or
one-loop diagram topology exists with this property, see
Refs. [7, 29, 30]. The same is true for mass matrices with
n = 2. This implies that the texture-zero(es) are pre-
served by both threshold corrections and RGE running
at one-loop in type-I seesaw models.

Assuming a heavy scale MUV , and pursuing this min-
imal scenario further, one is then left with two perturba-
tive alternatives:

A. n Ø 2 eigenvalues of order MUV are present, and
the one-loop RGE running induces a large suppres-
sion that reduces them to the PeV scale.

B. starting from n = 1 non-zero eigenvalue, the PeV
scale is generated radiatively at 2 or more loops.

Due to the simultaneous requirement of L-violating
and Z2-preserving interactions (from neutrino and Higgs
mass considerations, respectively), neither of these two
possibilities turns out to be consistent with the minimal
extension of the Neutrino Option scenario we consider,
as we discuss in the next subsections.

A. One-loop RGE flow

Consider the one-loop case, where the RG equation for
the Majorana mass term is [29–32]

16fi
2
µ

dM

dµ
=

!
ÊÊ

†"
M + M

!
ÊÊ

†"T
© R , (18)

In general, a successful UV completion to the Neutrino Option will

[2010.15428]



Generic symmetric perturbations

8

Consider a minimal scenario where a single UV Majorana scale is given by GUT or 
Plankian dynamics.  E.G. :

Consider generic perturbations about symmetric matrix elements:

[2010.15428]
3

approximate classical scale invariance in the rest of the
Lagrangian.

On very general grounds, a successful generation mech-
anism should have the following properties:

(i) It is required to generate at least 2 M eigenvalues
at the PeV scale. n Ø 2 is required for consistency
with the 2 non-zero mass splittings observed in the
light neutrino spectrum.

(ii) The Higgs mass term does not receive addi-
tional large threshold contributions besides those
in Eq. (6). This condition can be associated with
approximate classical scale invariance.

(iii) From an EFT perspective, any UV completion of
the seesaw Lagrangian generally extends it with
higher dimensional operators. Although most of
these can be safely neglected in the phenomenology
of the Neutrino Option, certain structures, such as
(N̄N)(H†

H), can potentially destabilize the Higgs
mass, and will not necessarily be protected by dis-
crete symmetries. The absence of these operators
was an implicit assumption in the original formula-
tion of the Neutrino Option, and they should not be
generated with unsuppressed Wilson coe�cients.

(iv) The RGE running of the Higgs and neutrino pa-
rameters is not spoiled by new light BSM states.

(v) The parameter space does not rely on strong tun-
ings. This latter condition can be associated
with technical naturalness, or be purely aesthetic.
Avoiding parameter tuning directly leads to the
idea that heavy UV mass scales should be as-
sociated with Fermionic states avoiding massive
Bosonic states, that can couple to H

†
H.

Here we consider the possibility that the PeV scale
originates perturbatively through threshold corrections
or RG evolution from some deeper UV Majorana scale,
which is arguably the minimal scenario, and a very simple
possibility, because then such perturbations arise due to
loop e�ects in the seesaw model itself. Potential one-loop
corrections, and low scale mass terms scale as
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2

16fi2 , (14)

which, interestingly, is in the desired ballpark for values
of the Yukawa coupling that lie within the phenomeno-
logically allowed range for the Neutrino Option for some
interesting UV scales
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esis is that the a UV mechanism that is flavor-blind leads
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b , (16)

that, once diagonalized, leaves two massless eigenstates,
and one massive state

M =
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0
MUV

R

b . (17)

In such a UV scenario, a super-heavy Majorana mass
scale MUV is assumed to emerge from high scale dynam-
ics. The democratic flavour blind mass generation mech-
anism is the minimal possibility as the Majorana fields
carry no (SM) quantum numbers. It has been argued
that such a mass matrix is a straightforward expectation
when the mass generation is associated with gravity [28].

In the presence of perturbations of order ‘ π 1 to
the texture in Eq. (16), the zero eigenvalues are gen-
erally lifted and replaced by O(‘ MUV ) quantities. For
‘ ≥ 10≠13(10≠10) and MUV = MP l(MGUT ), this would
successfully identify the PeV scale.

Unfortunately, this scenario is not realized at the one-
loop level in the most minimal setup we consider. In
order for a Majorana mass eigenvalue to be non-zero, its
associated lepton number must be violated by two units.
Given LN with the mass matrix in Eq. (17), no tree or
one-loop diagram topology exists with this property, see
Refs. [7, 29, 30]. The same is true for mass matrices with
n = 2. This implies that the texture-zero(es) are pre-
served by both threshold corrections and RGE running
at one-loop in type-I seesaw models.

Assuming a heavy scale MUV , and pursuing this min-
imal scenario further, one is then left with two perturba-
tive alternatives:

A. n Ø 2 eigenvalues of order MUV are present, and
the one-loop RGE running induces a large suppres-
sion that reduces them to the PeV scale.

B. starting from n = 1 non-zero eigenvalue, the PeV
scale is generated radiatively at 2 or more loops.

Due to the simultaneous requirement of L-violating
and Z2-preserving interactions (from neutrino and Higgs
mass considerations, respectively), neither of these two
possibilities turns out to be consistent with the minimal
extension of the Neutrino Option scenario we consider,
as we discuss in the next subsections.

A. One-loop RGE flow

Consider the one-loop case, where the RG equation for
the Majorana mass term is [29–32]
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†"T
© R , (18)
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approximate classical scale invariance in the rest of the
Lagrangian.

On very general grounds, a successful generation mech-
anism should have the following properties:

(i) It is required to generate at least 2 M eigenvalues
at the PeV scale. n Ø 2 is required for consistency
with the 2 non-zero mass splittings observed in the
light neutrino spectrum.

(ii) The Higgs mass term does not receive addi-
tional large threshold contributions besides those
in Eq. (6). This condition can be associated with
approximate classical scale invariance.

(iii) From an EFT perspective, any UV completion of
the seesaw Lagrangian generally extends it with
higher dimensional operators. Although most of
these can be safely neglected in the phenomenology
of the Neutrino Option, certain structures, such as
(N̄N)(H†

H), can potentially destabilize the Higgs
mass, and will not necessarily be protected by dis-
crete symmetries. The absence of these operators
was an implicit assumption in the original formula-
tion of the Neutrino Option, and they should not be
generated with unsuppressed Wilson coe�cients.

(iv) The RGE running of the Higgs and neutrino pa-
rameters is not spoiled by new light BSM states.

(v) The parameter space does not rely on strong tun-
ings. This latter condition can be associated
with technical naturalness, or be purely aesthetic.
Avoiding parameter tuning directly leads to the
idea that heavy UV mass scales should be as-
sociated with Fermionic states avoiding massive
Bosonic states, that can couple to H

†
H.

Here we consider the possibility that the PeV scale
originates perturbatively through threshold corrections
or RG evolution from some deeper UV Majorana scale,
which is arguably the minimal scenario, and a very simple
possibility, because then such perturbations arise due to
loop e�ects in the seesaw model itself. Potential one-loop
corrections, and low scale mass terms scale as
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esis is that the a UV mechanism that is flavor-blind leads

to the democratic texture

M = MUV

3
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R

b , (16)

that, once diagonalized, leaves two massless eigenstates,
and one massive state

M =
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0

0
MUV

R

b . (17)

In such a UV scenario, a super-heavy Majorana mass
scale MUV is assumed to emerge from high scale dynam-
ics. The democratic flavour blind mass generation mech-
anism is the minimal possibility as the Majorana fields
carry no (SM) quantum numbers. It has been argued
that such a mass matrix is a straightforward expectation
when the mass generation is associated with gravity [28].

In the presence of perturbations of order ‘ π 1 to
the texture in Eq. (16), the zero eigenvalues are gen-
erally lifted and replaced by O(‘ MUV ) quantities. For
‘ ≥ 10≠13(10≠10) and MUV = MP l(MGUT ), this would
successfully identify the PeV scale.

Unfortunately, this scenario is not realized at the one-
loop level in the most minimal setup we consider. In
order for a Majorana mass eigenvalue to be non-zero, its
associated lepton number must be violated by two units.
Given LN with the mass matrix in Eq. (17), no tree or
one-loop diagram topology exists with this property, see
Refs. [7, 29, 30]. The same is true for mass matrices with
n = 2. This implies that the texture-zero(es) are pre-
served by both threshold corrections and RGE running
at one-loop in type-I seesaw models.

Assuming a heavy scale MUV , and pursuing this min-
imal scenario further, one is then left with two perturba-
tive alternatives:

A. n Ø 2 eigenvalues of order MUV are present, and
the one-loop RGE running induces a large suppres-
sion that reduces them to the PeV scale.

B. starting from n = 1 non-zero eigenvalue, the PeV
scale is generated radiatively at 2 or more loops.

Due to the simultaneous requirement of L-violating
and Z2-preserving interactions (from neutrino and Higgs
mass considerations, respectively), neither of these two
possibilities turns out to be consistent with the minimal
extension of the Neutrino Option scenario we consider,
as we discuss in the next subsections.

A. One-loop RGE flow

Consider the one-loop case, where the RG equation for
the Majorana mass term is [29–32]
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2
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dM

dµ
=

!
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M + M

!
ÊÊ

†"T
© R , (18)

UV mechanism plausibly flavor-
blind, see e.g. 

Both diagonal and off-diagonal perturbations can generate additional non-zero 
eigenvalues:

Three-dimensional Case

The three-dimensional case is more involved since it requires six basis matrices �k and an initial value
matrix of the form

U0 =

0

@
a d e
d b f
e f c

1

A , (12)

whose characteristic equation is a cubic polynomial that is non-trivial to factorize in generality. Let us
instead consider two special cases: (1) a diagonal matrix (mass-eigenstate equivalent) and (2) a flat matrix
of degenerate entires (motivated by the lack of SM charges distinguishing sterile generations):

Ud
0 =

0

@
a1 0 0
0 a2 0
0 0 a3

1

A =) �Ud
0
2 {a1, a2, a3} , (13)

Uf
0 =

0

@
a a a
a a a
a a a

1

A =) �
Uf
0
2 {3a, 0, 0} . (14)

We can break the six independent perturbations up into two classes of three matrices as well, namely
those that perturb the diagonal entries,

�(1,2,3)|3D 2

8
<

:

0

@
1 0 0
0 0 0
0 0 0

1

A ,

0

@
0 0 0
0 1 0
0 0 0

1

A ,

0

@
0 0 0
0 0 0
0 0 1

1

A

9
=

; , (15)

and those that perturb the off-diagonal entries,

�(4,5,6)|3D 2

8
<

:

0

@
0 1 0
1 0 0
0 0 0

1

A ,

0

@
0 0 1
0 0 0
1 0 0

1

A ,

0

@
0 0 0
0 0 1
0 1 0

1

A

9
=

; . (16)

For Ud
0 the impact of (15)-(16) is given by:

Ud
0 + ↵k�

k|k=1,2,3 =) �Ud
1
2 {ak + ↵k, ai, aj} (17)

Ud
0 + ↵k�

k|k=4,5,6 =) �Ud
1
2
⇢
al,

1

2

✓
ai + aj ±

q
(ai � aj)2 + 4↵2

k

◆�
for i, j 2 �k

(i,j), (18)

where i 6= j 6= k and �k
(i,j) denotes the non-zero (i, j) sector of �k, i.e. the (1,3), (1,2), or (2,3) intersect

of rows and columns. That is, the diagonal perturbations trivially shift the eigenvalue corresponding
to the non-zero column/row of �(1,2,3) while leaving the other two unaltered, whereas the off-diagonal
perturbations only preserve the eigenvalue that is not within the non-zero matrix sector of �(4,5,6) (e.g.
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where ↵k are (scalar) basis coefficients and

�k =
1

2
(Eij + Eji)

k , with 1  i  j  n and 1  k  n(n+ 1)

2
. (5)

Here Eij is the matrix with zeros in all elements except the (i, j) element, which is equal to one. Let us
now mimic the impact of RGE corrections, where an original symmetric matrix U0 at some scale µ0 is
‘perturbed’ by a radiatively induced U ,

U0 �!
RGE

U1 ⌘ U0 + U = U0 +
X

k

↵k · �k (6)

The relevant question then becomes ‘How does the eigenvalue spectrum of U0 change with respect to U1,

in terms of ↵k?’.

Two-dimensional Case

I first study the two-dimensional case. Here a generic initial-value symmetric matrix and its eigenvalues
� can be written as

U0 =

✓
a c
c b

◆
, �U0 2 1

2

n
a+ b�

p
(a� b)2 + 4c2, a+ b+

p
(a� b)2 + 4c2)

o
, (7)

such that a diagonal matrix (of mass eigenvaules a and b, say) corresponds to c = 0, and a flat matrix of
degenerate entries corresponds to a = b = c. In this 2 ⇥ 2 environment the basis vectors/matrices from
(5) are explicitly given by

�k|2D 2
⇢✓

1 0
0 0

◆
,

✓
0 0
0 1

◆
,

✓
0 1
1 0

◆�
. (8)

I now perturb (7) with each independent � in (8), and determine its eigenvalue spectrum:

U0 + ↵1�
1 =) �U1 2 1

2

n
a+ b+ ↵1 ±

p
4c2 + (a� b+ ↵1)2

o
, (9)

U0 + ↵2�
2 =) �U1 2 1

2

n
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p
4c2 + (�a+ b+ ↵2)2

o
, (10)

U0 + ↵3�
3 =) �U1 2 1

2

n
a+ b±

p
(a� b)2 + 4(c+ ↵3)2

o
. (11)

It is clear that each perturbation affects the eigenvalue spectrum. Note that if, for example, U0 had a
single zero eigenvalue, the first two perturbations about the diagonal can still preserve this. This is easiest
to see by setting c = b = 0 in (9) and c = a = 0 in (10). On the other hand, a non-zero perturbation
about the off-diagonal matrix �3 will always generate two non-zero eigenvalues.

