Measurements of the CP structure of Higgsboson couplings with the ATLAS detector

Christian Grefe on behalf of the ATLAS collaboration

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Phenomenology 2022 Symposium, University of Pittsburgh May 10, 2022

> **FSP** ATLAS Erforschung von Universum und Materie

CP Violation in the Higgs Sector?

- **CP violating processes are necessary** requirement to explain matter-/antimatter (baryon) asymmetry in the universe (Sakharov conditions)
- Direct and indirect CP violation is experimentally well established in the SM:
 - Complex phases in CKM-matrix (quark mixing) and possibly in PNMS-matrix (neutrino mixing)
 - Not sufficient to explain observed baryon asymmetry in the universe
- Could Higgs boson interactions be another source of CP violation?
 - Pure CP-odd Higgs boson at $m_H pprox 125$ GeV has been ruled out during Run 1
 - Mixing of scalar (CP-even) and pseudo-scalar (CP-odd) Higgs bosons in extended Higgs sector models (2HDM, ...)
 - BSM particles contributing to loops (e.g. ggF production)

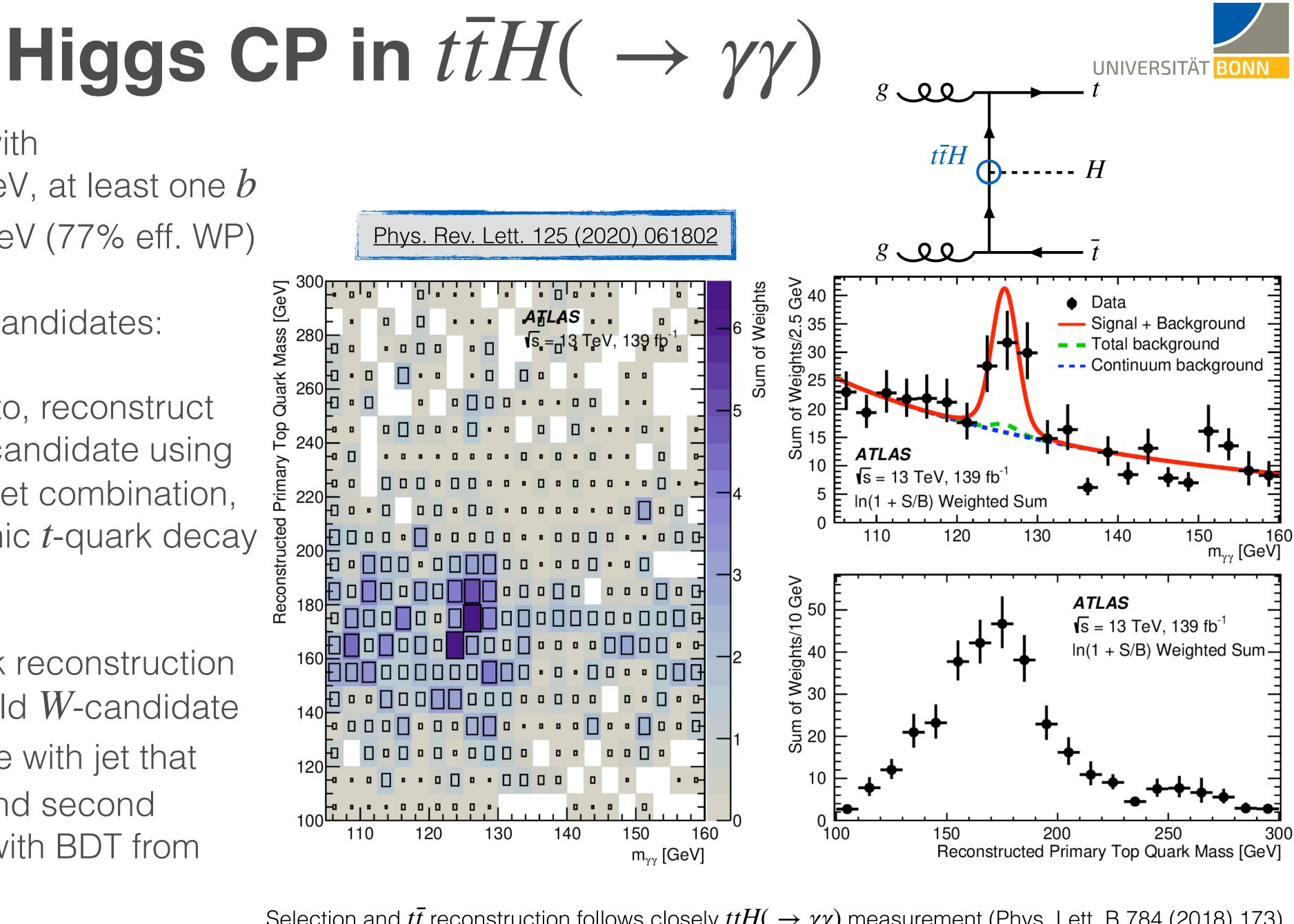
- Higgs CP analyses covered in this talk using Run 2 data:
 - $ttH(\rightarrow \gamma\gamma)$ [Phys. Rev. Lett. 125 (2020) 061802]
 - $ttH(\rightarrow bb)$ [ATLAS-CONF-2022-016], $\mathscr{L}_{int} = 139$ fb⁻¹, probing ttH
 - $pp \rightarrow jjWW(\rightarrow e\nu\mu\nu)$ [arxiv:2109.13808], $\mathscr{L}_{int} = 36.1$ fb⁻¹, probing ggH

- Previous results by ATLAS (not covered here)
 - $H \rightarrow \tau \tau$ in VBF production [Phys. Lett. B 805 (20)
 - $H \rightarrow \tau \tau$ in VBF production [Eur. Phys. J. C 76 (20)
 - $H \to WW \to e \nu \mu \nu, H \to ZZ \to 4\ell, (H \to \gamma \gamma)$ $\sqrt{s} = 7$ and 8 TeV, probing *VVH*

Overview

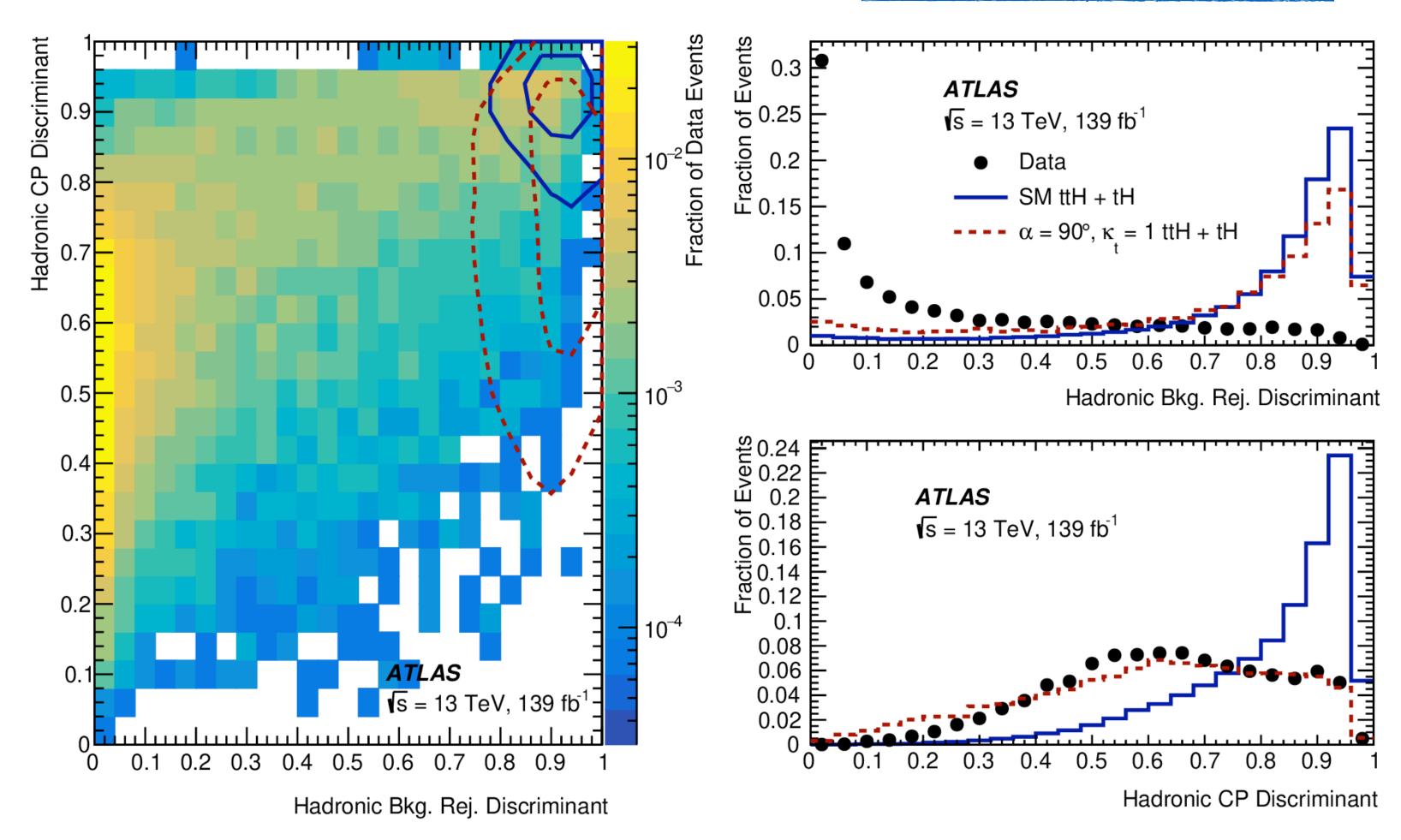
],
$$\mathscr{L}_{int} = 139 \, \mathrm{fb}^{-1}$$
, probing ttH

()20) 135426],
$$\mathscr{L}_{int} = 36.1$$
 fb⁻¹, $\sqrt{s} = 13$ TeV, probing
016) 658], $\mathscr{L}_{int} = 20$ fb⁻¹, $\sqrt{s} = 8$ TeV, probing VVH
[Eur. Phys. J. C 75 (2015) 476], $\mathscr{L}_{int} = 25$ fb⁻¹,