2

Induced by some perturbative 
UV mechanism…

Three-dimensional Case

The three-dimensional case is more involved since it requires six basis matrices �k and an initial value
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We can break the six independent perturbations up into two classes of three matrices as well, namely
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and those that perturb the off-diagonal entries,
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For Ud
0 the impact of (15)-(16) is given by:
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where i 6= j 6= k and �k
(i,j) denotes the non-zero (i, j) sector of �k, i.e. the (1,3), (1,2), or (2,3) intersect

of rows and columns. That is, the diagonal perturbations trivially shift the eigenvalue corresponding
to the non-zero column/row of �(1,2,3) while leaving the other two unaltered, whereas the off-diagonal
perturbations only preserve the eigenvalue that is not within the non-zero matrix sector of �(4,5,6) (e.g.
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Here we see that the diagonal perturbations generate an additional non-zero eigenvalue (for a total of two),
while preserving one zero. However, the off-diagonal perturbations generate three non-zero eigenvalues,
with one given by the minus of the basis coefficient ↵k.

3 An Approximate Application to (1)

We now want to project this generic analysis onto the actual RGE in (1). However, in the absence of an
exact analytic solution to the linear differential equation in (1) (which may be possible up to the coupling
with the RGE for Y⌫ , but I have to study linear ODEs with non-commuting matrices...[discuss]), it makes
sense to consider the RHS of (1) as the perturbation matrix, which is indeed symmetric. This corresponds
to evaluating (1) in the limit where its RHS is µ-independent. In this (clearly approximate) case (1) is
trivially solved by:

Z µ1

µ0

dM '
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Y⌫Y
†
⌫

⌘
M +M

⇣
Y⌫Y

†
⌫

⌘T
�
· 1

16⇡2

Z µ1

µ0

dµ

µ

) (21)

M(µ1) ' M(µ0) +

⇣
Y⌫Y

†
⌫

⌘
M +M

⇣
Y⌫Y

†
⌫

⌘T
�

| {z }
Mpert

· ln(µ1/µ0)

16⇡2
(22)

From (6) we readily identify M(µ0) with U0 and Mpert with U ·16⇡2/ ln(µ1/µ0), and proceed with explicit
studies. NOTE: The following expressions currently derived with wrong conjugation structure on Y⌫ , i.e.
Y †
⌫ Y⌫ instead of Y⌫Y †

⌫ . Check/rederive all indices before use!!

Two-dimensional Case

Let us first consider the two-dimensional case, where we take M to again be a generic symmetric matrix.
Then above the mass threshold of any of the species one can trivially compute Mpert (which is symmetric,
as expected) and extract the independent basis coefficients ↵0

k ⌘ ↵k · 16⇡2/ ln(µ1/µ0) to determine

↵0
1 = 2 (y?1(ay1 + cy2) + y?3(ay3 + cy4))

↵0
2 = y?1(cy1 + by2) + y?2(ay1 + cy2) + y?3(cy3 + by4) + y?4(ay3 + cy4)

↵0
3 = 2 (y?2(by2 + cy1) + y?4(by4 + cy3)) . (23)

4

BUT:  we must simultaneously DE-couple MUV from Higgs threshold corrections…

[9205230]

GOAL:  identity physical mechanism for generating perturbations to M(UV).
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We discuss the possible origin of the Majorana mass scale(s) required for the “Neutrino Option”
where the electroweak scale is generated simultaneously with light neutrino masses in a type-I seesaw
model, by common dimension four interactions. We establish no-go constraints on the perturbative
generation of the Majorana masses required due to global symmetries of the seesaw Lagrangian.

I. INTRODUCTION AND MOTIVATION

Amongst the outstanding theoretical issues of the
Standard Model (SM), the origin(s) of neutrino masses
and the electroweak (EW) scale rank amongst the most
pressing. Experiment has established that at least two
neutrinos are massive, and that the Higgs mass mh ƒ

125 GeV ∫ ”m‹ = m‹1 ≠m‹2 . These experimental facts,
combined with the sensitivity of the Higgs mass to high
mass scale threshold corrections, are challenges to any
ultraviolet (UV) completion of the SM that seeks to ex-
plain the observed mass scales. Although they are most
often addressed independently, attempts at unified ex-
planations of these observed masses are of great interest.

An interesting and minimal possibility is that both the
mass scales, mh and m‹1 ≥ m‹2 , are generated simulta-
neously in a minimal extension of the SM from an under-
lying Majorana scale. Ref. [1] showed that this scenario,
dubbed the “Neutrino Option”, can be realized within
the simplest type-I seesaw model [2–6]. This approach
has been shown to be compatible with the observed neu-
trino mass and mixing patterns [7] and resonant leptoge-
nesis [8, 9]. It admits UV completions where approximate
scale invariance plays an important role [8, 10, 11] and
also non-perturbative ones, e.g. with strongly-interacting
hidden sectors that add viable Dark Matter candidates
to the spectrum [12], and in certain string compactifi-
cations [13]. In this setup, the traditional Higgs mass
hierarchy problem translates into a quest for a UV origin
of the underlying Majorana mass scale, with the required
pattern of threshold corrections.

In this paper, we study possible UV completions of
the Neutrino Option. We use the minimal scenario that
the Majorana scale required by the Neutrino Option is
generated perturbatively from a deep-UV scale associ-
ated with a very heavy Majorana state. We show how
symmetries of the seesaw Lagrangian, and the specific
parameter space required in the Neutrino Option, makes
minimal model scenarios relying on one-loop corrections
run up against seesaw model symmetry constraints. We
discuss minimal extensions that might evade our conclu-
sions. The primary results we present are some no-go
constraints for UV-completing the Neutrino Option in
the minimal setups we consider.

II. THE NEUTRINO OPTION

Consider the Type-I seesaw model, where the SM is ex-
tended with three right-handed (RH) spinors NR,p, with
p = {1, 2, 3}. The field Np defined by [14, 15]

Np = e
i◊p/2

NR,p + e
≠i◊p/2(NR,p)c

, (1)

with ◊p an arbitrary phase, satisfies the Majorana con-
dition Np = N

c
p [16]. Here the superscript c denotes

charge conjugation: Â
c = CÂ̄

T , with C = i“2“0 in the
chiral basis for the “i. The seesaw Lagrangian is 1

LN = 1
2

!
N̄pi /̂Np ≠ N̄pMprNr

"
≠

#
N̄p Êp— H̃

†
l— + h.c.

$

= 1
2

Ë
N̄R,pi/̂NR,p + N

c
R,p i/̂N

c
R,p

È
(2)

≠

5
1
2e

≠i◊p N̄R,p MprN
c
R,r + e

≠i◊p/2
N̄R,p Êp— H̃

†
l— + h.c.

6
,

where l is the left-handed (LH) SM lepton doublet and
— = {1, 2, 3} its associated flavor index. The resulting
mass matrix is orthogonal: (e≠i◊

M) = (MT
e

≠i◊) .
The phenomenology of LSM + LN at p

2
π M

2
p has

the Np fields integrated out in sequence and matched
to the SMEFT. The tree-level matching is known up to
dimension seven [15, 17–22] and at dimension five one
finds

L
(5) =

c
(5)
–—

2
!
l
T
– H̃

ú"
C

!
H̃

†
l—

"
+ h.c. , (3)

c
(5)
–— =

!
Ê

T
M

≠1
Ê

"
–—

, (4)

One-loop matching introduces sub-leading corrections to
c

(5) and necessarily induces threshold matching contri-

butions to the SM Higgs mass from the same interac-

tions [1, 7, 8]:

V (H) = ≠
m

2
h0 + �m

2
h

2 H
†
H + (⁄0 + �⁄) (H†

H)2
. (5)

1 Chiral projection and charge conjugation do not commute. In
this paper Âc

L/R
denotes a field chirally projected and subse-

quently charge conjugated.
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FIG. 1. One-loop threshold corrections generating the EW
scale in the Neutrino Option. The one loop diagram is linked
to neutrino mass generation by connecting the lepton line.

Here mh0, ⁄0 are the “bare” parameters defining the clas-
sical scalar potential at µ ƒ M and �m

2
h, �⁄ are the

loop-induced threshold corrections. Assuming a nearly
conformal classical Lagrangian implies mh0 ƒ 0, while ⁄0
is free and generally of perturbative size. As �⁄ Ã Ê

4,
this contribution is typically negligible for perturbative
Yukawa couplings |Êp— | < 1. On the other hand2

�m
2
h = 1

8fi2 Tr
!
Ê

†
M

2
Ê

"
, (6)

is generally large and directly sensitive to the Majorana
mass scale. This contribution has been long known and
is a direct representation of the hierarchy problem in the
seesaw model, see e.g. Refs. [23–25]. The key idea of the
Neutrino Option is that, taking mh0 ƒ 0, �m

2
h can be in-

terpreted as a radiatively generated Higgs mass. It is in-
teresting that Fermi statistics in this minimal setup fixes
the sign of this threshold correction to be negative, as re-
quired to induce a low scale Higgs’d phase of electroweak
symmetry breaking in the SM with massive neutrinos.
Requiring that both the observed EW scale and neutrino
mass-squared di�erences are accommodated identifies the
parameter space [1, 7]3

M . 104 TeV ƒ 10 PeV . |Ê| ƒ
TeV
M

. (7)

Requiring successful resonant leptogenesis introduces an
additional lower limit on the Majorana scale [8]

M & 1 PeV . (8)

Finer structure of the allowed parameter space can be
identified specifying the neutrino mixing parameters and
CP violating phases. These exact results are sensitive to
the top quark mass, the order of the RG equations used,
and the details of the seesaw model, such as the number
of RH neutrinos introduced and the structure of the M

matrix. On the other hand, the orders of magnitude
in Eqs. (7), (8) have a negligible dependence on these
choices.

2 This expression is derived in the basis where M is diagonal.
3 The requirement |Ê| ≥ TeV/M stems from �m2

h ƒ (100 GeV)2.
Inserting it in the expression for light neutrino masses and re-
quiring m‹ & 0.01 eV ≥ �m§ identifies the upper limit on M .

A. Symmetries of the seesaw Lagrangian

The Lagrangian has the following global symmetries:

• The kinetic term of the N fields respects a global
U(3)N flavour symmetry, that can be decomposed
into U(1)N,3 ◊SU(3)N, where the U(1)N,k term rep-
resents an N -lepton number under which k flavors
transform. The kinetic term of the l doublet has a
U(3)l = U(1)l,3 ◊ SU(3)l symmetry.

• Discrete and continuous symmetries are associated
to massive and massless Np states. With n non-
zero eigenvalues, the Majorana mass term breaks
the U(3)N down to

U(1)N,2 ◊ SU(2)N ◊ Z2 (n = 1) , (9)
U(1)N ◊ Z2 ◊ Z2 (n = 2) , (10)
Z2 ◊ Z2 (n = 3) . (11)

The Klein four group Z2 ◊ Z2 is the maximal dis-
crete symmetry of Mpr [26, 27].

• The neutrino Yukawa term preserves only the di-
agonal lepton number U(1)l+N ∏ U(1)l,3 ◊ U(1)N,3
and breaks explicitly all the remaining flavor sym-
metries.

The Z2 symmetries, if preserved, protect the Higgs
mass against corrections proportional to the associated
Majorana mass. Consider for instance a case where M

is diagonal with only M33 ”= 0. The associated preserved
mass-eigenstate Z2 transformation can be represented in
flavour space by

Np ≠æ Tpr Nr , with Tpr = diag (1, 1, ≠1) . (12)

Invariance of the Yukawa terms then implies

N̄ Ê H̃
†

l
!= N̄ T

†
Ê H̃

†
l

∆ T
†

Ê = Ê ∆ Ê3— © 0 . (13)

Comparing to Eq. (6), this indicates that an exact Z2
symmetry forbids contributions to �m

2
h from M33. This

also occurs if there are two heavy mass states, both of
which respect an associated Z2.

III. PERTURBATIVE GENERATION OF THE
MAJORANA MASS

The origin of the scale M ≥ 10 PeV is the main theoret-
ical question left open in the formulation of the Neutrino
Option. Even though the model only contains interac-
tions up to dimension four, a generation mechanism for
M is required to ensure the validity of the key assump-
tion in this construction, namely that the Majorana mass
term is generated without other large threshold correc-
tions, and also in a manner that dominantly breaks the
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FIG. 1. One-loop threshold corrections generating the EW
scale in the Neutrino Option. The one loop diagram is linked
to neutrino mass generation by connecting the lepton line.
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resents an N -lepton number under which k flavors
transform. The kinetic term of the l doublet has a
U(3)l = U(1)l,3 ◊ SU(3)l symmetry.

• Discrete and continuous symmetries are associated
to massive and massless Np states. With n non-
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the U(3)N down to
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and breaks explicitly all the remaining flavor sym-
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The Z2 symmetries, if preserved, protect the Higgs
mass against corrections proportional to the associated
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The origin of the scale M ≥ 10 PeV is the main theoret-
ical question left open in the formulation of the Neutrino
Option. Even though the model only contains interac-
tions up to dimension four, a generation mechanism for
M is required to ensure the validity of the key assump-
tion in this construction, namely that the Majorana mass
term is generated without other large threshold correc-
tions, and also in a manner that dominantly breaks the

Before looking into these, let’s return to the Type-I seesaw Lagrangian:

This exhibits a number of global (continuous & discrete) symmetries, depending on 
the number of sterile N generations (n):

Augment the (a priori) accidental Z2 symmetry to a UV fixed-point natural symmetry 
of the UV Lagrangian:
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is generally large and directly sensitive to the Majorana
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Finally, recall that non-zero M eigenvalues correspond to                    violation.
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and R = R
T . Diagonalizing, the mass eigenvalues evolve

multiplicatively [29, 30]:

Mp(µ) = “p(µ, µ0)Mp(µ0) , (19)

“p(µ, µ0) ≥ 1 + Ê
2

16fi2 ln
5

µ

µ0

6
. (20)

When all the Z2 symmetries associated to the massive
N states are preserved, R © 0, and equivalently “p © 1.
This can easily be seen by using Eqn.(17) and Eqn.(13)
in Eqn.(18). Hence, for the running to occur, the Z2
needs to be at least softly broken. In this case, for the
PeV scale to emerge from RG running one requires

“p(PeV, MUV ) = ‘ ƒ
PeV
MUV

≥ 10≠10
≠ 10≠13

, (21)

which immediately implies that the radiative contribu-
tion Ê

2
/16fi

2 ln [µ/µ0] must be tuned.

B. Higher perturbative orders

The generation of �L = 2 amplitudes is possible at
two-loops in the type-I seesaw, via diagrams such as the
one in Fig 2, see Refs. [33, 34]. These diagrams generally
contribute to all entries of the Majorana mass matrix M ,
including the o�-diagonals.

Two-loop radiative corrections in the seesaw scale
as [33]

”
(2)
M,pr ≥

(ÊÊ
†)p3(ÊÊ

†)r3
256fi4 MUV . (22)

As in the one-loop RGE case, ”
(2)
M ”= 0 only if Ê3— ”= 0, i.e

when the Z2 symmetry associated to the massive state
(N3) is broken, which leaves the Higgs mass term unpro-
tected. Indeed, it can be checked that both threshold
corrections and RG equations at two-loops only contain
the flavor structures [33–35]:

ÊÊ
†
M , ÊÊ

†
M(ÊÊ

†)T
, (ÊÊ

†)(ÊÊ
†)M , (23)

and their transposes, that vanish identically in the Z2
symmetric limit. This statement is independent of n.

This leads to a tension between the require-
ments (i) and (ii) above: in order to have ”

(2)
M ≥ PeV

with MUV = MP l(MGUT ), the Yukawa couplings should
be (ÊÊ

†)p3 . 1(5) ◊ 10≠4. Inserting this value in
Eq. (6), the contribution to


�m

2
h from M33 = MUV

is MUV


(ÊÊ†)33/8fi2 ƒ 1016 GeV.

On the other hand, assuming that the Z2 is only very
softy broken in order to protect �m

2
h, leads to ”

(2)
M of

sub-eV size. While such masses may be interesting for
low-energy phenomenology (e.g. for sterile neutrino dark
matter studies), they do not account for the preferred
coupling ranges of the Neutrino Option. These symmetry
and scaling arguments hold both for two-loop threshold
and RG contributions, and this tension persists at higher
perturbative orders.
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FIG. 2. �L = 2 two-loop diagram that allows a perturbative
generation of a Majorana mass term Mpr.

IV. COMMENTS ON EXTENDED MODEL
FIELD CONTENT

The conclusions in previous sections are drawn under
the assumption of no additional BSM field content be-
yond that of LSM +LN . A perturbative generation mech-
anism from the deep UV involving more fields must still
avoid the generic global symmetry arguments; a mass
generation mechanism must provide radiative generation
of a �L = 2 Feynman diagram to lift zero Majorana
eigenvalues, or radiatively generate lower scales from ex-
isting MUV eigenvalues. One must simultaneously pre-
serve a symmetry protection to control threshold correc-
tions from heavy Fermionic or Bosonic states, to prevent
large Higgs threshold corrections.

Consider adding a generic Boson field to the minimal
setup in LSM + LN . Since N is a majorana field, the
allowed N̄N‰ couplings up to dimension four are

1
2N̄ [flS ‰S + iflP “5‰P ] N .

Here ‰S , ‰p are real scalar and pseudoscalar couplings
respectively. For gauge invariance of the N̄N‰ coupling,
‰ must be a SU(3)C ◊SU(2)L ◊U(1)Y singlet. In general
such couplings are o� diagonal in Np flavour space. In
the limit of vanishing external momenta, the graph in
Fig. 3 scales as

(fl2
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(24)
inducing lower scale mass eigenvalues in the Mpr ma-
trix from the UV scale mass M33. In addition, an
anapole/Zeldovich [36] coupling is allowed for a vector
field coupling to a Majorana bilinear

1
2�2 N̄ [flV “µ“5] Nˆ‹‰

‹µ
V .

In the case of the SM, ‰
‹µ
V = B

µ‹ is generated at one
loop if the SM states are massive with a closed Higgs
and charged lepton in the loop. In this case, the cou-
plings Ê associated with the numerical coincidence in
Eq. (15) are present. However, in the minimal exten-
sion of the Neutrino Option we consider, these states are
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The relevant one-loop diagram to consider in the Type-I seesaw is given by:

Unfortunately, neither threshold corrections nor RGE can induce non-zero masses 
from initially massless N at one-loop, in minimal setup: 

Allowing for soft Z2 breaking, the RGE at one-loop reads:

Extreme fine-tuning required! ❌
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Figure 1: One loop matching diagrams for the seesaw model.

When matching the propagators used are canonically normalized. The first diagram in
Fig. 1a leads to a non-canonical Np field. A canonical normalization condition can be satisfied
by performing a finite renormalization field redefinition of the form
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approximate classical scale invariance in the rest of the
Lagrangian.

On very general grounds, a successful generation mech-
anism should have the following properties:

(i) It is required to generate at least 2 M eigenvalues
at the PeV scale. n Ø 2 is required for consistency
with the 2 non-zero mass splittings observed in the
light neutrino spectrum.

(ii) The Higgs mass term does not receive addi-
tional large threshold contributions besides those
in Eq. (6). This condition can be associated with
approximate classical scale invariance.

(iii) From an EFT perspective, any UV completion of
the seesaw Lagrangian generally extends it with
higher dimensional operators. Although most of
these can be safely neglected in the phenomenology
of the Neutrino Option, certain structures, such as
(N̄N)(H†

H), can potentially destabilize the Higgs
mass, and will not necessarily be protected by dis-
crete symmetries. The absence of these operators
was an implicit assumption in the original formula-
tion of the Neutrino Option, and they should not be
generated with unsuppressed Wilson coe�cients.

(iv) The RGE running of the Higgs and neutrino pa-
rameters is not spoiled by new light BSM states.

(v) The parameter space does not rely on strong tun-
ings. This latter condition can be associated
with technical naturalness, or be purely aesthetic.
Avoiding parameter tuning directly leads to the
idea that heavy UV mass scales should be as-
sociated with Fermionic states avoiding massive
Bosonic states, that can couple to H

†
H.

Here we consider the possibility that the PeV scale
originates perturbatively through threshold corrections
or RG evolution from some deeper UV Majorana scale,
which is arguably the minimal scenario, and a very simple
possibility, because then such perturbations arise due to
loop e�ects in the seesaw model itself. Potential one-loop
corrections, and low scale mass terms scale as

”
(1)
M = |Ê|

2

16fi2 MUV , æ ‘ = |Ê|
2

16fi2 , (14)

which, interestingly, is in the desired ballpark for values
of the Yukawa coupling that lie within the phenomeno-
logically allowed range for the Neutrino Option for some
interesting UV scales

”
(1)
M ƒ PeV for

I
|Ê| ƒ 10≠4

, (MUV ƒ MGUT )
|Ê| ƒ 10≠5.5

. (MUV ƒ MP l)
(15)

Following this numerical coincidence, a minimal hypoth-
esis is that the a UV mechanism that is flavor-blind leads

to the democratic texture

M = MUV

3

Q

a
1 1 1
1 1 1
1 1 1

R

b , (16)

that, once diagonalized, leaves two massless eigenstates,
and one massive state

M =

Q

a
0

0
MUV

R

b . (17)

In such a UV scenario, a super-heavy Majorana mass
scale MUV is assumed to emerge from high scale dynam-
ics. The democratic flavour blind mass generation mech-
anism is the minimal possibility as the Majorana fields
carry no (SM) quantum numbers. It has been argued
that such a mass matrix is a straightforward expectation
when the mass generation is associated with gravity [28].

In the presence of perturbations of order ‘ π 1 to
the texture in Eq. (16), the zero eigenvalues are gen-
erally lifted and replaced by O(‘ MUV ) quantities. For
‘ ≥ 10≠13(10≠10) and MUV = MP l(MGUT ), this would
successfully identify the PeV scale.

Unfortunately, this scenario is not realized at the one-
loop level in the most minimal setup we consider. In
order for a Majorana mass eigenvalue to be non-zero, its
associated lepton number must be violated by two units.
Given LN with the mass matrix in Eq. (17), no tree or
one-loop diagram topology exists with this property, see
Refs. [7, 29, 30]. The same is true for mass matrices with
n = 2. This implies that the texture-zero(es) are pre-
served by both threshold corrections and RGE running
at one-loop in type-I seesaw models.

Assuming a heavy scale MUV , and pursuing this min-
imal scenario further, one is then left with two perturba-
tive alternatives:

A. n Ø 2 eigenvalues of order MUV are present, and
the one-loop RGE running induces a large suppres-
sion that reduces them to the PeV scale.

B. starting from n = 1 non-zero eigenvalue, the PeV
scale is generated radiatively at 2 or more loops.

Due to the simultaneous requirement of L-violating
and Z2-preserving interactions (from neutrino and Higgs
mass considerations, respectively), neither of these two
possibilities turns out to be consistent with the minimal
extension of the Neutrino Option scenario we consider,
as we discuss in the next subsections.

A. One-loop RGE flow

Consider the one-loop case, where the RG equation for
the Majorana mass term is [29–32]

16fi
2
µ

dM

dµ
=

!
ÊÊ

†"
M + M

!
ÊÊ

†"T
© R , (18)
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and R = R
T . Diagonalizing, the mass eigenvalues evolve

multiplicatively [29, 30]:

Mp(µ) = “p(µ, µ0)Mp(µ0) , (19)

“p(µ, µ0) ≥ 1 + Ê
2

16fi2 ln
5

µ

µ0

6
. (20)

When all the Z2 symmetries associated to the massive
N states are preserved, R © 0, and equivalently “p © 1.
This can easily be seen by using Eqn.(17) and Eqn.(13)
in Eqn.(18). Hence, for the running to occur, the Z2
needs to be at least softly broken. In this case, for the
PeV scale to emerge from RG running one requires

“p(PeV, MUV ) = ‘ ƒ
PeV
MUV

≥ 10≠10
≠ 10≠13

, (21)

which immediately implies that the radiative contribu-
tion Ê

2
/16fi

2 ln [µ/µ0] must be tuned.

B. Higher perturbative orders

The generation of �L = 2 amplitudes is possible at
two-loops in the type-I seesaw, via diagrams such as the
one in Fig 2, see Refs. [33, 34]. These diagrams generally
contribute to all entries of the Majorana mass matrix M ,
including the o�-diagonals.

Two-loop radiative corrections in the seesaw scale
as [33]

”
(2)
M,pr ≥

(ÊÊ
†)p3(ÊÊ

†)r3
256fi4 MUV . (22)

As in the one-loop RGE case, ”
(2)
M ”= 0 only if Ê3— ”= 0, i.e

when the Z2 symmetry associated to the massive state
(N3) is broken, which leaves the Higgs mass term unpro-
tected. Indeed, it can be checked that both threshold
corrections and RG equations at two-loops only contain
the flavor structures [33–35]:

ÊÊ
†
M , ÊÊ

†
M(ÊÊ

†)T
, (ÊÊ

†)(ÊÊ
†)M , (23)

and their transposes, that vanish identically in the Z2
symmetric limit. This statement is independent of n.

This leads to a tension between the require-
ments (i) and (ii) above: in order to have ”

(2)
M ≥ PeV

with MUV = MP l(MGUT ), the Yukawa couplings should
be (ÊÊ

†)p3 . 1(5) ◊ 10≠4. Inserting this value in
Eq. (6), the contribution to


�m

2
h from M33 = MUV

is MUV


(ÊÊ†)33/8fi2 ƒ 1016 GeV.

On the other hand, assuming that the Z2 is only very
softy broken in order to protect �m

2
h, leads to ”

(2)
M of

sub-eV size. While such masses may be interesting for
low-energy phenomenology (e.g. for sterile neutrino dark
matter studies), they do not account for the preferred
coupling ranges of the Neutrino Option. These symmetry
and scaling arguments hold both for two-loop threshold
and RG contributions, and this tension persists at higher
perturbative orders.
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FIG. 2. �L = 2 two-loop diagram that allows a perturbative
generation of a Majorana mass term Mpr.

IV. COMMENTS ON EXTENDED MODEL
FIELD CONTENT

The conclusions in previous sections are drawn under
the assumption of no additional BSM field content be-
yond that of LSM +LN . A perturbative generation mech-
anism from the deep UV involving more fields must still
avoid the generic global symmetry arguments; a mass
generation mechanism must provide radiative generation
of a �L = 2 Feynman diagram to lift zero Majorana
eigenvalues, or radiatively generate lower scales from ex-
isting MUV eigenvalues. One must simultaneously pre-
serve a symmetry protection to control threshold correc-
tions from heavy Fermionic or Bosonic states, to prevent
large Higgs threshold corrections.

Consider adding a generic Boson field to the minimal
setup in LSM + LN . Since N is a majorana field, the
allowed N̄N‰ couplings up to dimension four are

1
2N̄ [flS ‰S + iflP “5‰P ] N .

Here ‰S , ‰p are real scalar and pseudoscalar couplings
respectively. For gauge invariance of the N̄N‰ coupling,
‰ must be a SU(3)C ◊SU(2)L ◊U(1)Y singlet. In general
such couplings are o� diagonal in Np flavour space. In
the limit of vanishing external momenta, the graph in
Fig. 3 scales as
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(24)
inducing lower scale mass eigenvalues in the Mpr ma-
trix from the UV scale mass M33. In addition, an
anapole/Zeldovich [36] coupling is allowed for a vector
field coupling to a Majorana bilinear

1
2�2 N̄ [flV “µ“5] Nˆ‹‰

‹µ
V .

In the case of the SM, ‰
‹µ
V = B

µ‹ is generated at one
loop if the SM states are massive with a closed Higgs
and charged lepton in the loop. In this case, the cou-
plings Ê associated with the numerical coincidence in
Eq. (15) are present. However, in the minimal exten-
sion of the Neutrino Option we consider, these states are
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the flavor structures [33–35]:

ÊÊ
†
M , ÊÊ

†
M(ÊÊ

†)T
, (ÊÊ

†)(ÊÊ
†)M , (23)

and their transposes, that vanish identically in the Z2
symmetric limit. This statement is independent of n.

This leads to a tension between the require-
ments (i) and (ii) above: in order to have ”

(2)
M ≥ PeV

with MUV = MP l(MGUT ), the Yukawa couplings should
be (ÊÊ

†)p3 . 1(5) ◊ 10≠4. Inserting this value in
Eq. (6), the contribution to


�m

2
h from M33 = MUV

is MUV


(ÊÊ†)33/8fi2 ƒ 1016 GeV.

On the other hand, assuming that the Z2 is only very
softy broken in order to protect �m

2
h, leads to ”

(2)
M of

sub-eV size. While such masses may be interesting for
low-energy phenomenology (e.g. for sterile neutrino dark
matter studies), they do not account for the preferred
coupling ranges of the Neutrino Option. These symmetry
and scaling arguments hold both for two-loop threshold
and RG contributions, and this tension persists at higher
perturbative orders.
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FIG. 2. �L = 2 two-loop diagram that allows a perturbative
generation of a Majorana mass term Mpr.