100^L

- 2 isolated "tight" photons with $p_T^{\gamma_1} > 35 \text{ GeV}, p_T^{\gamma_2} > 25 \text{ GeV}, \text{ at least one } b$ -tagged jet with $p_T > 25$ GeV (77% eff. WP)
- Reconstruction of *t*-quark candidates:
 - Had category: lepton veto, reconstruct hadronic *t*-quark decay candidate using a BDT: find most-likely 3 jet combination, repeat for second hadronic *t*-quark decay using remaining jets
 - Lep category: no *t*-quark reconstruction in case of 2ℓ . For 1ℓ build W-candidate from $\ell' + E_T^{\text{miss}}$, combine with jet that forms highest top BDT, find second hadronic *t*-quark decay with BDT from remaining jets

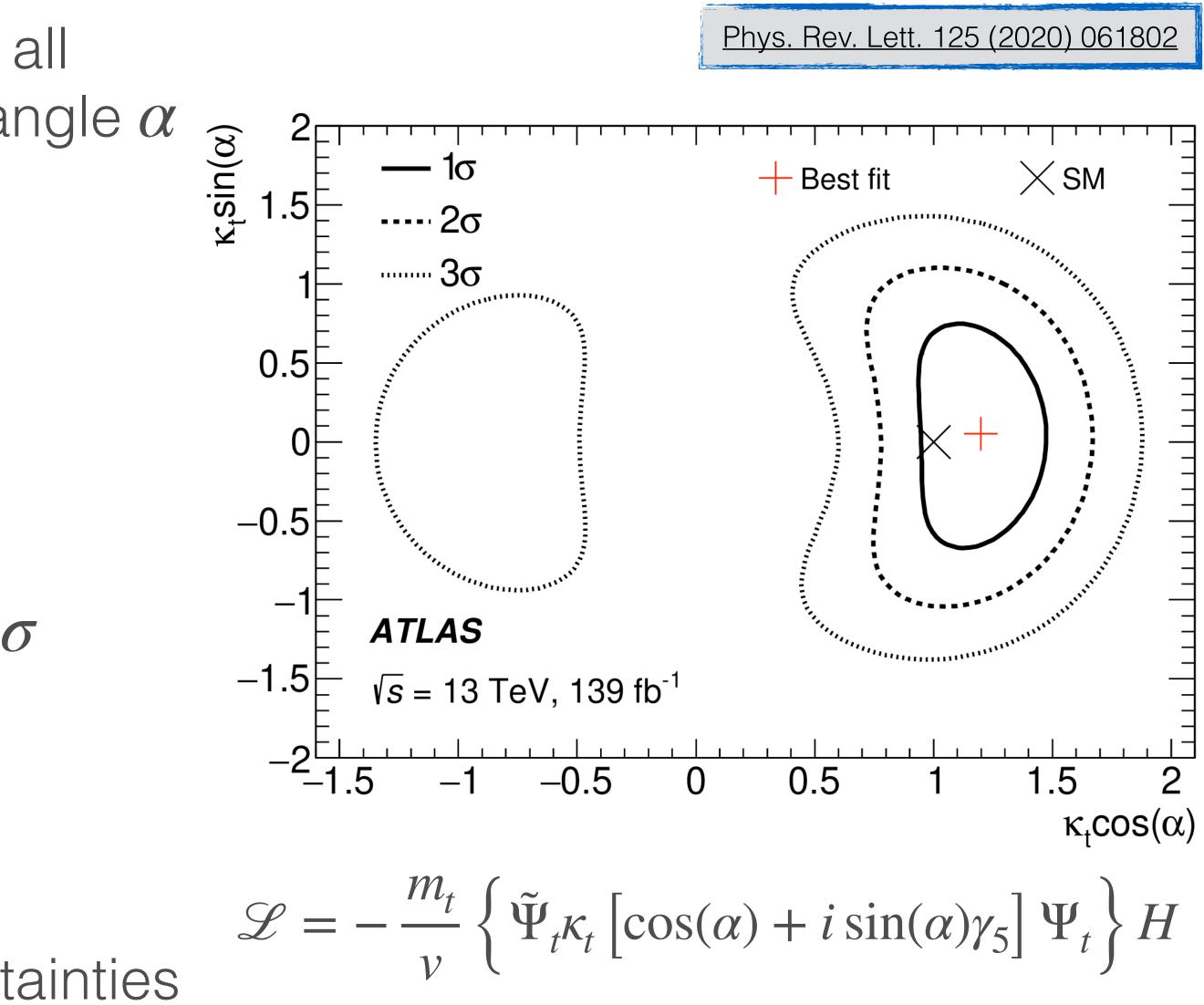


Selection and $t\bar{t}$ reconstruction follows closely $ttH(\rightarrow \gamma\gamma)$ measurement (<u>Phys. Lett. B 784 (2018) 173</u>)

- Dedicated Lep and Had BDTs to reject background from $\gamma\gamma$ + jets and $t\bar{t}\gamma\gamma$ (using 4vectors of γ 's, ℓ 's, jets and b-tag information)
- Used BDT score to define 20 signal regions (12 in Had and 8 in Lep category)
- CP BDT to separate CP-even and CP-odd signal hypothesis $(p_T, \eta \text{ of } \gamma \gamma \text{ and } t \text{-quark systems})$ invariant masses, angular differences, E_T^{miss})

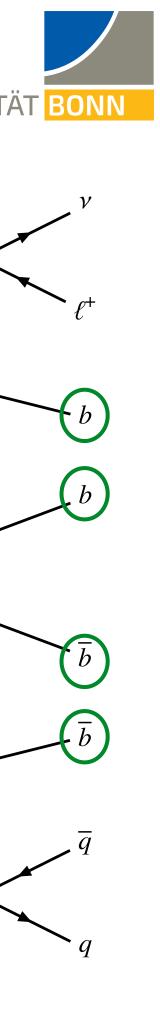
UNIVERSITAT

Phys. Rev. Lett. 125 (2020) 061802

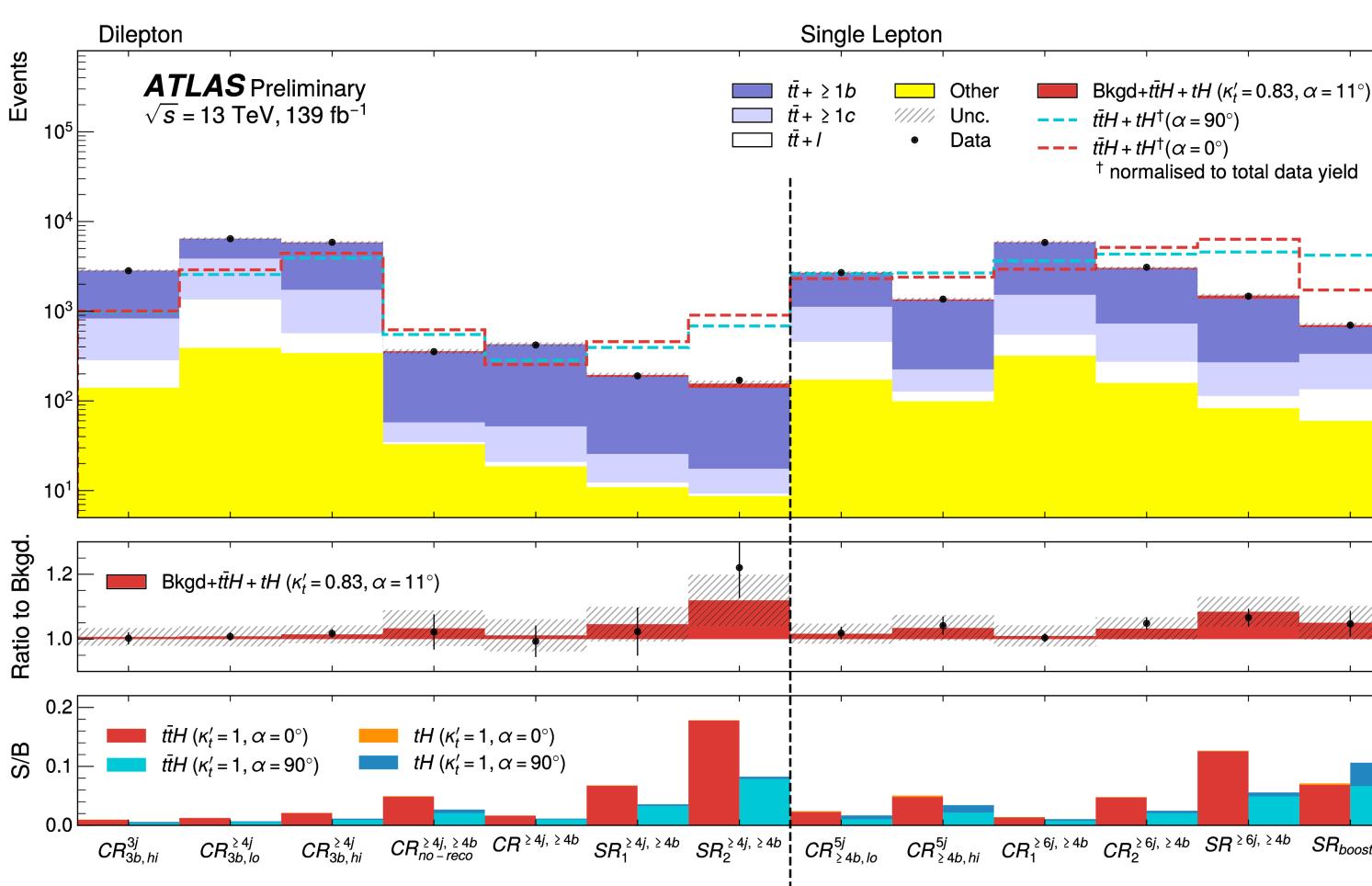


- Simultaneous maximum likelihood fit in all signal regions to constrain CP-mixing angle α and coupling strength κ_{t}
- Best fit result: $\mu_{ttH} = 1.43^{+0.33}_{-0.31} (\text{stat.})^{+0.17}_{-0.14} (\text{sys.})$ (assuming SM $BR_{H \rightarrow \gamma \gamma}$)
- Pure CP-odd coupling excluded at 3.9σ $(2.5\sigma \text{ expected})$
- $< 43^{\circ}$ (56° expected)
- The result is limited by statistical uncertainties