IV. COMMENTS ON EXTENDED MODEL
FIELD CONTENT

The conclusions in previous sections are drawn under
the assumption of no additional BSM field content be-
yond that of LSM +LN . A perturbative generation mech-
anism from the deep UV involving more fields must still
avoid the generic global symmetry arguments; a mass
generation mechanism must provide radiative generation
of a �L = 2 Feynman diagram to lift zero Majorana
eigenvalues, or radiatively generate lower scales from ex-
isting MUV eigenvalues. One must simultaneously pre-
serve a symmetry protection to control threshold correc-
tions from heavy Fermionic or Bosonic states, to prevent
large Higgs threshold corrections.

Consider adding a generic Boson field to the minimal
setup in LSM + LN . Since N is a majorana field, the
allowed N̄N‰ couplings up to dimension four are

1
2N̄ [flS ‰S + iflP “5‰P ] N .

Here ‰S , ‰p are real scalar and pseudoscalar couplings
respectively. For gauge invariance of the N̄N‰ coupling,
‰ must be a SU(3)C ◊SU(2)L ◊U(1)Y singlet. In general
such couplings are o� diagonal in Np flavour space. In
the limit of vanishing external momenta, the graph in
Fig. 3 scales as
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inducing lower scale mass eigenvalues in the Mpr ma-
trix from the UV scale mass M33. In addition, an
anapole/Zeldovich [36] coupling is allowed for a vector
field coupling to a Majorana bilinear

1
2�2 N̄ [flV “µ“5] Nˆ‹‰

‹µ
V .

In the case of the SM, ‰
‹µ
V = B

µ‹ is generated at one
loop if the SM states are massive with a closed Higgs
and charged lepton in the loop. In this case, the cou-
plings Ê associated with the numerical coincidence in
Eq. (15) are present. However, in the minimal exten-
sion of the Neutrino Option we consider, these states are

[9904395]
[9910420]

[0501272]
[0305273]

2

which, upon EWSB, yields a light Majorana mass for the
LH neutrinos. The one-loop matching introduces sub-
leading corrections to c

(5) as well as threshold matching
contributions to the SM Higgs potential [1, 7, 8]:

V (H) = ≠
m

2
h0 + �m

2
h

2 H
†
H + (⁄0 + �⁄) (H†

H)2
. (5)

Here mh0, ⁄0 are the “bare” parameters defining the clas-
sical scalar potential at µ ƒ M and �m

2
h, �⁄ are the

loop-induced corrections. Assuming a nearly conformal
condition implies mh0 ƒ 0, while ⁄0 is free and gener-
ally of perturbative size. As �⁄ Ã Ê

4, this contribution
is typically negligible for perturbative Yukawa couplings
|Êp— | < 1. On the other hand2

�m
2
h = 1

8fi2 Tr
!
Ê

†
M

2
Ê

"
, (6)

is generally large and directly sensitive to the Majorana
mass scale. This contribution has been long known and
is a direct representation of the hierarchy problem in the
seesaw model, see e.g. Refs. [21–23]. The key idea of the
Neutrino Option is that, taking mh0 ƒ 0, �m

2
h can be in-

terpreted as a radiatively generated Higgs mass. Requir-
ing that both the observed EW scale and neutrino mass-
squared di�erences are accommodated broadly identifies
the parameter space [1, 7]3

M . 104 TeV = 10 PeV . |Ê| ƒ
TeV
M

. (7)

Requiring successful resonant leptogenesis introduces an
additional lower limit on the Majorana scale [8]

M & 1 PeV . (8)

The finer structure of the allowed parameter space can
be identified specifying the neutrino mixing parameters
and CP violating phases, and it is sensitive to the top
quark mass, the order of the RG equations used and the
details of the seesaw model, such as the number of RH
neutrinos introduced and the structure of the M matrix.
On the other hand, the ranges reported in Eqs. (7), (8)
have a negligible dependence on these quantities, as a
consequence of the RGE evolution having a small impact
on both the Higgs and the LH neutrino masses.

A. Symmetries of the seesaw Lagrangian

Before concluding this section, it is useful to review of
the global symmetries of the seesaw Lagrangian, Eq (2).

2
This expression is derived in the basis where M is diagonal.

3
The requirement |Ê| ≥ TeV/M stems from �m2

h ƒ (100 GeV)
2
.

Inserting it in the expression for light neutrino masses and re-

quiring m‹ & 0.01 eV ≥ �m§ identifies the upper limit on M .

N

¯̀c
L

H̃
⇤

`L

H̃
†

! !
T

,

N

`L

H H
†

! !
†

FIG. 1: One loop threshold corrections generating the
EW scale in the Neutrino Option. The one loop

diagram is linked to neutrino mass generation at tree
level by closing the lepton line.

• The kinetic term of the N fields respects a global
U(3)N flavour symmetry, that can be decomposed
into U(1)N,3 ◊ SU(3)N , where the U(1)N,k term
represents an N -lepton number under which k fla-
vors transform. Analogously, the kinetic term of
the l doublet has a symmetry U(3)l = U(1)l,3 ◊

SU(3)l.

• With n non-zero eigenvalues, the Majorana mass
term breaks the U(3)N down to4

U(1)N,2 ◊ SU(2)N ◊ Z2 (n = 1) , (9)
U(1)N ◊ Z2 ◊ Z2 (n = 2) , (10)
Z2 ◊ Z2 (n = 3) . (11)

Discrete and continuous symmetries are associated
to massive and massless N states respectively.

• The neutrino Yukawa term preserves only the di-
agonal lepton number U(1)l+N ∏ U(1)l,3 ◊U(1)N,3
and breaks explicitly all the remaining flavor sym-
metries.

It is worth noting that the Z2 symmetries, if preserved,
protect the Higgs mass against corrections proportional
to the associated Majorana mass. Consider for instance
a case where M is diagonal with only M33 ”= 0. The
associated preserved mass-eigenstate Z2 transformation
can be represented in flavour space by

N ≠æ T N , with T = diag (1, 1, ≠1) . (12)

Invariance of the Yukawa terms then implies

N̄ Ê H̃
†

l
!= N̄ T

†
Ê H̃

†
l

∆ T
†

Ê = Ê ∆ Ê3— © 0 . (13)

Comparing to Eq. (6), this indicates that an exact Z2
symmetry forbids contributions to �m

2
h from M33. This

also occurs if there are two heavy mass states, both of
which respect an associated Z2.

4
The Klein four group Z2 ◊ Z2 is the maximal discrete symmetry

of a 3◊3 Majorana mass term. This has been discussed at length

in the literature, see e.g. [].

❌
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Multi-loop corrections? [2010.15428]

Even if we allow for soft Z2 breaking, the desired mass scales are too low for the PeV 
scales required.

Such scales may be interesting, however, for light sterile neutrino phenomenology…

Multi-loop corrections with new states may also be interesting…

4

and R = R
T . Diagonalizing, the mass eigenvalues evolve

multiplicatively [29, 30]:

Mp(µ) = “p(µ, µ0)Mp(µ0) , (19)

“p(µ, µ0) ≥ 1 + Ê
2

16fi2 ln
5

µ

µ0

6
. (20)

When all the Z2 symmetries associated to the massive
N states are preserved, R © 0, and equivalently “p © 1.
This can easily be seen by using Eqn.(17) and Eqn.(13)
in Eqn.(18). Hence, for the running to occur, the Z2
needs to be at least softly broken. In this case, for the
PeV scale to emerge from RG running one requires

“p(PeV, MUV ) = ‘ ƒ
PeV
MUV

≥ 10≠10
≠ 10≠13

, (21)

which immediately implies that the radiative contribu-
tion Ê

2
/16fi

2 ln [µ/µ0] must be tuned.

B. Higher perturbative orders

The generation of �L = 2 amplitudes is possible at
two-loops in the type-I seesaw, via diagrams such as the
one in Fig 2, see Refs. [33, 34]. These diagrams generally
contribute to all entries of the Majorana mass matrix M ,
including the o�-diagonals.

Two-loop radiative corrections in the seesaw scale
as [33]

”
(2)
M,pr ≥

(ÊÊ
†)p3(ÊÊ

†)r3
256fi4 MUV . (22)

As in the one-loop RGE case, ”
(2)
M ”= 0 only if Ê3— ”= 0, i.e

when the Z2 symmetry associated to the massive state
(N3) is broken, which leaves the Higgs mass term unpro-
tected. Indeed, it can be checked that both threshold
corrections and RG equations at two-loops only contain
the flavor structures [33–35]:

ÊÊ
†
M , ÊÊ

†
M(ÊÊ

†)T
, (ÊÊ

†)(ÊÊ
†)M , (23)

and their transposes, that vanish identically in the Z2
symmetric limit. This statement is independent of n.

This leads to a tension between the require-
ments (i) and (ii) above: in order to have ”

(2)
M ≥ PeV

with MUV = MP l(MGUT ), the Yukawa couplings should
be (ÊÊ

†)p3 . 1(5) ◊ 10≠4. Inserting this value in
Eq. (6), the contribution to


�m

2
h from M33 = MUV

is MUV


(ÊÊ†)33/8fi2 ƒ 1016 GeV.

On the other hand, assuming that the Z2 is only very
softy broken in order to protect �m

2
h, leads to ”

(2)
M of

sub-eV size. While such masses may be interesting for
low-energy phenomenology (e.g. for sterile neutrino dark
matter studies), they do not account for the preferred
coupling ranges of the Neutrino Option. These symmetry
and scaling arguments hold both for two-loop threshold
and RG contributions, and this tension persists at higher
perturbative orders.
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FIG. 2. �L = 2 two-loop diagram that allows a perturbative
generation of a Majorana mass term Mpr.

IV. COMMENTS ON EXTENDED MODEL
FIELD CONTENT

The conclusions in previous sections are drawn under
the assumption of no additional BSM field content be-
yond that of LSM +LN . A perturbative generation mech-
anism from the deep UV involving more fields must still
avoid the generic global symmetry arguments; a mass
generation mechanism must provide radiative generation
of a �L = 2 Feynman diagram to lift zero Majorana
eigenvalues, or radiatively generate lower scales from ex-
isting MUV eigenvalues. One must simultaneously pre-
serve a symmetry protection to control threshold correc-
tions from heavy Fermionic or Bosonic states, to prevent
large Higgs threshold corrections.

Consider adding a generic Boson field to the minimal
setup in LSM + LN . Since N is a majorana field, the
allowed N̄N‰ couplings up to dimension four are

1
2N̄ [flS ‰S + iflP “5‰P ] N .

Here ‰S , ‰p are real scalar and pseudoscalar couplings
respectively. For gauge invariance of the N̄N‰ coupling,
‰ must be a SU(3)C ◊SU(2)L ◊U(1)Y singlet. In general
such couplings are o� diagonal in Np flavour space. In
the limit of vanishing external momenta, the graph in
Fig. 3 scales as

(fl2
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2
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inducing lower scale mass eigenvalues in the Mpr ma-
trix from the UV scale mass M33. In addition, an
anapole/Zeldovich [36] coupling is allowed for a vector
field coupling to a Majorana bilinear

1
2�2 N̄ [flV “µ“5] Nˆ‹‰

‹µ
V .

In the case of the SM, ‰
‹µ
V = B

µ‹ is generated at one
loop if the SM states are massive with a closed Higgs
and charged lepton in the loop. In this case, the cou-
plings Ê associated with the numerical coincidence in
Eq. (15) are present. However, in the minimal exten-
sion of the Neutrino Option we consider, these states are

Multi-loop corrections?

4

and R = R
T . Diagonalizing, the mass eigenvalues evolve

multiplicatively [29, 30]:

Mp(µ) = “p(µ, µ0)Mp(µ0) , (19)

“p(µ, µ0) ≥ 1 + Ê
2

16fi2 ln
5

µ

µ0

6
. (20)

When all the Z2 symmetries associated to the massive
N states are preserved, R © 0, and equivalently “p © 1.
This can easily be seen by using Eqn.(17) and Eqn.(13)
in Eqn.(18). Hence, for the running to occur, the Z2
needs to be at least softly broken. In this case, for the
PeV scale to emerge from RG running one requires

“p(PeV, MUV ) = ‘ ƒ
PeV
MUV

≥ 10≠10
≠ 10≠13

, (21)

which immediately implies that the radiative contribu-
tion Ê

2
/16fi

2 ln [µ/µ0] must be tuned.

B. Higher perturbative orders

The generation of �L = 2 amplitudes is possible at
two-loops in the type-I seesaw, via diagrams such as the
one in Fig 2, see Refs. [33, 34]. These diagrams generally
contribute to all entries of the Majorana mass matrix M ,
including the o�-diagonals.

Two-loop radiative corrections in the seesaw scale
as [33]

”
(2)
M,pr ≥

(ÊÊ
†)p3(ÊÊ

†)r3
256fi4 MUV . (22)

As in the one-loop RGE case, ”
(2)
M ”= 0 only if Ê3— ”= 0, i.e

when the Z2 symmetry associated to the massive state
(N3) is broken, which leaves the Higgs mass term unpro-
tected. Indeed, it can be checked that both threshold
corrections and RG equations at two-loops only contain
the flavor structures [33–35]:

ÊÊ
†
M , ÊÊ

†
M(ÊÊ

†)T
, (ÊÊ

†)(ÊÊ
†)M , (23)

and their transposes, that vanish identically in the Z2
symmetric limit. This statement is independent of n.

This leads to a tension between the require-
ments (i) and (ii) above: in order to have ”

(2)
M ≥ PeV

with MUV = MP l(MGUT ), the Yukawa couplings should
be (ÊÊ

†)p3 . 1(5) ◊ 10≠4. Inserting this value in
Eq. (6), the contribution to


�m

2
h from M33 = MUV

is MUV


(ÊÊ†)33/8fi2 ƒ 1016 GeV.

On the other hand, assuming that the Z2 is only very
softy broken in order to protect �m

2
h, leads to ”

(2)
M of

sub-eV size. While such masses may be interesting for
low-energy phenomenology (e.g. for sterile neutrino dark
matter studies), they do not account for the preferred
coupling ranges of the Neutrino Option. These symmetry
and scaling arguments hold both for two-loop threshold
and RG contributions, and this tension persists at higher
perturbative orders.
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FIG. 2. �L = 2 two-loop diagram that allows a perturbative
generation of a Majorana mass term Mpr.

IV. COMMENTS ON EXTENDED MODEL
FIELD CONTENT

The conclusions in previous sections are drawn under
the assumption of no additional BSM field content be-
yond that of LSM +LN . A perturbative generation mech-
anism from the deep UV involving more fields must still
avoid the generic global symmetry arguments; a mass
generation mechanism must provide radiative generation
of a �L = 2 Feynman diagram to lift zero Majorana
eigenvalues, or radiatively generate lower scales from ex-
isting MUV eigenvalues. One must simultaneously pre-
serve a symmetry protection to control threshold correc-
tions from heavy Fermionic or Bosonic states, to prevent
large Higgs threshold corrections.

Consider adding a generic Boson field to the minimal
setup in LSM + LN . Since N is a majorana field, the
allowed N̄N‰ couplings up to dimension four are

1
2N̄ [flS ‰S + iflP “5‰P ] N .

Here ‰S , ‰p are real scalar and pseudoscalar couplings
respectively. For gauge invariance of the N̄N‰ coupling,
‰ must be a SU(3)C ◊SU(2)L ◊U(1)Y singlet. In general
such couplings are o� diagonal in Np flavour space. In
the limit of vanishing external momenta, the graph in
Fig. 3 scales as
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(24)
inducing lower scale mass eigenvalues in the Mpr ma-
trix from the UV scale mass M33. In addition, an
anapole/Zeldovich [36] coupling is allowed for a vector
field coupling to a Majorana bilinear

1
2�2 N̄ [flV “µ“5] Nˆ‹‰

‹µ
V .

In the case of the SM, ‰
‹µ
V = B

µ‹ is generated at one
loop if the SM states are massive with a closed Higgs
and charged lepton in the loop. In this case, the cou-
plings Ê associated with the numerical coincidence in
Eq. (15) are present. However, in the minimal exten-
sion of the Neutrino Option we consider, these states are

4

and R = R
T . Diagonalizing, the mass eigenvalues evolve

multiplicatively [29, 30]:

Mp(µ) = “p(µ, µ0)Mp(µ0) , (19)

“p(µ, µ0) ≥ 1 + Ê
2

16fi2 ln
5

µ

µ0

6
. (20)

When all the Z2 symmetries associated to the massive
N states are preserved, R © 0, and equivalently “p © 1.
This can easily be seen by using Eqn.(17) and Eqn.(13)
in Eqn.(18). Hence, for the running to occur, the Z2
needs to be at least softly broken. In this case, for the
PeV scale to emerge from RG running one requires

“p(PeV, MUV ) = ‘ ƒ
PeV
MUV

≥ 10≠10
≠ 10≠13

, (21)

which immediately implies that the radiative contribu-
tion Ê

2
/16fi

2 ln [µ/µ0] must be tuned.

B. Higher perturbative orders

The generation of �L = 2 amplitudes is possible at
two-loops in the type-I seesaw, via diagrams such as the
one in Fig 2, see Refs. [33, 34]. These diagrams generally
contribute to all entries of the Majorana mass matrix M ,
including the o�-diagonals.

Two-loop radiative corrections in the seesaw scale
as [33]

”
(2)
M,pr ≥

(ÊÊ
†)p3(ÊÊ

†)r3
256fi4 MUV . (22)

As in the one-loop RGE case, ”
(2)
M ”= 0 only if Ê3— ”= 0, i.e

when the Z2 symmetry associated to the massive state
(N3) is broken, which leaves the Higgs mass term unpro-
tected. Indeed, it can be checked that both threshold
corrections and RG equations at two-loops only contain
the flavor structures [33–35]:

ÊÊ
†
M , ÊÊ

†
M(ÊÊ

†)T
, (ÊÊ

†)(ÊÊ
†)M , (23)

and their transposes, that vanish identically in the Z2
symmetric limit. This statement is independent of n.

This leads to a tension between the require-
ments (i) and (ii) above: in order to have ”

(2)
M ≥ PeV

with MUV = MP l(MGUT ), the Yukawa couplings should
be (ÊÊ

†)p3 . 1(5) ◊ 10≠4. Inserting this value in
Eq. (6), the contribution to


�m

2
h from M33 = MUV

is MUV


(ÊÊ†)33/8fi2 ƒ 1016 GeV.

On the other hand, assuming that the Z2 is only very
softy broken in order to protect �m

2
h, leads to ”

(2)
M of

sub-eV size. While such masses may be interesting for
low-energy phenomenology (e.g. for sterile neutrino dark
matter studies), they do not account for the preferred
coupling ranges of the Neutrino Option. These symmetry
and scaling arguments hold both for two-loop threshold
and RG contributions, and this tension persists at higher
perturbative orders.
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FIG. 2. �L = 2 two-loop diagram that allows a perturbative
generation of a Majorana mass term Mpr.

IV. COMMENTS ON EXTENDED MODEL
FIELD CONTENT

The conclusions in previous sections are drawn under
the assumption of no additional BSM field content be-
yond that of LSM +LN . A perturbative generation mech-
anism from the deep UV involving more fields must still
avoid the generic global symmetry arguments; a mass
generation mechanism must provide radiative generation
of a �L = 2 Feynman diagram to lift zero Majorana
eigenvalues, or radiatively generate lower scales from ex-
isting MUV eigenvalues. One must simultaneously pre-
serve a symmetry protection to control threshold correc-
tions from heavy Fermionic or Bosonic states, to prevent
large Higgs threshold corrections.

Consider adding a generic Boson field to the minimal
setup in LSM + LN . Since N is a majorana field, the
allowed N̄N‰ couplings up to dimension four are

1
2N̄ [flS ‰S + iflP “5‰P ] N .

Here ‰S , ‰p are real scalar and pseudoscalar couplings
respectively. For gauge invariance of the N̄N‰ coupling,
‰ must be a SU(3)C ◊SU(2)L ◊U(1)Y singlet. In general
such couplings are o� diagonal in Np flavour space. In
the limit of vanishing external momenta, the graph in
Fig. 3 scales as
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inducing lower scale mass eigenvalues in the Mpr ma-
trix from the UV scale mass M33. In addition, an
anapole/Zeldovich [36] coupling is allowed for a vector
field coupling to a Majorana bilinear

1
2�2 N̄ [flV “µ“5] Nˆ‹‰

‹µ
V .

In the case of the SM, ‰
‹µ
V = B

µ‹ is generated at one
loop if the SM states are massive with a closed Higgs
and charged lepton in the loop. In this case, the cou-
plings Ê associated with the numerical coincidence in
Eq. (15) are present. However, in the minimal exten-
sion of the Neutrino Option we consider, these states are

Higgs mass unprotected!

4

and R = R
T . Diagonalizing, the mass eigenvalues evolve

multiplicatively [29, 30]:

Mp(µ) = “p(µ, µ0)Mp(µ0) , (19)

“p(µ, µ0) ≥ 1 + Ê
2

16fi2 ln
5

µ

µ0

6
. (20)

When all the Z2 symmetries associated to the massive
N states are preserved, R © 0, and equivalently “p © 1.
This can easily be seen by using Eqn.(17) and Eqn.(13)
in Eqn.(18). Hence, for the running to occur, the Z2
needs to be at least softly broken. In this case, for the
PeV scale to emerge from RG running one requires

“p(PeV, MUV ) = ‘ ƒ
PeV
MUV

≥ 10≠10
≠ 10≠13

, (21)

which immediately implies that the radiative contribu-
tion Ê

2
/16fi

2 ln [µ/µ0] must be tuned.

B. Higher perturbative orders

The generation of �L = 2 amplitudes is possible at
two-loops in the type-I seesaw, via diagrams such as the
one in Fig 2, see Refs. [33, 34]. These diagrams generally
contribute to all entries of the Majorana mass matrix M ,
including the o�-diagonals.

Two-loop radiative corrections in the seesaw scale
as [33]

”
(2)
M,pr ≥

(ÊÊ
†)p3(ÊÊ

†)r3
256fi4 MUV . (22)

As in the one-loop RGE case, ”
(2)
M ”= 0 only if Ê3— ”= 0, i.e

when the Z2 symmetry associated to the massive state
(N3) is broken, which leaves the Higgs mass term unpro-
tected. Indeed, it can be checked that both threshold
corrections and RG equations at two-loops only contain
the flavor structures [33–35]:

ÊÊ
†
M , ÊÊ

†
M(ÊÊ

†)T
, (ÊÊ

†)(ÊÊ
†)M , (23)

and their transposes, that vanish identically in the Z2
symmetric limit. This statement is independent of n.

This leads to a tension between the require-
ments (i) and (ii) above: in order to have ”

(2)
M ≥ PeV

with MUV = MP l(MGUT ), the Yukawa couplings should
be (ÊÊ

†)p3 . 1(5) ◊ 10≠4. Inserting this value in
Eq. (6), the contribution to


�m

2
h from M33 = MUV

is MUV


(ÊÊ†)33/8fi2 ƒ 1016 GeV.

On the other hand, assuming that the Z2 is only very
softy broken in order to protect �m

2
h, leads to ”

(2)
M of

sub-eV size. While such masses may be interesting for
low-energy phenomenology (e.g. for sterile neutrino dark
matter studies), they do not account for the preferred
coupling ranges of the Neutrino Option. These symmetry
and scaling arguments hold both for two-loop threshold
and RG contributions, and this tension persists at higher
perturbative orders.
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FIG. 2. �L = 2 two-loop diagram that allows a perturbative
generation of a Majorana mass term Mpr.

IV. COMMENTS ON EXTENDED MODEL
FIELD CONTENT

The conclusions in previous sections are drawn under
the assumption of no additional BSM field content be-
yond that of LSM +LN . A perturbative generation mech-
anism from the deep UV involving more fields must still
avoid the generic global symmetry arguments; a mass
generation mechanism must provide radiative generation
of a �L = 2 Feynman diagram to lift zero Majorana
eigenvalues, or radiatively generate lower scales from ex-
isting MUV eigenvalues. One must simultaneously pre-
serve a symmetry protection to control threshold correc-
tions from heavy Fermionic or Bosonic states, to prevent
large Higgs threshold corrections.

Consider adding a generic Boson field to the minimal
setup in LSM + LN . Since N is a majorana field, the
allowed N̄N‰ couplings up to dimension four are

1
2N̄ [flS ‰S + iflP “5‰P ] N .

Here ‰S , ‰p are real scalar and pseudoscalar couplings
respectively. For gauge invariance of the N̄N‰ coupling,
‰ must be a SU(3)C ◊SU(2)L ◊U(1)Y singlet. In general
such couplings are o� diagonal in Np flavour space. In
the limit of vanishing external momenta, the graph in
Fig. 3 scales as
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inducing lower scale mass eigenvalues in the Mpr ma-
trix from the UV scale mass M33. In addition, an
anapole/Zeldovich [36] coupling is allowed for a vector
field coupling to a Majorana bilinear

1
2�2 N̄ [flV “µ“5] Nˆ‹‰

‹µ
V .

In the case of the SM, ‰
‹µ
V = B

µ‹ is generated at one
loop if the SM states are massive with a closed Higgs
and charged lepton in the loop. In this case, the cou-
plings Ê associated with the numerical coincidence in
Eq. (15) are present. However, in the minimal exten-
sion of the Neutrino Option we consider, these states are

❌

Option (2):  consider two/multi-loop perturbative generation with n=1:

❌

[1802.09997]
[2006.13584]

❌

2

which, upon EWSB, yields a light Majorana mass for the
LH neutrinos. The one-loop matching introduces sub-
leading corrections to c

(5) as well as threshold matching
contributions to the SM Higgs potential [1, 7, 8]:

V (H) = ≠
m

2
h0 + �m

2
h

2 H
†
H + (⁄0 + �⁄) (H†

H)2
. (5)

Here mh0, ⁄0 are the “bare” parameters defining the clas-
sical scalar potential at µ ƒ M and �m

2
h, �⁄ are the

loop-induced corrections. Assuming a nearly conformal
condition implies mh0 ƒ 0, while ⁄0 is free and gener-
ally of perturbative size. As �⁄ Ã Ê

4, this contribution
is typically negligible for perturbative Yukawa couplings
|Êp— | < 1. On the other hand2

�m
2
h = 1

8fi2 Tr
!
Ê

†
M

2
Ê

"
, (6)

is generally large and directly sensitive to the Majorana
mass scale. This contribution has been long known and
is a direct representation of the hierarchy problem in the
seesaw model, see e.g. Refs. [21–23]. The key idea of the
Neutrino Option is that, taking mh0 ƒ 0, �m

2
h can be in-

terpreted as a radiatively generated Higgs mass. Requir-
ing that both the observed EW scale and neutrino mass-
squared di�erences are accommodated broadly identifies
the parameter space [1, 7]3

M . 104 TeV = 10 PeV . |Ê| ƒ
TeV
M

. (7)

Requiring successful resonant leptogenesis introduces an
additional lower limit on the Majorana scale [8]

M & 1 PeV . (8)

The finer structure of the allowed parameter space can
be identified specifying the neutrino mixing parameters
and CP violating phases, and it is sensitive to the top
quark mass, the order of the RG equations used and the
details of the seesaw model, such as the number of RH
neutrinos introduced and the structure of the M matrix.
On the other hand, the ranges reported in Eqs. (7), (8)
have a negligible dependence on these quantities, as a
consequence of the RGE evolution having a small impact
on both the Higgs and the LH neutrino masses.

A. Symmetries of the seesaw Lagrangian

Before concluding this section, it is useful to review of
the global symmetries of the seesaw Lagrangian, Eq (2).

2
This expression is derived in the basis where M is diagonal.

3
The requirement |Ê| ≥ TeV/M stems from �m2

h ƒ (100 GeV)
2
.

Inserting it in the expression for light neutrino masses and re-

quiring m‹ & 0.01 eV ≥ �m§ identifies the upper limit on M .

N

¯̀c
L

H̃
⇤

`L

H̃
†

! !
T

,

N

`L

H H
†

! !
†

FIG. 1: One loop threshold corrections generating the
EW scale in the Neutrino Option. The one loop

diagram is linked to neutrino mass generation at tree
level by closing the lepton line.