Higgs CP in $t\bar{t}H(\rightarrow \gamma\gamma)$



<u>AS-CON</u>	<u>NF-2022-(</u>	<u>D16</u>				CP in				PSR = preliminar	y signal region	
Region			Dilep			ℓ+ jets			(before BDT selection)			
10081011		$PSR^{\geq 4j, \geq 4b} CR_{hi}^{\geq 4j, 3b} CR_{lo}^{\geq 4j, 3b} CR_{hi}^{3j, 3b}$			$PSR^{\geq 6j, \geq 4b}$ $CR_{hi}^{5j, \geq 4b}$ $CR_{lo}^{5j, \geq 4b}$ $PSR_{boosted}$			g ellevel t		W ار		
N _{jets}			≥ 4		= 3	≥ 6	=	5	≥ 4	للمحوو	t	<u> </u>
	@85%		_				≥ 4	4	•			
Ν.	@77%		_				_		$\geq 2^{\dagger}$	tīH	↓ H	
N_{b-tag}	@70%	≥ 4		= 3			≥ 4		_		• ••••••	<
	@60%	_	= 3	< 3	= 3	_	≥ 4	< 4	_			
Nboosted	l cand.		_				0		≥ 1	فففقفقوه		


- ℓ +jets channel: 1 isolated lepton, at least 5 jets and 4 b-tagged jets
 - $p_T > 200 \, {\rm GeV}$
- Di-lepton channel: 2 (oppositely charged) leptons, at least 3 jets and 3 b-tagged jets
- Define various signal and control regions depending on the number of jets and number of b-tagged jets

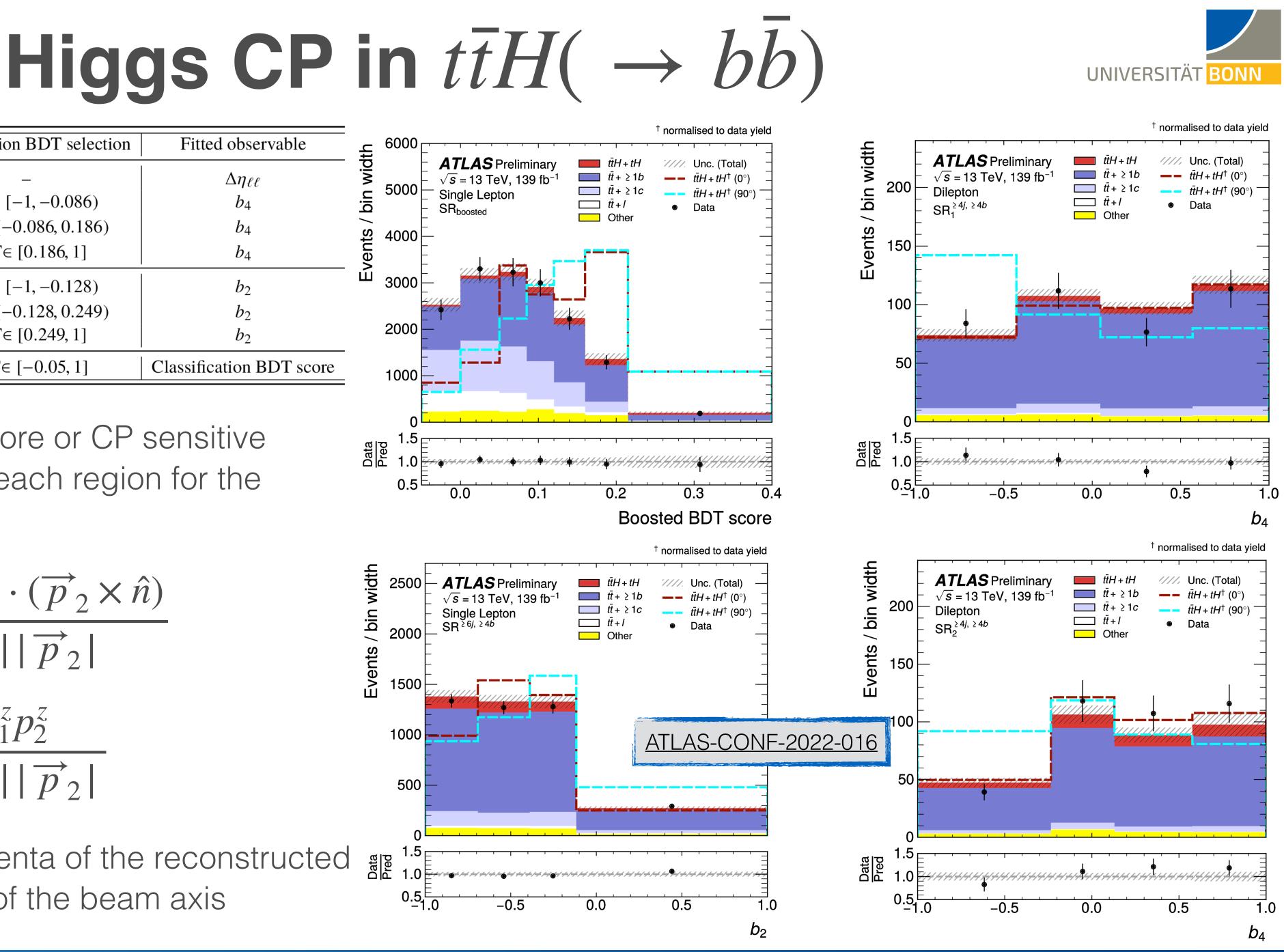
• Boosted H production covered in dedicated category: require an R = 1.0 anti- k_T jet with $m_{jet} > 50$ GeV and

- Dedicated BDTs trained for each category to assign the jets to Hand *t*-quark candidates (permutation with highest score)
- Additional BDT is used to separate signal (SM ttH) and backgrounds
- In the boosted category a Neural Network is used to identify $H \rightarrow bb$ candidates from the large *R* jets
- S/B > 8% (5%) in all SRs for CP-even (CP-odd) signal

Higgs CP in $t\bar{t}H(\rightarrow bb)$

UNIVERSITÄT

ATLAS-CONF-2022-016

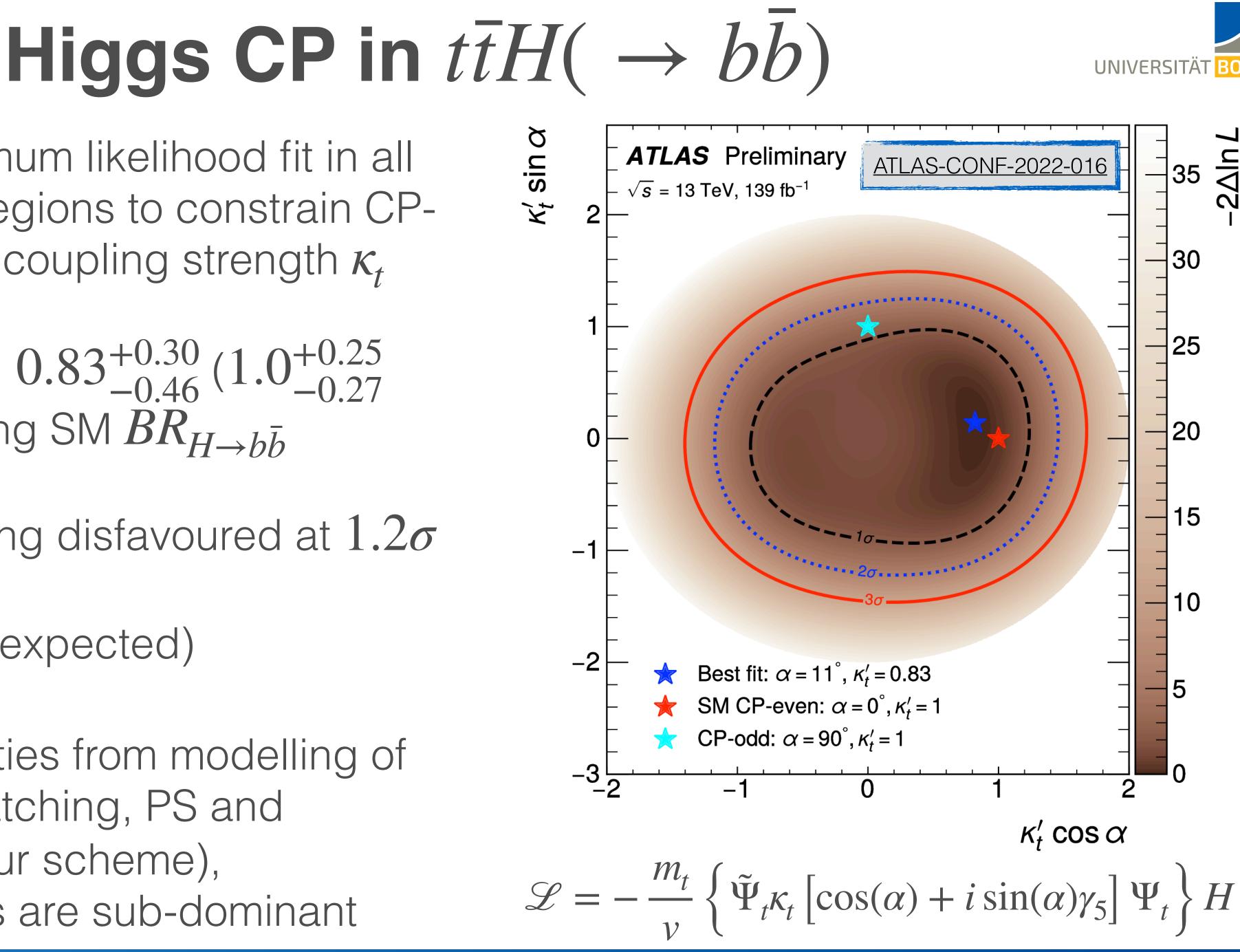


Channel (PSR)	Final SRs and CRs	Classification BDT selection	Fitted observable
	$CR_{no-reco}^{\geq 4j, \geq 4b}$	_	$\Delta\eta_{\ell\ell}$
Dilepton (PSR ^{$\geq 4j$, $\geq 4b$})	$\mathrm{CR}^{\geq 4j, \geq 4b}$	BDT∈ [−1, −0.086)	b_4
Dilepton (FSK)	$\frac{\mathrm{SR}^{\geq 4j, \geq 4b}}{\mathrm{SR}^{\geq 4j, \geq 4b}_{2}}$	BDT∈ [−0.086, 0.186)	b_4
	$\operatorname{SR}_2^{\geq 4j, \geq 4b}$	BDT∈ [0.186, 1]	b_4
	$CR_{1}^{\geq 6j, \geq 4b}$ $CR_{2}^{\geq 6j, \geq 4b}$ $SR^{\geq 6j, \geq 4b}$	BDT∈ [−1, −0.128)	b_2
ℓ + jets (PSR ^{$\geq 6j, \geq 4b$})	$\operatorname{CR}_{2}^{\geq 6j, \geq 4b}$	BDT∈ [−0.128, 0.249)	b_2
	$\operatorname{SR}^{\tilde{\geq}6j,\geq4b}$	BDT∈ [0.249, 1]	b_2
ℓ + jets (PSR _{boosted})	SR _{boosted}	BDT∈ [−0.05, 1]	Classification BDT score

• Use $\Delta \eta_{\ell\ell}$, boosted BDT score or CP sensitive observable distributions in each region for the combined fit:

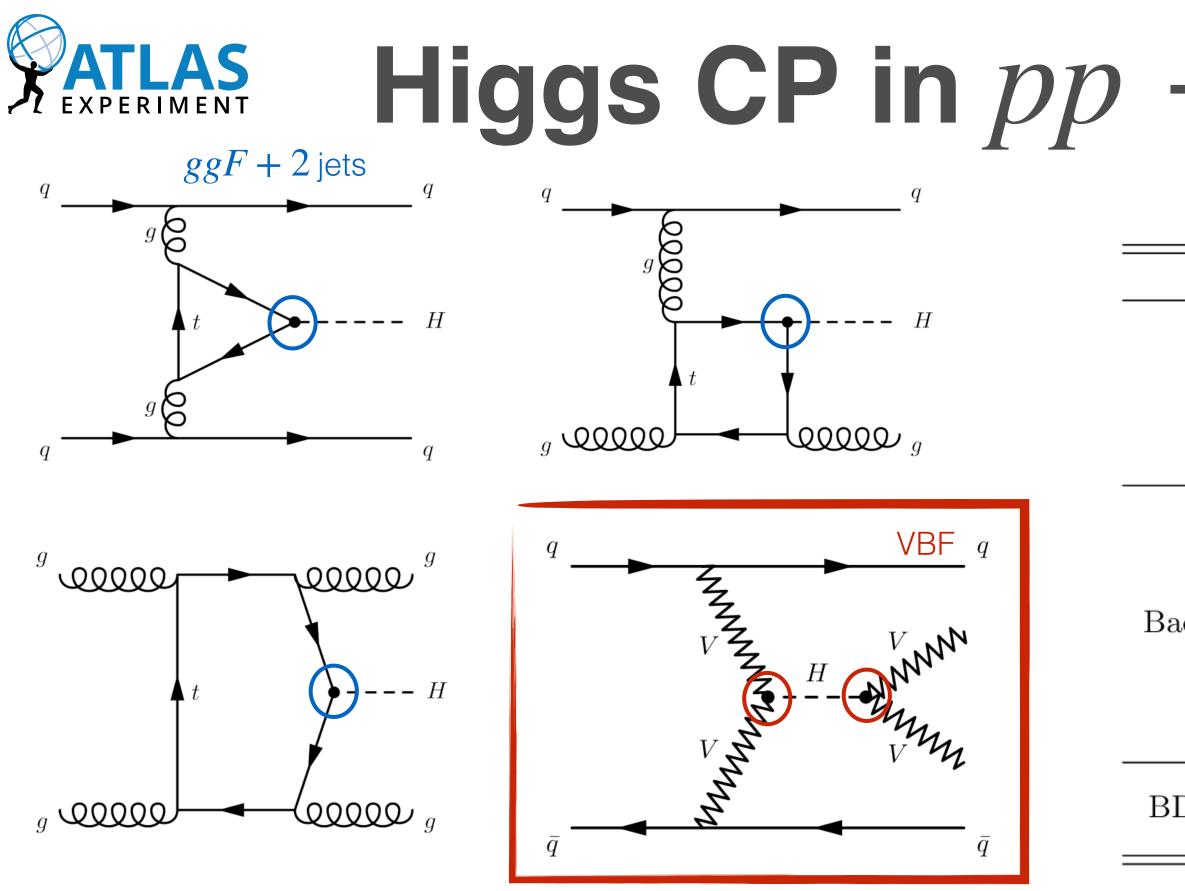
$$b_{2} = \frac{(\overrightarrow{p}_{1} \times \widehat{n}) \cdot (\overrightarrow{p}_{2} \times \widehat{n})}{|\overrightarrow{p}_{1}| |\overrightarrow{p}_{2}|}$$
$$b_{4} = \frac{p_{1}^{z} p_{2}^{z}}{|\overrightarrow{p}_{1}| |\overrightarrow{p}_{2}|}$$

• \vec{p}_1 and \vec{p}_2 are the 3-momenta of the reconstructed *t*-quarks, \hat{n} is the direction of the beam axis



- Simultaneous maximum likelihood fit in all signal and control regions to constrain CPmixing angle α and coupling strength κ_{t}
- Best fit result: $\mu_{ttH} = 0.83^{+0.30}_{-0.46} (1.0^{+0.25}_{-0.27})$ expected) - assuming SM $BR_{H \rightarrow b\bar{b}}$
- Pure CP-odd coupling disfavoured at 1.2σ

•
$$\alpha = 11^{+55}_{-77} \circ (0^{+49}_{-50} \circ \text{expected})$$


 Dominant uncertainties from modelling of $t\bar{t} + \geq 1b$ (NLO matching, PS and hadronisation, flavour scheme), experimental effects are sub-dominant

C. Grefe, Higgs CP @ ATLAS, Pheno22, Pittsburgh, 10.05.2022

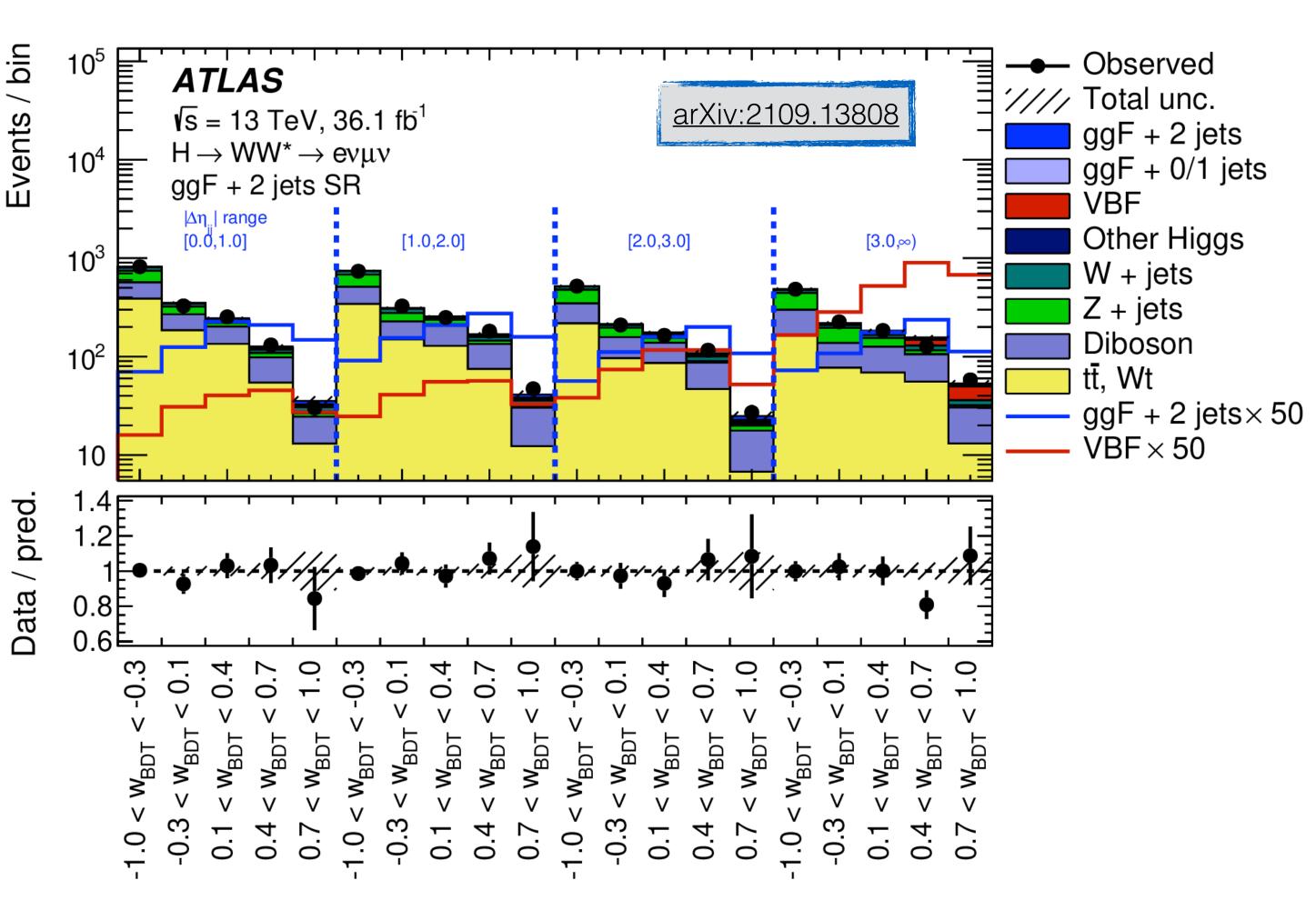
- Depending on the Higgs production mode the jjH can be used to probe CP violation in ggH(either *ttH* or BSM particles in the loop) or *VVH* couplings
- VBF channel is used to probe V-polarisation and will not be discussed here