• The kinetic term of the N fields respects a global
U(3)N flavour symmetry, that can be decomposed
into U(1)N,3 ◊ SU(3)N , where the U(1)N,k term
represents an N -lepton number under which k fla-
vors transform. Analogously, the kinetic term of
the l doublet has a symmetry U(3)l = U(1)l,3 ◊

SU(3)l.

• With n non-zero eigenvalues, the Majorana mass
term breaks the U(3)N down to4

U(1)N,2 ◊ SU(2)N ◊ Z2 (n = 1) , (9)
U(1)N ◊ Z2 ◊ Z2 (n = 2) , (10)
Z2 ◊ Z2 (n = 3) . (11)

Discrete and continuous symmetries are associated
to massive and massless N states respectively.

• The neutrino Yukawa term preserves only the di-
agonal lepton number U(1)l+N ∏ U(1)l,3 ◊U(1)N,3
and breaks explicitly all the remaining flavor sym-
metries.

It is worth noting that the Z2 symmetries, if preserved,
protect the Higgs mass against corrections proportional
to the associated Majorana mass. Consider for instance
a case where M is diagonal with only M33 ”= 0. The
associated preserved mass-eigenstate Z2 transformation
can be represented in flavour space by

N ≠æ T N , with T = diag (1, 1, ≠1) . (12)

Invariance of the Yukawa terms then implies

N̄ Ê H̃
†

l
!= N̄ T

†
Ê H̃

†
l

∆ T
†

Ê = Ê ∆ Ê3— © 0 . (13)

Comparing to Eq. (6), this indicates that an exact Z2
symmetry forbids contributions to �m

2
h from M33. This

also occurs if there are two heavy mass states, both of
which respect an associated Z2.

4
The Klein four group Z2 ◊ Z2 is the maximal discrete symmetry

of a 3◊3 Majorana mass term. This has been discussed at length

in the literature, see e.g. [].
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[2010.15428]

Allow a generic new boson (vector or scalar) in a minimal extension to the seesaw. 

For states with non-trivial SM gauge #s, things are no less complicated. MSSM 
yields no new L violation and  leptoquarks, e.g., only induce N masses at two-loops! 

Others (Brdar et al.) have considered adding new states, in realizing a 
conformal NO.  Strong dynamics, dark matter, and gravity waves explored.

Achieving simple perturbations to M(UV) is not so easy, while realizing the 
Neutrino Option!

?? [1006.1092]
[1603.04993]

[1807.11490]
[1905.12634]
[1810.12306]
[2007.04367]
[2006.02960]
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and R = R
T . Diagonalizing, the mass eigenvalues evolve

multiplicatively [29, 30]:

Mp(µ) = “p(µ, µ0)Mp(µ0) , (19)

“p(µ, µ0) ≥ 1 + Ê
2

16fi2 ln
5

µ

µ0

6
. (20)

When all the Z2 symmetries associated to the massive
N states are preserved, R © 0, and equivalently “p © 1.
This can easily be seen by using Eqn.(17) and Eqn.(13)
in Eqn.(18). Hence, for the running to occur, the Z2
needs to be at least softly broken. In this case, for the
PeV scale to emerge from RG running one requires

“p(PeV, MUV ) = ‘ ƒ
PeV
MUV

≥ 10≠10
≠ 10≠13

, (21)

which immediately implies that the radiative contribu-
tion Ê

2
/16fi

2 ln [µ/µ0] must be tuned.

B. Higher perturbative orders

The generation of �L = 2 amplitudes is possible at
two-loops in the type-I seesaw, via diagrams such as the
one in Fig 2, see Refs. [33, 34]. These diagrams generally
contribute to all entries of the Majorana mass matrix M ,
including the o�-diagonals.

Two-loop radiative corrections in the seesaw scale
as [33]

”
(2)
M,pr ≥

(ÊÊ
†)p3(ÊÊ

†)r3
256fi4 MUV . (22)

As in the one-loop RGE case, ”
(2)
M ”= 0 only if Ê3— ”= 0, i.e

when the Z2 symmetry associated to the massive state
(N3) is broken, which leaves the Higgs mass term unpro-
tected. Indeed, it can be checked that both threshold
corrections and RG equations at two-loops only contain
the flavor structures [33–35]:

ÊÊ
†
M , ÊÊ

†
M(ÊÊ

†)T
, (ÊÊ

†)(ÊÊ
†)M , (23)

and their transposes, that vanish identically in the Z2
symmetric limit. This statement is independent of n.

This leads to a tension between the require-
ments (i) and (ii) above: in order to have ”

(2)
M ≥ PeV

with MUV = MP l(MGUT ), the Yukawa couplings should
be (ÊÊ

†)p3 . 1(5) ◊ 10≠4. Inserting this value in
Eq. (6), the contribution to


�m

2
h from M33 = MUV

is MUV


(ÊÊ†)33/8fi2 ƒ 1016 GeV.

On the other hand, assuming that the Z2 is only very
softy broken in order to protect �m

2
h, leads to ”

(2)
M of

sub-eV size. While such masses may be interesting for
low-energy phenomenology (e.g. for sterile neutrino dark
matter studies), they do not account for the preferred
coupling ranges of the Neutrino Option. These symmetry
and scaling arguments hold both for two-loop threshold
and RG contributions, and this tension persists at higher
perturbative orders.
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FIG. 2. �L = 2 two-loop diagram that allows a perturbative
generation of a Majorana mass term Mpr.

IV. COMMENTS ON EXTENDED MODEL
FIELD CONTENT

The conclusions in previous sections are drawn under
the assumption of no additional BSM field content be-
yond that of LSM +LN . A perturbative generation mech-
anism from the deep UV involving more fields must still
avoid the generic global symmetry arguments; a mass
generation mechanism must provide radiative generation
of a �L = 2 Feynman diagram to lift zero Majorana
eigenvalues, or radiatively generate lower scales from ex-
isting MUV eigenvalues. One must simultaneously pre-
serve a symmetry protection to control threshold correc-
tions from heavy Fermionic or Bosonic states, to prevent
large Higgs threshold corrections.

Consider adding a generic Boson field to the minimal
setup in LSM + LN . Since N is a majorana field, the
allowed N̄N‰ couplings up to dimension four are

1
2N̄ [flS ‰S + iflP “5‰P ] N .

Here ‰S , ‰p are real scalar and pseudoscalar couplings
respectively. For gauge invariance of the N̄N‰ coupling,
‰ must be a SU(3)C ◊SU(2)L ◊U(1)Y singlet. In general
such couplings are o� diagonal in Np flavour space. In
the limit of vanishing external momenta, the graph in
Fig. 3 scales as
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inducing lower scale mass eigenvalues in the Mpr ma-
trix from the UV scale mass M33. In addition, an
anapole/Zeldovich [36] coupling is allowed for a vector
field coupling to a Majorana bilinear

1
2�2 N̄ [flV “µ“5] Nˆ‹‰

‹µ
V .

In the case of the SM, ‰
‹µ
V = B

µ‹ is generated at one
loop if the SM states are massive with a closed Higgs
and charged lepton in the loop. In this case, the cou-
plings Ê associated with the numerical coincidence in
Eq. (15) are present. However, in the minimal exten-
sion of the Neutrino Option we consider, these states are

4

and R = R
T . Diagonalizing, the mass eigenvalues evolve

multiplicatively [29, 30]:

Mp(µ) = “p(µ, µ0)Mp(µ0) , (19)

“p(µ, µ0) ≥ 1 + Ê
2

16fi2 ln
5

µ

µ0

6
. (20)

When all the Z2 symmetries associated to the massive
N states are preserved, R © 0, and equivalently “p © 1.
This can easily be seen by using Eqn.(17) and Eqn.(13)
in Eqn.(18). Hence, for the running to occur, the Z2
needs to be at least softly broken. In this case, for the
PeV scale to emerge from RG running one requires

“p(PeV, MUV ) = ‘ ƒ
PeV
MUV

≥ 10≠10
≠ 10≠13

, (21)

which immediately implies that the radiative contribu-
tion Ê

2
/16fi

2 ln [µ/µ0] must be tuned.

B. Higher perturbative orders

The generation of �L = 2 amplitudes is possible at
two-loops in the type-I seesaw, via diagrams such as the
one in Fig 2, see Refs. [33, 34]. These diagrams generally
contribute to all entries of the Majorana mass matrix M ,
including the o�-diagonals.

Two-loop radiative corrections in the seesaw scale
as [33]

”
(2)
M,pr ≥

(ÊÊ
†)p3(ÊÊ

†)r3
256fi4 MUV . (22)

As in the one-loop RGE case, ”
(2)
M ”= 0 only if Ê3— ”= 0, i.e

when the Z2 symmetry associated to the massive state
(N3) is broken, which leaves the Higgs mass term unpro-
tected. Indeed, it can be checked that both threshold
corrections and RG equations at two-loops only contain
the flavor structures [33–35]:

ÊÊ
†
M , ÊÊ

†
M(ÊÊ

†)T
, (ÊÊ

†)(ÊÊ
†)M , (23)

and their transposes, that vanish identically in the Z2
symmetric limit. This statement is independent of n.

This leads to a tension between the require-
ments (i) and (ii) above: in order to have ”

(2)
M ≥ PeV

with MUV = MP l(MGUT ), the Yukawa couplings should
be (ÊÊ

†)p3 . 1(5) ◊ 10≠4. Inserting this value in
Eq. (6), the contribution to


�m

2
h from M33 = MUV

is MUV


(ÊÊ†)33/8fi2 ƒ 1016 GeV.

On the other hand, assuming that the Z2 is only very
softy broken in order to protect �m

2
h, leads to ”

(2)
M of

sub-eV size. While such masses may be interesting for
low-energy phenomenology (e.g. for sterile neutrino dark
matter studies), they do not account for the preferred
coupling ranges of the Neutrino Option. These symmetry
and scaling arguments hold both for two-loop threshold
and RG contributions, and this tension persists at higher
perturbative orders.
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FIG. 2. �L = 2 two-loop diagram that allows a perturbative
generation of a Majorana mass term Mpr.

IV. COMMENTS ON EXTENDED MODEL
FIELD CONTENT

The conclusions in previous sections are drawn under
the assumption of no additional BSM field content be-
yond that of LSM +LN . A perturbative generation mech-
anism from the deep UV involving more fields must still
avoid the generic global symmetry arguments; a mass
generation mechanism must provide radiative generation
of a �L = 2 Feynman diagram to lift zero Majorana
eigenvalues, or radiatively generate lower scales from ex-
isting MUV eigenvalues. One must simultaneously pre-
serve a symmetry protection to control threshold correc-
tions from heavy Fermionic or Bosonic states, to prevent
large Higgs threshold corrections.

Consider adding a generic Boson field to the minimal
setup in LSM + LN . Since N is a majorana field, the
allowed N̄N‰ couplings up to dimension four are

1
2N̄ [flS ‰S + iflP “5‰P ] N .

Here ‰S , ‰p are real scalar and pseudoscalar couplings
respectively. For gauge invariance of the N̄N‰ coupling,
‰ must be a SU(3)C ◊SU(2)L ◊U(1)Y singlet. In general
such couplings are o� diagonal in Np flavour space. In
the limit of vanishing external momenta, the graph in
Fig. 3 scales as
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inducing lower scale mass eigenvalues in the Mpr ma-
trix from the UV scale mass M33. In addition, an
anapole/Zeldovich [36] coupling is allowed for a vector
field coupling to a Majorana bilinear

1
2�2 N̄ [flV “µ“5] Nˆ‹‰

‹µ
V .

In the case of the SM, ‰
‹µ
V = B

µ‹ is generated at one
loop if the SM states are massive with a closed Higgs
and charged lepton in the loop. In this case, the cou-
plings Ê associated with the numerical coincidence in
Eq. (15) are present. However, in the minimal exten-
sion of the Neutrino Option we consider, these states are

5

N3

�

N3
Np Nr

⇢ ⇢

FIG. 3. A sample one-loop diagram that can radiatively gen-
erate a new non-zero Majorana neutrino mass, starting from
a unique non-vanishing eigenvalue M33. The state ‰ is an
unspecified boson whose properties can be partially derived,
see the main text.

e�ectively massless, and the one loop diagram vanishes
in dimensional regularization as the integrals are scale-
less. The anapole moment can be induced by UV field
content leading to induced masses

3 fl
2
V M

5
33

16fi2 �4

5
1 + log µ

2

M
2
33

6
, (25)

when M33 ∫ M‰V . In general, there is no association of
fl

2
V with the numerical coincidence in Eq. (15) and the

combination fl
2
V M

4
33/�4 can be chosen to induce a mass

hierarchy. Further, in the case of a gauged U(1) field ‰
‹µ
V

the Higgs portal coupling is through ⁄
Õ
‰

‹µ
V ‰

‹µ
V H

†
H/�2.

The usual Hierarchy problem is present in the case of
the BSM induced Anapole moment, and in the case of a
scalar field ‰S/P .

Seeking to associate the Bosonic coupling with Ê and
also cancel the threshold contribution to the Higgs mass
leads to a minimally-supersymmetric SM (MSSM) ex-
tended with singlets N in the UV. The Higgs mass thresh-
old correction is then canceled, but the one-loop analogue
to Eq. (18) is given in Ref. [35]. No new �L = 2 contri-
bution is added and the seesaw RGE equation is merely
rescaled by an overall factor compared to the SM. The
conclusions of the previous section hold.

One can also consider models where L violation resides
in BSM couplings, rather than relying on the initial
M33 term. However, achieving the desired symmetry-

breaking and conserving patterns is not any easier in
these scenarios. Consider for example leptoquarks,
which can have either (B+L) conserving and (B-L) vio-
lating couplings or vice-versa. Because they necessarily
carry other quantum numbers (most importantly color
charge), the leptoquark lines always need to be closed
with conjugate vertices. This means that, in a one-loop
diagram, B and L violating terms always compensate
each other. In fact, independently of their quantum
numbers, leptoquarks can only generate a Majorana
mass at two loops [37, 38]. Any two-loop diagram is
highly suppressed and a not directly associated with the
numerical coincidence in Eq. (15) to achieve Mp ≥ PeV.