Higgs CP in $pp \rightarrow jjWW(\rightarrow e\nu\mu\nu)$

arXiv:2109.13808

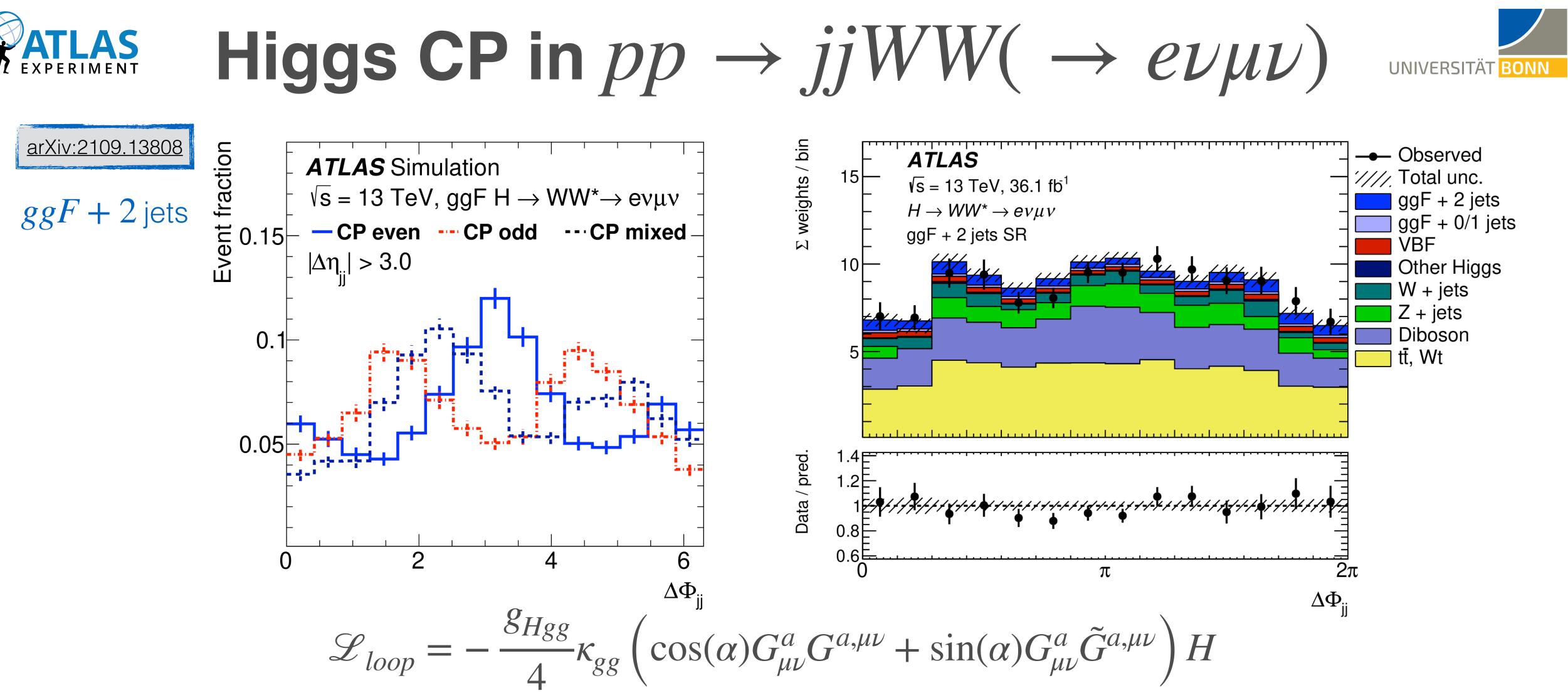
	ggF + 2 jets	VBF				
	Two isolated, different-flavour leptons $(\ell = e, \mu)$ with opposite of					
Preselection	$p_{\rm T}^{\rm lead} > 22 \; GeV, \; p_{\rm T}^{\rm sublead} > 15 \; GeV$					
Freselection	$m_{\ell\ell} > 10 \; GeV$					
	$N_{ m jet} \geq 2$					
	$N_{b\text{-jet},p_{\mathrm{T}}>20\;GeV}=0$					
	$m_{\tau\tau} < 66 \; GeV$					
ackground rejection	$\Delta R_{jj} > 1.0$					
ackground rejection	$p_{\mathrm{T},\ell\ell} > 20 \; GeV$	central jet veto				
	$m_{\ell\ell} < 90 \; GeV$	outside lepton veto				
	$m_{\rm T} < 150 \; GeV$					
DT input variables	$m_{\ell\ell}, m_{\mathrm{T}}, p_{\mathrm{T},\ell\ell}, \Delta\phi_{\ell\ell}$	$m_{jj}, \Delta y_{jj}, m_{\ell\ell}, m_{\mathrm{T}}, \Delta y_{\ell\ell}$				
Di input variables	$\min \Delta R(\ell_1, j_i), \min \Delta R(\ell_2, j_i)$	$\sum_{\ell} C_{\ell}, \sum_{\ell,j} m_{\ell,j}, p_{\mathrm{T}}^{\mathrm{to}}$				

Control region	ggF + 2 jets	VBF			
Top CR	$N_{b-\text{jet},(p_{\mathrm{T}}>30\ GeV)} = 1$	$N_{b\text{-jet},(p_{\mathrm{T}}>20\ GeV)} = 1$			
$Z \to \tau \tau \ CR$	$ m_{\tau\tau} - m_Z \le 25 \; GeV$				
	$p_{\mathrm{T},\ell\ell}$ requirement is omitted	$m_{\ell\ell}$; 80 GeV			
WW CR	$m_{\ell\ell} > 90 \; GeV$				
	$m_{\rm T}$ requirement is omitted				



- Use BDTs in both channels to separate signal and background (no CP sensitivity) using $m_{\ell\ell}$, m_T , $\Delta\phi_{\ell\ell}$, etc.
- Split ggF + 2 jets in 4x5 bins depending on $|\Delta\eta_{ii}|$ and BDT score
- Define highest 3 BDT score regions in all $|\Delta \eta_{ii}|$ bins as signal regions (12 total)

Higgs CP in $pp \rightarrow jjWW(\rightarrow e\nu\mu\nu)$


UNIVERSITÄT

- CP-even and CP-odd mixing affects the signed $\Delta \Phi_{ii}$ distribution
- Combined ML fit using $\Delta \Phi_{ii}$ distribution in all signal regions

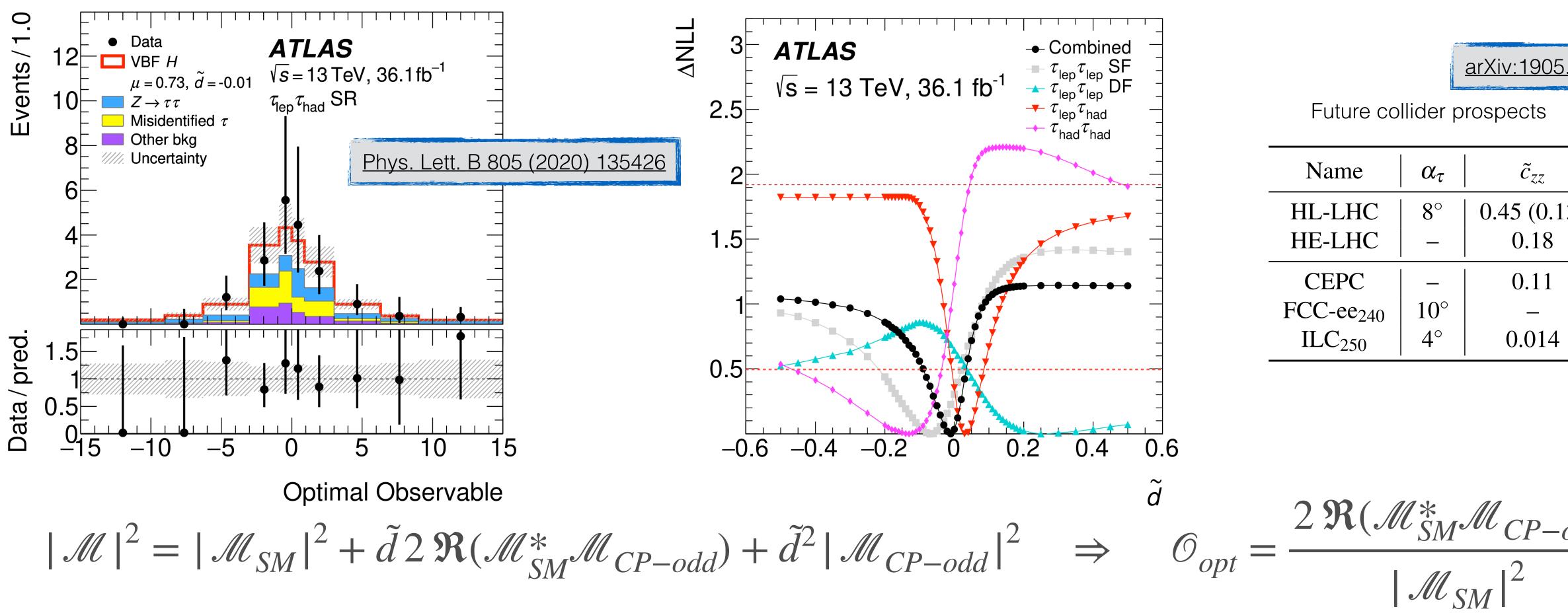
UNIVERSITÄT BONN

 $\mu_{ggF+2jets} = 0.5 \pm 0.4(\text{stat.})^{+0.7}_{-0.6}(\text{sys.})$

- $\tan \alpha = 0 \pm 0.4$ (stat.) ± 0.3 (sys.)

Conclusion and Outlook

- Continue to probe CP-properties of the Higgs boson: presented new results in $ttH(\rightarrow \gamma\gamma)$, $ttH(\rightarrow bb)$, $pp \rightarrow jjH(\rightarrow WW^*)$; first ATLAS results to probe Higgs CP-properties in Yukawa couplings
 - $ttH(\rightarrow \gamma\gamma)$ and $ttH(\rightarrow bb)$ both probe the ttH coupling directly (exploiting rate and shape) information) while $pp \rightarrow jjH(\rightarrow WW^*)$ exploits the ggF + 2 jets signature to indirectly probe ttH or BSM contributions in the loop using shape-only or rate + shape information
- Anomalous couplings that include a CP-odd component will (usually) modify differential cross-sections as well as coupling strength \rightarrow in order to prove CP-violation in the Higgs sector need to measure CPsensitive quantities directly (shape-only) as coupling strength can be modified by many BSM extensions
- Stronger exclusion limits on pure CP-odd Higgs and so far no sign of significant CP-odd component in *VVH* or *ffH* couplings
- Expect results on more final states probing CP in different Higgs couplings in the future
- **Looking forward to restart of the LHC** ~next month and more than doubling of data in Run 3!



Backup

C. Grefe, Higgs CP @ ATLAS, Pheno22, Pittsburgh, 10.05.2022

- Calculate \mathcal{O}_{opt} event-by-event in HAWK using reconstructed jets and H
 ightarrow au au system
- Captures full phase space information and can be used in any Higgs decay mode

CP Properties in Vector Boson Couplings

UNIVERSITÄT BONN
<u>arXiv:1905.03764</u>
prospects
$ ilde{c}_{zz}$
0.45 (0.13) 0.18
0.11
0.014
\mathcal{M}_{CP-odd})
SM $ ^2$

Higgs CP in $t\bar{t}H(\rightarrow bb)$

Uncertainty source	Δα	[°]
Process modelling		
Signal modelling	+7.9	-13
$t\bar{t} + \ge 1b$ modelling		
$t\bar{t} + \ge 1b \text{ 4V5 FS}$	+26	-40
$t\bar{t} + \ge 1b$ NLO matching	+24	-36
$t\bar{t} + \ge 1b$ fractions	+15	-23
$t\bar{t} + \ge 1b$ FSR	+5.2	-9.9
$t\bar{t} + \ge 1b$ PS & hadronisation	+17	-27
$t\bar{t} + \geq 1b p_{\rm T}^{b\bar{b}}$ shape	+5.7	-5.3
$t\bar{t} + \ge 1b$ ISR	+15	-26
$t\bar{t} + \geq 1c$ modelling	+7.4	-12
$t\bar{t}$ + light modelling	+2.7	-4.8
<i>b</i> -tagging efficiency and mis-tag rates		
<i>b</i> -tagging efficiency	+9.7	-17
<i>c</i> -mis-tag rates	+7.4	-12
<i>l</i> -mis-tag rates	+2.5	-3
Jet energy scale and resolution		
<i>b</i> -jet energy scale	+1.9	-4.2
Jet energy scale (flavour)	+8.8	-13
Jet energy scale (pileup)	+5.9	-9.2
Jet energy scale (remaining)	+9	-15
Jet energy resolution	+6.2	-10
Luminosity	$\leq \pm$	-1
Other sources	+5.4	-8.8
Total systematic uncertainty	+43	-58
$t\bar{t} + \geq 1b$ normalisation	+8.9	-15
κ'_t	+18	-35
Total statistical uncertainty	+34	-51
Total uncertainty	+55	-77

ATLAS-CONF-2022-016

C. Grefe, Higgs CP @ ATLAS, Pheno22, Pittsburgh, 10.05.2022

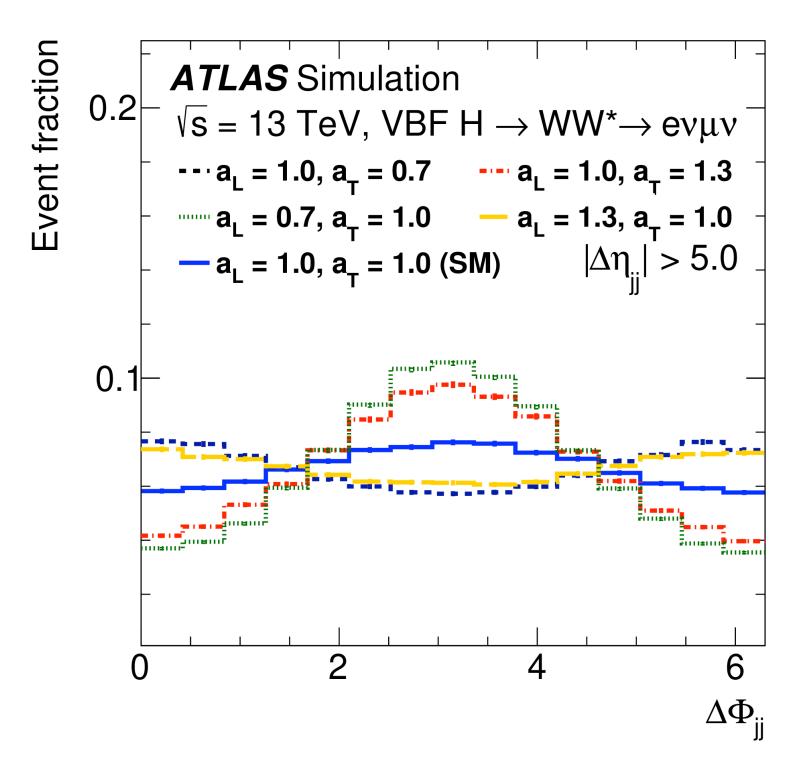
Uncertainty source	Δ	κ'_t
Process modelling		
Signal modelling	+0.09	-0.09
$t\bar{t} + \ge 1b$ modelling		
$t\bar{t} + \ge 1b \text{ 4V5 FS}$	+0.08	-0.24
$t\bar{t} + \ge 1b$ NLO matching	+0.15	-0.30
$t\bar{t} + \ge 1b$ fractions	+0.09	-0.22
$t\bar{t} + \ge 1b$ FSR	+0.02	-0.02
$t\bar{t} + \ge 1b$ PS & hadronisation	+0.08	-0.20
$t\bar{t} + \geq 1b p_{T}^{b\bar{b}}$ shape	+0.07	-0.11
$t\bar{t} + \ge 1b$ ISR	+0.06	-0.17
$t\bar{t} + \ge 1c$ modelling	+0.04	-0.10
$t\bar{t}$ + light modelling	+0.01	-0.01
<i>b</i> -tagging efficiency and mis-tag rates		
<i>b</i> -tagging efficiency	+0.06	-0.12
<i>c</i> -mis-tag rates	+0.03	-0.07
<i>l</i> -mis-tag rates	+0.01	-0.03
Jet energy scale and resolution		
<i>b</i> -jet energy scale	+0.02	-0.02
Jet energy scale (flavour)	+0.01	-0.05
Jet energy scale (pileup)	+0.02	-0.05
Jet energy scale (remaining)	+0.04	-0.08
Jet energy resolution	+0.03	-0.09
Luminosity	$\leq \pm 0$.01
Other sources	+0.03	-0.07
Total systematic uncertainty	+0.29	-0.45
$t\bar{t} + \ge 1b$ normalisation	+0.05	-0.15
α	+0.09	-0.07
Total statistical uncertainty	+0.09	-0.10
Total uncertainty	+0.30	-0.46

Higgs CP in $pp \rightarrow jjWW(\rightarrow e \nu \mu \nu)$ universität born

Process	Matrix element UEPS		PDF set	Perturbative accuracy
	(alternative n	nodel)		of total cross section
ggF	MG5_aMC@NLO 2.4.2	Рутніа 8.212	NNPDF3.0 NLO	NNNLO QCD
	$(MG5_aMC@NLO 2.4.2)$	+ Herwig 7.0.1)		
$\mathrm{VBF}^{(\star)}$	MG5_aMC@NLO 2.4.2 Pythia 8.212		NNPDF3.0 NLO	NNLO $QCD + NLO EW$
$VBF^{(\star\star)}$	Powheg-Box $v2$	Рутніа 8.212	PDF4LHC15 NLO	NNLO $QCD + NLO EW$
	$(MG5_aMC@NLO 2.3.3)$	+ Pythia 8.212)		
	(POWHEG-Box v2 +]	Herwig $7.0.1$)		
VH	Powheg-Box $v2$	Рутніа 8.186	PDF4LHC15 NLO	NNLO $QCD + NLO EW$
$tar{t}$	Powheg-Box v2 Pythia 8.210		NNPDF3.0 NLO	NNLO+NNLL QCD
	(Sherpa 2 .	2.1)		
	(POWHEG-Box v2 +]	Herwig $7.0.1$)		
Wt	Powheg-Box $v2$	Pythia 6.428	CT10	NLO QCD
	$(MG5_aMC@NLO 2.2.2)$	2 + Herwig + +)		
	(Powheg-Box v2 +	HERWIG++)		
$WZ/\gamma^*,~ZZ/\gamma^*$	Sherpa 2.	2.2	NNPDF3.0 NNLO	NLO QCD
	$(MG5_aMC@NLO 2.3.3)$	+ Pythia 8.212)		
$W\gamma, Z\gamma$	Sherpa 2.	2.2	NNPDF3.0 NNLO	NLO QCD
	$(MG5_aMC@NLO 2.3.3)$	+ Pythia 8.212)		
$qq, qg \to WW$	$\rightarrow WW$ Sherpa 2.2.2		NNPDF3.0 NNLO	NLO QCD
	$(MG5_aMC@NLO 2.3.3 + Pythia 8.212)$			
$gg \to WW$	Sherpa 2.	1.1	CT10	NLO QCD
Z/γ^*	Sherpa 2.	2.1	NNPDF3.0 NNLO	NNLO QCD
	$(MG5_aMC@NLO 2.2.2)$	+ Pythia 8.186)		

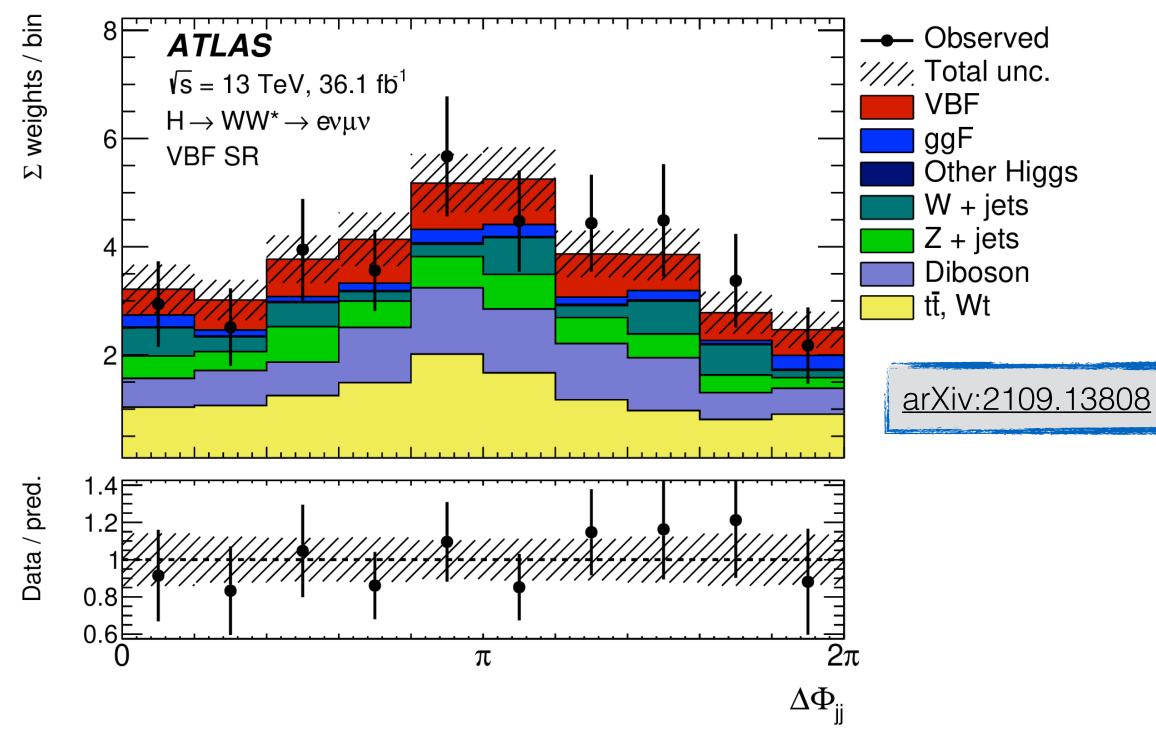
ggF + 2 jets					Source	$\Delta(\tan(\alpha))$
881 1 2 joto					Total data statistical uncertainty	0.4
					SR statistical uncertainty	0.33
					CR statistical uncertainty	0.10
					MC statistical uncertainty	0.14
Process	Top CR	WW CR	$Z \to \tau \tau \ \mathrm{CR}$	SR	Total systematic uncertainty	0.28
ggF + 2 jets	20 ± 20	< 0.1	10 ± 10	60 ± 80	Theoretical uncertainty	0.23
ggF + 0/1 jets	4 ± 1	< 0.1	3 ± 1	40 ± 20	Top-quark bkg.	0.15
VBF	8 ± 1	< 0.1	7 ± 1	70 ± 10	ggF signal	0.14
Other Higgs	6 ± 3	2 ± 1	20 ± 10	30 ± 10	$WZ, ZZ, W\gamma, Z\gamma$ bkg.	0.06
$t \overline{t}, W t$	17800 ± 200	3100 ± 500	390 ± 60	2300 ± 300	WW bkg.	0.06
WW	180 ± 80	1400 ± 500	200 ± 70	1200 ± 400	Z/γ^* bkg.	0.016
Z + jets	220 ± 30	16 ± 3	1960 ± 70	1000 ± 100	VBF bkg.	0.015
W + jets	600 ± 200	140 ± 30	90 ± 20	390 ± 80	Experimental uncertainty	0.010
Non- WW dibosons	40 ± 30	100 ± 30	120 ± 50	240 ± 80	-	
Observed	18886	4778	2800	5209	b-tagging	0.16
					Modelling of pile-up	0.10
					Jets	0.07
					Misidentified leptons	0.04
					Luminosity	0.034
					Total	0.5

Higgs CP in $pp \rightarrow jjWW(\rightarrow e \nu \mu \nu)$ university form



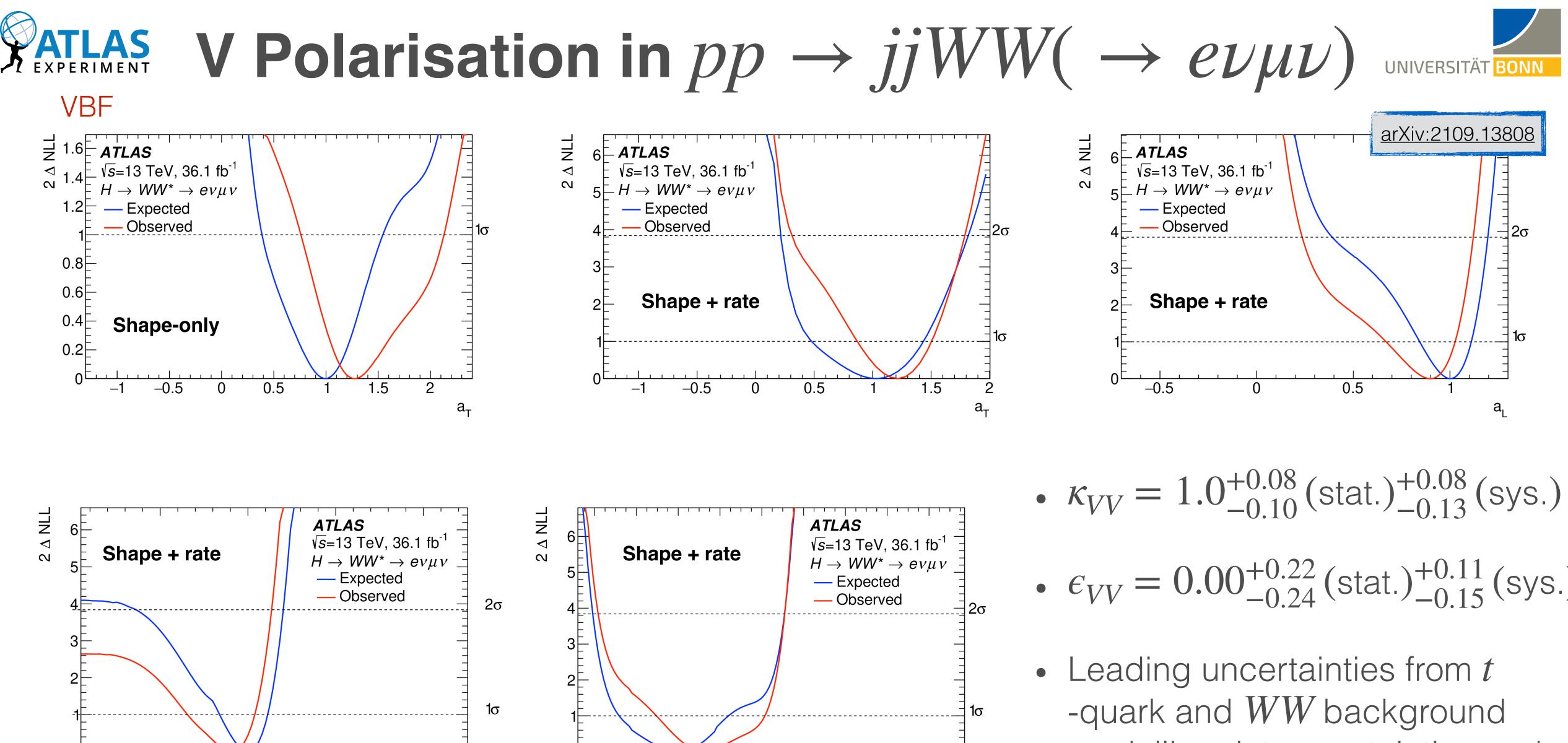
VBF

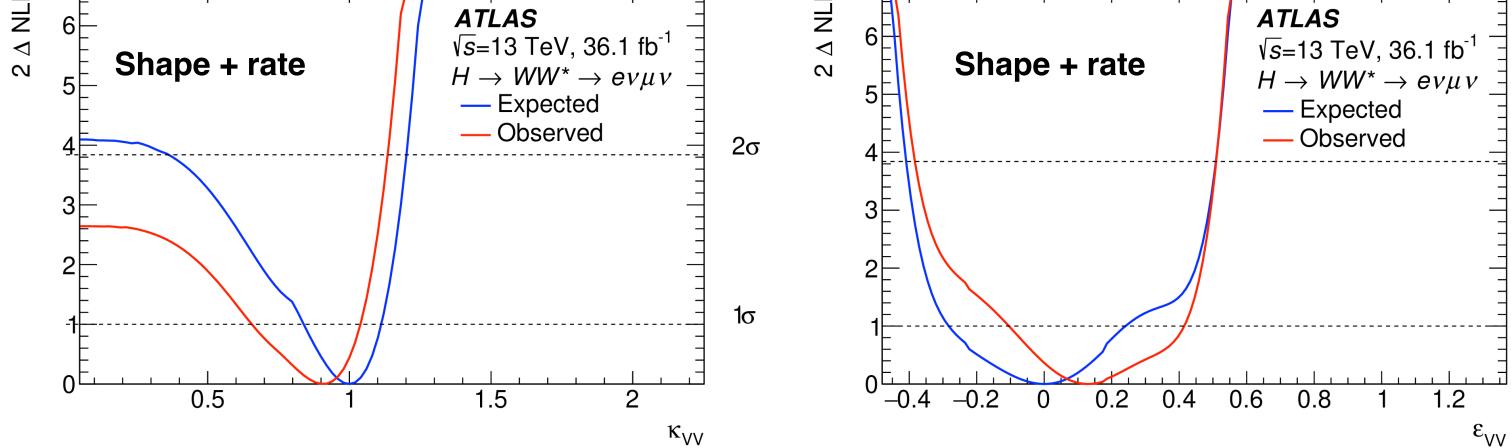
$$\mathscr{L} = \kappa_{VV} \left(\frac{2m_W^2}{v} H W_{\mu}^+ W^{-\mu} + \frac{2m_Z^2}{v} H Z_{\mu} Z W \right)$$


• Parametrise model as polarisation dependent coupling modifiers:

$$a_L = \frac{g_{HV_LV_L}}{g_{HVV}^{SM}}, \qquad a_T = \frac{g_{HV_TV_T}}{g_{HVV}^{SM}},$$

 $p \rightarrow jjWW(\rightarrow e \nu \mu \nu)$ universität bonn $Z^{\mu}\right) - \frac{\epsilon_{VV}}{2\nu} \left(2HW^{+}_{\mu\nu}W^{-\mu\nu} + HZ_{\mu\nu}Z^{\mu\nu} + HA_{\mu\nu}A^{\mu\nu}\right)$

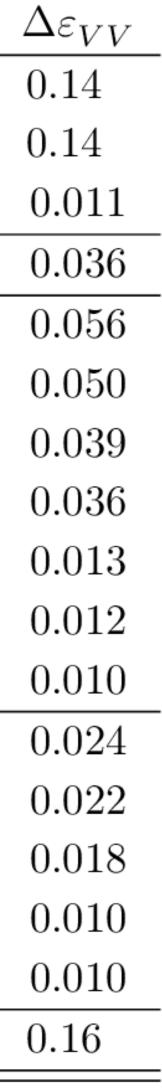

$$\kappa_{VV} \approx a_L, \quad \epsilon_{VV} \approx 0.5 \cdot (a_T - a_L)$$



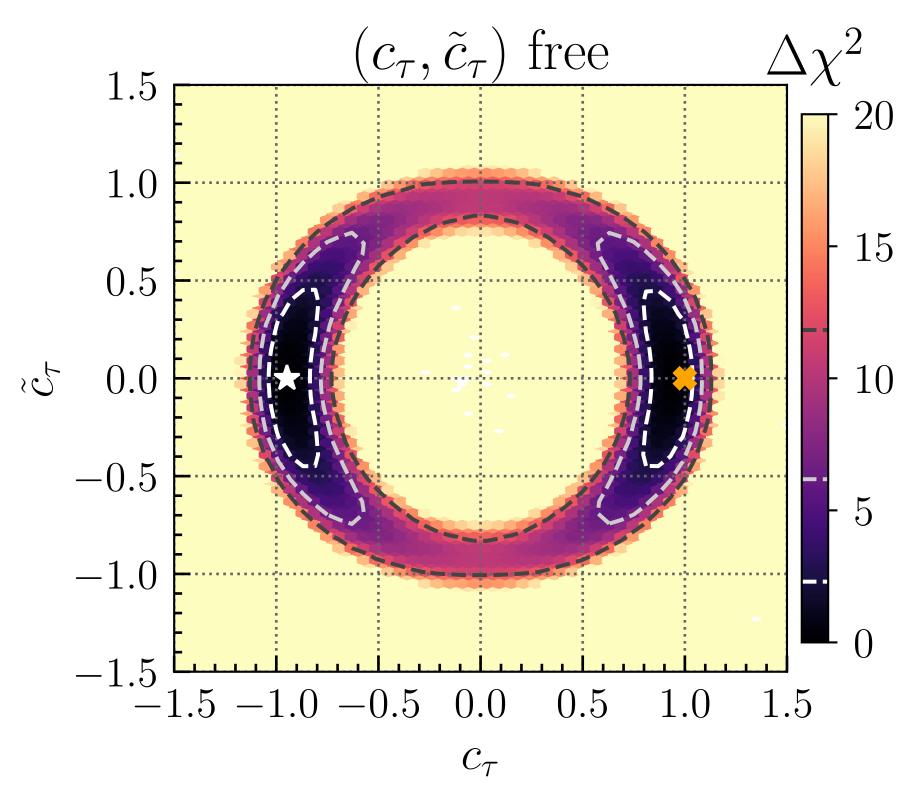
 ϵ_{VV}

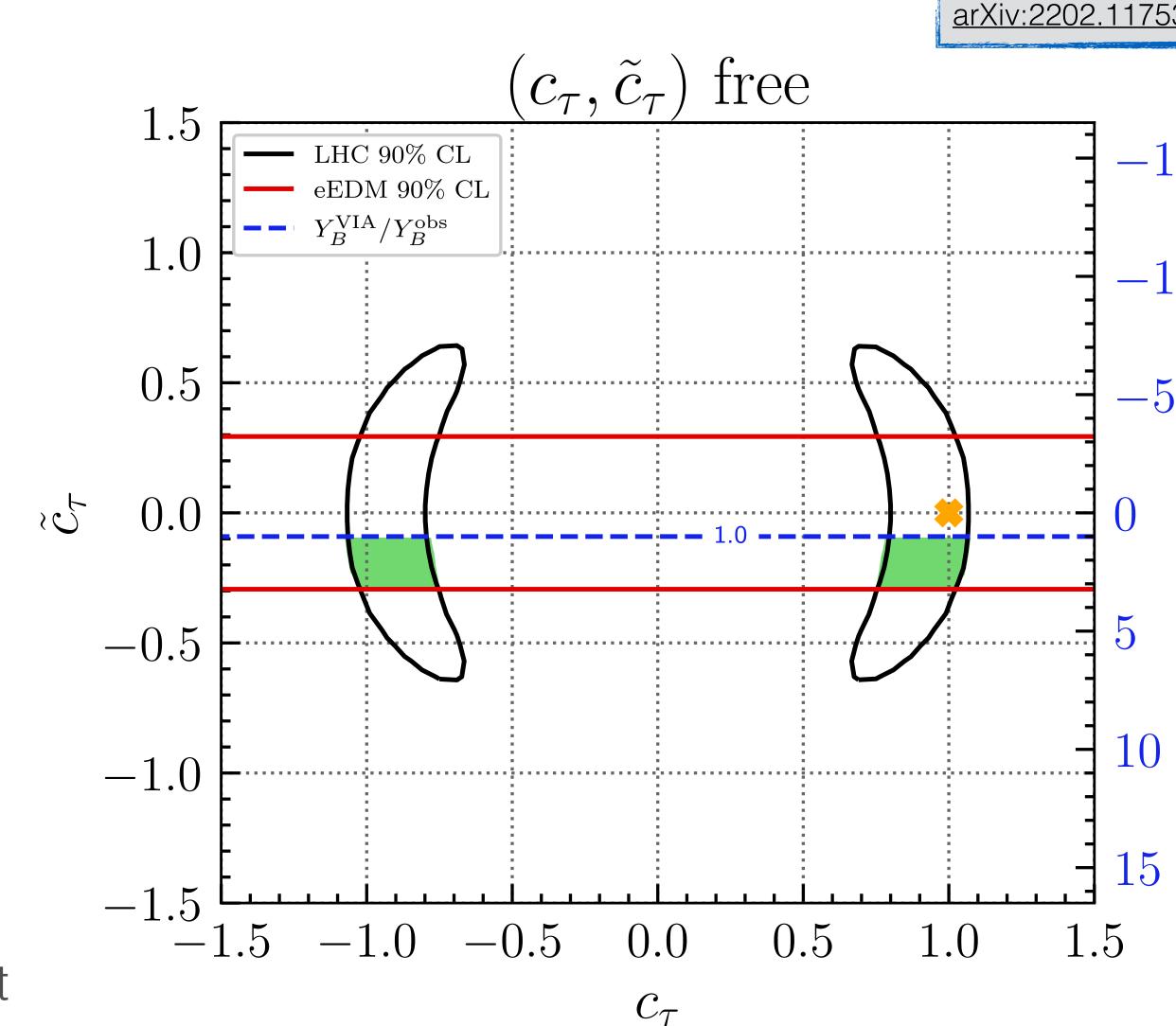
•
$$\epsilon_{VV} = 0.00^{+0.22}_{-0.24} (\text{stat.})^{+0.1}_{-0.1}$$

modelling, jet uncertainties and pile-up



ATLAS **V Polarisation in** $pp \rightarrow jjWW(\rightarrow e\nu\mu\nu)$


				Source	$\Delta \kappa_{VV}$	Source
				Total data statistical uncertainty	0.11	Total data statistical uncertainty
Process	Top CR	$Z \to \tau \tau \ \mathrm{CR}$	SR	SR data statistical uncertainty	0.10	SR data statistical uncertainty
VBF	3.2 ± 2.2	2.6 ± 1.8	34 ± 22	CR data statistical uncertainty	0.019	CR data statistical uncertainty
ggF Other Higgs	$\begin{array}{c} 3.9\pm1.7\\ 1.5\pm0.7\end{array}$	$2.4 \pm 1.0 \\ 6.2 \pm 3.1$	$\begin{array}{c} 28\pm12\\ 6.0\pm3.0 \end{array}$	MC statistical uncertainty	0.035	MC statistical uncertainty
$t\bar{t}, Wt$	7400 