V. SUMMARY AND OUTLOOK

We have examined minimal extensions of the Neutrino
Option setup to induce Mp ≥ PeV Majorana masses from
a deep UV mass scale. Such an approach is primarily
motivated due to the numerical coincidence identified in
Eqn 15. Such perturbative mass generation mechanisms
must overcome the combined symmetry constraints of
required L violation while suppressing threshold contri-
butions to the Higgs mass. A natural symmetry protec-
tion mechanism relies on the Z2 symmetries present in
the LSM + LN Lagrangian itself. Such Z2 based sym-
metry protection, in the minimal setups we considered,
blocks the generation Mp ≥ PeV Majorana masses from
the deep UV scales and forbids a natural realization of
the numerical coincidence identified in Eqn 15. It is pos-
sible that more extended model building could overcome
this challenge.
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and R = R
T . Diagonalizing, the mass eigenvalues evolve

multiplicatively [29, 30]:

Mp(µ) = “p(µ, µ0)Mp(µ0) , (19)

“p(µ, µ0) ≥ 1 + Ê
2

16fi2 ln
5

µ

µ0

6
. (20)

When all the Z2 symmetries associated to the massive
N states are preserved, R © 0, and equivalently “p © 1.
This can easily be seen by using Eqn.(17) and Eqn.(13)
in Eqn.(18). Hence, for the running to occur, the Z2
needs to be at least softly broken. In this case, for the
PeV scale to emerge from RG running one requires

“p(PeV, MUV ) = ‘ ƒ
PeV
MUV

≥ 10≠10
≠ 10≠13

, (21)

which immediately implies that the radiative contribu-
tion Ê

2
/16fi

2 ln [µ/µ0] must be tuned.

B. Higher perturbative orders

The generation of �L = 2 amplitudes is possible at
two-loops in the type-I seesaw, via diagrams such as the
one in Fig 2, see Refs. [33, 34]. These diagrams generally
contribute to all entries of the Majorana mass matrix M ,
including the o�-diagonals.

Two-loop radiative corrections in the seesaw scale
as [33]

”
(2)
M,pr ≥

(ÊÊ
†)p3(ÊÊ

†)r3
256fi4 MUV . (22)

As in the one-loop RGE case, ”
(2)
M ”= 0 only if Ê3— ”= 0, i.e

when the Z2 symmetry associated to the massive state
(N3) is broken, which leaves the Higgs mass term unpro-
tected. Indeed, it can be checked that both threshold
corrections and RG equations at two-loops only contain
the flavor structures [33–35]:

ÊÊ
†
M , ÊÊ

†
M(ÊÊ

†)T
, (ÊÊ

†)(ÊÊ
†)M , (23)

and their transposes, that vanish identically in the Z2
symmetric limit. This statement is independent of n.

This leads to a tension between the require-
ments (i) and (ii) above: in order to have ”

(2)
M ≥ PeV

with MUV = MP l(MGUT ), the Yukawa couplings should
be (ÊÊ

†)p3 . 1(5) ◊ 10≠4. Inserting this value in
Eq. (6), the contribution to


�m

2
h from M33 = MUV

is MUV


(ÊÊ†)33/8fi2 ƒ 1016 GeV.

On the other hand, assuming that the Z2 is only very
softy broken in order to protect �m

2
h, leads to ”

(2)
M of

sub-eV size. While such masses may be interesting for
low-energy phenomenology (e.g. for sterile neutrino dark
matter studies), they do not account for the preferred
coupling ranges of the Neutrino Option. These symmetry
and scaling arguments hold both for two-loop threshold
and RG contributions, and this tension persists at higher
perturbative orders.
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FIG. 2. �L = 2 two-loop diagram that allows a perturbative
generation of a Majorana mass term Mpr.

IV. COMMENTS ON EXTENDED MODEL
FIELD CONTENT

The conclusions in previous sections are drawn under
the assumption of no additional BSM field content be-
yond that of LSM +LN . A perturbative generation mech-
anism from the deep UV involving more fields must still
avoid the generic global symmetry arguments; a mass
generation mechanism must provide radiative generation
of a �L = 2 Feynman diagram to lift zero Majorana
eigenvalues, or radiatively generate lower scales from ex-
isting MUV eigenvalues. One must simultaneously pre-
serve a symmetry protection to control threshold correc-
tions from heavy Fermionic or Bosonic states, to prevent
large Higgs threshold corrections.

Consider adding a generic Boson field to the minimal
setup in LSM + LN . Since N is a majorana field, the
allowed N̄N‰ couplings up to dimension four are

1
2N̄ [flS ‰S + iflP “5‰P ] N .

Here ‰S , ‰p are real scalar and pseudoscalar couplings
respectively. For gauge invariance of the N̄N‰ coupling,
‰ must be a SU(3)C ◊SU(2)L ◊U(1)Y singlet. In general
such couplings are o� diagonal in Np flavour space. In
the limit of vanishing external momenta, the graph in
Fig. 3 scales as

(fl2
S + fl

2
P ) M33
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2
33 ≠ m2

‰

3
M

2
33 log µ

2

M
2
33

≠ m
2
‰ log µ

2

m2
‰
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(24)
inducing lower scale mass eigenvalues in the Mpr ma-
trix from the UV scale mass M33. In addition, an
anapole/Zeldovich [36] coupling is allowed for a vector
field coupling to a Majorana bilinear

1
2�2 N̄ [flV “µ“5] Nˆ‹‰

‹µ
V .

In the case of the SM, ‰
‹µ
V = B

µ‹ is generated at one
loop if the SM states are massive with a closed Higgs
and charged lepton in the loop. In this case, the cou-
plings Ê associated with the numerical coincidence in
Eq. (15) are present. However, in the minimal exten-
sion of the Neutrino Option we consider, these states are

ΔL and Z2 safe, but…

❌Scalar masses unprotected!

5

N3

�

N3
Np Nr

⇢ ⇢

FIG. 3. A sample one-loop diagram that can radiatively gen-
erate a new non-zero Majorana neutrino mass, starting from
a unique non-vanishing eigenvalue M33. The state ‰ is an
unspecified boson whose properties can be partially derived,
see the main text.

e�ectively massless, and the one loop diagram vanishes
in dimensional regularization as the integrals are scale-
less. The anapole moment can be induced by UV field
content leading to induced masses

3 fl
2
V M

5
33

16fi2 �4

5
1 + log µ

2

M
2
33

6
, (25)

when M33 ∫ M‰V . In general, there is no association of
fl

2
V with the numerical coincidence in Eq. (15) and the

combination fl
2
V M

4
33/�4 can be chosen to induce a mass

hierarchy. Further, in the case of a gauged U(1) field ‰
‹µ
V

the Higgs portal coupling is through ⁄
Õ
‰

‹µ
V ‰

‹µ
V H

†
H/�2.

The usual Hierarchy problem is present in the case of
the BSM induced Anapole moment, and in the case of a
scalar field ‰S/P .

Seeking to associate the Bosonic coupling with Ê and
also cancel the threshold contribution to the Higgs mass
leads to a minimally-supersymmetric SM (MSSM) ex-
tended with singlets N in the UV. The Higgs mass thresh-
old correction is then canceled, but the one-loop analogue
to Eq. (18) is given in Ref. [35]. No new �L = 2 contri-
bution is added and the seesaw RGE equation is merely
rescaled by an overall factor compared to the SM. The
conclusions of the previous section hold.

One can also consider models where L violation resides
in BSM couplings, rather than relying on the initial
M33 term. However, achieving the desired symmetry-

breaking and conserving patterns is not any easier in
these scenarios. Consider for example leptoquarks,
which can have either (B+L) conserving and (B-L) vio-
lating couplings or vice-versa. Because they necessarily
carry other quantum numbers (most importantly color
charge), the leptoquark lines always need to be closed
with conjugate vertices. This means that, in a one-loop
diagram, B and L violating terms always compensate
each other. In fact, independently of their quantum
numbers, leptoquarks can only generate a Majorana
mass at two loops [37, 38]. Any two-loop diagram is
highly suppressed and a not directly associated with the
numerical coincidence in Eq. (15) to achieve Mp ≥ PeV.

V. SUMMARY AND OUTLOOK

We have examined minimal extensions of the Neutrino
Option setup to induce Mp ≥ PeV Majorana masses from
a deep UV mass scale. Such an approach is primarily
motivated due to the numerical coincidence identified in
Eqn 15. Such perturbative mass generation mechanisms
must overcome the combined symmetry constraints of
required L violation while suppressing threshold contri-
butions to the Higgs mass. A natural symmetry protec-
tion mechanism relies on the Z2 symmetries present in
the LSM + LN Lagrangian itself. Such Z2 based sym-
metry protection, in the minimal setups we considered,
blocks the generation Mp ≥ PeV Majorana masses from
the deep UV scales and forbids a natural realization of
the numerical coincidence identified in Eqn 15. It is pos-
sible that more extended model building could overcome
this challenge.
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Non-perturbative speculations
What if the Majorana scale is not generated perturbatively, or through a new scalar 
VEV?  What if it is instead non-perturbative?

[2009.11813]
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former option is increasingly challenged by the lack of
LHC SUSY signals, and the latter is not solved by the
Neutrino Option.

Hence it is critical that SM excitations are stabilized in
the non-SUSY string embedding our present mechanism
assumes, or in any other embedding where (3) is main-
tained as dominant, such that a non-standard ‘Neutrino
Option’ exists. One option may be to simply assume a
low value of the string scale, as was done in [31], although
the requirement of large extra dimensions in this scenario
introduce additional considerations in D-brane models —
see e.g. [32] — and the preferred range of ms œ {1 ≠ 10}

TeV of [31] likely requires ‘non-perturbative’ flavour vec-
tors in the Neutrino Option. Regardless, in Section IV
we study low(er)-scale ms scenarios that may naively
be more compatible with non-SUSY constructions, and
show that without further theory constraints they are
also viable. Of course other e�orts to stabilize moduli
in non-SUSY compactifications exist (see e.g. [33] which
addresses intersecting D-branes in Type 0 string theory,
and [34] for a review of other ideas), and it was already
mentioned in [16] that the introduction of suitable fluxes
in the compactification (see e.g. [35]) could lift additional
zero modes of the D2-Brane instantons, thereby leaving
their deformation moduli stable. However, ultimately we
are unaware of any mechanism that has demonstrated
complete stability in the Type IIA non-SUSY intersect-
ing D-brane models of [16], or other scenarios that have
been shown capable of explicitly generating the SM +Np

spectrum of interest — whether this can be done remains
an open question in the string literature.6

In summary, for our phenomenological purposes here,
we simply assume a finite string embedding from the out-
set, and leave stabilization as a potentially limiting the-
oretical constraint on successful ultraviolet stringy Neu-
trino Options. On the other hand, the compelling ob-
servations of the upcoming Sections II-IV also provide a
novel motivation for further pursuing such embeddings,
as we show that, if found, the resulting theory can still
address the EW hierarchy and neutrino mass problems
within the Neutrino Option paradigm, i.e. in a manner
previously unconsidered.

B. Gravitational Condensation through the
Schwinger-Dyson E�ect

insert discussion here

C. Other Possibilities

insert discussion here

6 I am grateful to Graham Ross for pointing out the general con-
cern of SM string excitations in the Neutrino Option, and to
Angel Uranga for helpful commentary on the present literature.
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FIG. 2: Contours realizing (roughly) successful Neutrino
Options across a broad range of string scales, given the
scalings of the free parameters considered in the text.

IV. SCANNING VIABLE PARAMETER SPACES

We now explore the viable parameter space more com-
prehensively by varying the parameters relevant to calcu-
lating the Mp spectrum, which constitute the string scale
ms, the instanton suppression factors Sr, and the flavour
vectors d

(r)
a . Since our goal is to show that successful

Neutrino Options can be realized with a broad range of
string scales, we define the following scale-setting param-
eters

s © log10 ms, d © log10 d
(r)
a , p © log10 Mp, (23)

with dimensionful quantities given in GeV, and note that,
up to O(1) coe�cients and flavour e�ects, naive dimen-
sional analysis implies the following contour:

s + 2d ≠

3
1
2Sr + p

4
¥ 0 , (24)

where we assume non-hierarchical flavour vectors, but do
not assume the strict mixing limits of Section II.7 A suc-
cessful Neutrino Option then fixes p as in (5), such that
(24) defines a hyperplane with coordinates s, d, and Sr.
For the instanton suppression factors, one notices from
the mass-di�erence formula of (14) (and more generally
from (22)) that r > 1 is required to reproduce low-energy
neutrino data. This can be achieved naturally since each
Sr is associated to a di�erent instanton, as can hierarchies
amongst the individual Sr, facts that were first noted in
[28]. In what follows we consider the r = 3 case, such
that there are three non-zero eigenvalues in M . Continu-
ing, the string parameter s is only bound by experiment
— low values are interesting in general, but especially

7 Here we have slightly abused notation, setting Re(Sr) = Sr. In
the upcoming numerical analysis, we will treat Sr as a complex
number with randomly varied real and imaginary components.

Such a scenario exists in certain stringy orientifold compactifications:

However, this scenario is not yet predictive, nor am I aware of a fully consistent 
string theory that can generate the N mass term without additional excitations that 
destabilize the Higgs mass…

Other scenarios might exist, e.g. through gravitational condensation (see e.g. 
Barenboim et al.)

3

from which we also obtain the neutrino mass-squared dif-
ference formula

�m
2
rirj

© m
2
ri

≠ m
2
rj

= ÈHÍ
4

4m2
s

!
e

2Si ≠ e
2Sj

"
. (14)

This quantity is of course experimentally bound by neu-
trino oscillation experiments. The most recent global fit
from the NuFIT collaboration [36] puts these at

(NO): �m
2
21 œ {6.82 ≠ 8.04} · 10≠5 [eV]2 ,

�m
2
31 œ {2.435 ≠ 2.598} · 10≠3 [eV]2 , (15)

where we have shown the 3‡ range of values when the
neutrino masses are of normal ordering (NO). Inverted
ordering (IO) fits are also available, as are global bounds
on the PMNS elements Uij in (11), although as men-
tioned above these will all be O(Uij) . 1 due to unitarity
in our theoretical framework. So for the order of mag-
nitude estimate we attempt here we will not repeat the
explicit bounds. Hence, using a deep-UV ms,

ms ≥ {1016
≠ 1019

} GeV , ÈHÍ ≥ 246/

Ô
2 GeV ,

(16)

we can then use (13)-(15) to derive the rough order of
magnitude estimate

|Sr| ≥ O(10≠1
≠ 101) . (17)

This provides all of the information necessary to then
determine the expected scale of M .

To that end we can insert (12), (16), and (17) into
(21)-(22), and compute the eigenvalue spectrum of M .
As a first illustration we allow for three instantons and
choose the parameters randomly within the ranges spec-
ified above. For example, with ms = 1018 GeV one can
find

M3 ≥ O(106
≠ 1010) GeV,

M2 ≥ O(104
≠ 109) GeV,

M1 ≥ O(102
≠ 108) GeV . (18)

While this is only a qualitative estimate, made within
the simplified formalism implied by (6), the obvious im-
plication is that the PeV scales preferred in the Neutrino
Option can appear automatically in this formalism, given
GUT or Planckian string scales ms and values implied by
low energy neutrino phenomenology. Hence (18) and its
analogues across a broader range of ms represent the core
observation of this note, which we now study in more nu-
merical detail.

III. TOWARDS EXPLICIT ULTRAVIOLET
REALIZATIONS

A. D-Brane Instantons in Orbifold
Compactifications

In a series of papers [16, 17] (also see [18, 19]) it was
shown that a Majorana mass term of the form

ms e
≠U

NN (19)

can appear as a result of instanton e�ects in string
compactifications to four-dimensional (4D) SM and
minimally-supersymmetric SM (MSSM) spectra. Here
U is a set of complex string moduli and ms is the string
scale, and the term is allowed under the SM gauge sym-
metry and, as is ubiquitous in many classes of string
compactifications, an additional U(1)B≠L gauge symme-
try. This latter invariance is due to the fact that Im U is
(a linear combination of) axion-like complex scalar fields
which is also shifted by two units under B ≠ L, thereby
leaving the term invariant. The U(1)B≠L gauge boson
obtains a mass on the order of ms through a Stueckel-
berg mechanism, leaving in the ‘infrared’ (IR) only an
unbroken global U(1)B≠L and the gauge symmetry and
light particle spectrum of the SM (or e.g. the MSSM)
[20].3 In what follows we assume that no 4D SUSY is
present, although this implies important constraints on
the string embedding — see the discussion in Section ??.

For example, it was shown in [16] that (19) can appear
in Type IIA orientifolds where fermions appear as local-
ized string excitations at the intersection of D6-branes,
and where two such D6-branes further intersect with D2-
branes to be identified with the string instanton, giv-
ing rise to fermionic zero modes (Grassman variables)
that must be integrated over. This integration yields a
non-vanishing contribution to the fermion (N) bilinear
amplitude which, upon multiplying by the classical D2
instanton action, yields a Majorana mass matrix given
by4

Mab = ms

1
‘ij‘kld

ik
a d

jl
b

2
e

≠S
, (20)

where d represent flavoured couplings to be discussed be-
low, ‘ij is the antisymmetric unit tensor, and S is the

3 Hence MZÕ ≥ ms is a disconnected scale unrelated to a vacuum
expectation value [21], and any kinetic mixing between U(1)B≠L

and U(1)Y sectors typical of Stueckelberg-extended models (see
e.g. [22–26]) is suppressed by ms, and may not even be present
in the relevant classes of D-brane models [22, 27]. Of course, if
in a given model the ZÕ couples to B, two-loop Higgs corrections
can put naturalness constraints on ms or the unknown couplings.

4 Similar instanton e�ects can also generate a Weinberg operator
whose relative strength with respect to (20) is of phenomeno-
logical relevance, but is also model-dependent. In what follows
we assume that (20) is the dominant contribution to the light
neutrino spectrum.

ms:  fundamental (UV) scale

U:  suppression factor associated to 
non-perturbative dynamics

???

???

[0609213]

[0704.1079]

[0609191]
[0703028]
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instanton action with suppression factor Re(S). How-
ever, the D2-instantons giving rise to this also exhibit a
global internal symmetry in 4D, and in [17] a somewhat
exhaustive scan of available instantons/symmetries was
performed.5 The class that appeared most frequently
had an internal Sp(2) ≥= SU(2) symmetry that leads to a
form of (20) whose flavour structure factorizes according

to

Mab = 2 ms

ÿ

r

d
(r)
a d

(r)
b e

≠Sr , (21)

such that

M = 2ms

ÿ

r

e
≠Sr diag

1
d

(r)
1 , d

(r)
2 , d

(r)
3

2
·

Q

a
1 1 1
1 1 1
1 1 1

R

b · diag
1

d
(r)
1 , d

(r)
2 , d

(r)
3

2
. (22)

The sum over r accounts for the fact that, in general,
multiple instantons can contribute to the bilinear ampli-
tude, and it is clear that when r instantons are present,
there are 3≠r zero eigenvalues in (22). Note however that
(20)-(22) are not in their mass-eigenstate basis, and so
r ”= p. Furthermore, (22) has three inputs associated to
it: ms, Sr, and d

(r)
a . Following the discussion in [16, 28],

they constitute:
• ms: The string scale is not known, and could in

principle be as low as current LHC bounds allow,
although in the supersymmetric case one might
want to keep this scale high (e.g. the GUT scale)
to maintain coupling unification, etc. Regardless,
4D SUSY is not required for the mechanism to work
(see [16]) and we generally assume its absence here,
so when the seesaw mechanism is the dominant
source of IR neutrino masses (as opposed to the
Weinberg operator) as desired in the Neutrino Op-
tion, ms is essentially unconstrained.

• Sr: The instanton action is, critically, not as large
a suppression factor as in standard Yang Mills (e.g.
electroweak) instanton e�ects, which typically go
Ã e

≠1/g2
2 . In fact, there are no phenomenological

constraints on this parameter, such that the overall
suppression could be as small as an O(1) e�ect. For
the phenomenology of the next section to work, we
will find that |Re(Sr)| ≥ O(10≠1

≠101) is desirable,
although this depends on the string scale. Since the
overall normalization of the action is a free param-
eter in (at least some classes of) perturbative string
compactifications, this seems quite safe, and is in
fact consistent with the neutrino phenomenology
that was studied in [28].

• d(r)
a : The flavour vectors are fundamentally stringy

objects, and in certain classes of compactifications

5 While [17] was largely looking for MSSM-like spectra, the ap-
pearance of the internal Sp(2) is an independent phenomenon
and may very well appear in similar scans with no 4D SUSY. I
thank Luis Ibáñez for this clarifying comment.

they are computable, as are normal Yukawa cou-
plings (see e.g. [29]). However, they are also
model-dependent, so the authors of [28] took a phe-
nomenological perspective and allowed these to be
constrained by data. As we want to be as model-
independent as possible, we will do the same below.

Of course, as mentioned in [16], this stringy instanton
mechanism is quite general and may lead to Majorana
mass matrices of the form in (19) in multiple classes of
string compactifications (not just the Type IIA models
referenced above). Hence for our phenomenological pur-
poses we simply take (19)-(20), with the particular fac-
torization in (21), as the starting point of our analysis.
However, we emphasize that one does not require the
special democratic factorization in (21) for the Neutrino
Option to be successful — any sterile mass matrix with
Mp ≥ PeV, including a rank-two matrix with M1 = 0,
can work. However, (21) allows an intuitive understand-
ing of the role of each instanton in the tree-level non-
perturbative mass generation, and further allows for an
easy qualitative extraction of relevant UV scalings of ms,
d

(r)
a , and Sr from IR neutrino phenomenology in Sec-

tion II. Before proceeding though, an important com-
ment/caveat must be mentioned in order for the frame-
work to be fully consistent. As is obvious from (3), a
successful Neutrino Option relies on the fact that the
threshold corrections to mh from Np are in fact domi-
nant (or at least not sub-dominant), such that the origin
of the EW scale is both explained and remains stable.
However, in non-SUSY string embeddings one might ex-
pect potentially destabilizing radiative corrections to mh

on the order of –SM m
2
s, driven by Kaluza-Klein or string

excitations of SM states. Furthermore, solutions to mod-
uli stabilization which result in a 4D EFT with a massive
SUSY spectrum could circumvent the Neutrino Option
altogether — either the sparticles are roughly TeV scale
and there is no hierarchy problem (assuming safe radia-
tive corrections from sneutrino partners to Np), or they
are extremely heavy and can instead generate the hier-
archy problem, with or without heavy Np (although see
[30] for scenarios where this is not necessarily the case,
when SUSY is broken at an extremely high scale). The
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former option is increasingly challenged by the lack of
LHC SUSY signals, and the latter is not solved by the
Neutrino Option.

Hence it is critical that SM excitations are stabilized in
the non-SUSY string embedding our present mechanism
assumes, or in any other embedding where (3) is main-
tained as dominant, such that a non-standard ‘Neutrino
Option’ exists. One option may be to simply assume a
low value of the string scale, as was done in [31], although
the requirement of large extra dimensions in this scenario
introduce additional considerations in D-brane models —
see e.g. [32] — and the preferred range of ms œ {1 ≠ 10}

TeV of [31] likely requires ‘non-perturbative’ flavour vec-
tors in the Neutrino Option. Regardless, in Section IV
we study low(er)-scale ms scenarios that may naively
be more compatible with non-SUSY constructions, and
show that without further theory constraints they are
also viable. Of course other e�orts to stabilize moduli
in non-SUSY compactifications exist (see e.g. [33] which
addresses intersecting D-branes in Type 0 string theory,
and [34] for a review of other ideas), and it was already
mentioned in [16] that the introduction of suitable fluxes
in the compactification (see e.g. [35]) could lift additional
zero modes of the D2-Brane instantons, thereby leaving
their deformation moduli stable. However, ultimately we
are unaware of any mechanism that has demonstrated
complete stability in the Type IIA non-SUSY intersect-
ing D-brane models of [16], or other scenarios that have
been shown capable of explicitly generating the SM +Np

spectrum of interest — whether this can be done remains
an open question in the string literature.6

In summary, for our phenomenological purposes here,
we simply assume a finite string embedding from the out-
set, and leave stabilization as a potentially limiting the-
oretical constraint on successful ultraviolet stringy Neu-
trino Options. On the other hand, the compelling ob-
servations of the upcoming Sections II-IV also provide a
novel motivation for further pursuing such embeddings,
as we show that, if found, the resulting theory can still
address the EW hierarchy and neutrino mass problems
within the Neutrino Option paradigm, i.e. in a manner
previously unconsidered.

B. Gravitational Condensation through the
Schwinger-Dyson E�ect

insert discussion here

C. Other Possibilities

insert discussion here

6 I am grateful to Graham Ross for pointing out the general con-
cern of SM string excitations in the Neutrino Option, and to
Angel Uranga for helpful commentary on the present literature.

FIG. 2: Contours realizing (roughly) successful Neutrino
Options across a broad range of string scales, given the
scalings of the free parameters considered in the text.
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We now explore the viable parameter space more com-
prehensively by varying the parameters relevant to calcu-
lating the Mp spectrum, which constitute the string scale
ms, the instanton suppression factors Sr, and the flavour
vectors d

(r)
a . Since our goal is to show that successful

Neutrino Options can be realized with a broad range of
string scales, we define the following scale-setting param-
eters

s © log10 ms, d © log10 d
(r)
a , p © log10 Mp, (23)

with dimensionful quantities given in GeV, and note that,
up to O(1) coe�cients and flavour e�ects, naive dimen-
sional analysis implies the following contour:

s + 2d ≠

3
1
2Sr + p

4
¥ 0 , (24)

where we assume non-hierarchical flavour vectors, but do
not assume the strict mixing limits of Section II.7 A suc-
cessful Neutrino Option then fixes p as in (5), such that
(24) defines a hyperplane with coordinates s, d, and Sr.
For the instanton suppression factors, one notices from
the mass-di�erence formula of (14) (and more generally
from (22)) that r > 1 is required to reproduce low-energy
neutrino data. This can be achieved naturally since each
Sr is associated to a di�erent instanton, as can hierarchies
amongst the individual Sr, facts that were first noted in
[28]. In what follows we consider the r = 3 case, such
that there are three non-zero eigenvalues in M . Continu-
ing, the string parameter s is only bound by experiment
— low values are interesting in general, but especially

7 Here we have slightly abused notation, setting Re(Sr) = Sr. In
the upcoming numerical analysis, we will treat Sr as a complex
number with randomly varied real and imaginary components.
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scalings of the free parameters considered in the text.

IV. SCANNING VIABLE PARAMETER SPACES

We now explore the viable parameter space more com-
prehensively by varying the parameters relevant to calcu-
lating the Mp spectrum, which constitute the string scale
ms, the instanton suppression factors Sr, and the flavour
vectors d

(r)
a . Since our goal is to show that successful

Neutrino Options can be realized with a broad range of
string scales, we define the following scale-setting param-
eters

s © log10 ms, d © log10 d
(r)
a , p © log10 Mp, (23)

with dimensionful quantities given in GeV, and note that,
up to O(1) coe�cients and flavour e�ects, naive dimen-
sional analysis implies the following contour:

s + 2d ≠

3
1
2Sr + p

4
¥ 0 , (24)

where we assume non-hierarchical flavour vectors, but do
not assume the strict mixing limits of Section II.7 A suc-
cessful Neutrino Option then fixes p as in (5), such that
(24) defines a hyperplane with coordinates s, d, and Sr.
For the instanton suppression factors, one notices from
the mass-di�erence formula of (14) (and more generally
from (22)) that r > 1 is required to reproduce low-energy
neutrino data. This can be achieved naturally since each
Sr is associated to a di�erent instanton, as can hierarchies
amongst the individual Sr, facts that were first noted in
[28]. In what follows we consider the r = 3 case, such
that there are three non-zero eigenvalues in M . Continu-
ing, the string parameter s is only bound by experiment
— low values are interesting in general, but especially

7 Here we have slightly abused notation, setting Re(Sr) = Sr. In
the upcoming numerical analysis, we will treat Sr as a complex
number with randomly varied real and imaginary components.
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Summary and outlook
The Neutrino Option represents an elegant and minimal approach to solving the EW 
hierarchy problem alongside the neutrino mass (and potentially more) problem(s)!

However, minimal perturbative explanations for the origin of the Majorana mass 
scale required for Neutrino Option phenomenology seem limited due to global 
(discrete) symmetries (Lepton Number x Z2 Mass).

Other, less-minimal frameworks which introduce new states may be viable, e.g. the 
Conformal Neutrino Option of Brdar et al..

Non-perturbative mechanisms explaining the origin of the Majorana scale may 
exist!  Further formal analysis is required here.

Neutrino-Option-inspired phenomenology of sterile neutrinos possible — cf. 
ongoing work with Michael Trott (not discussed in this talk)…

THANK YOU! 


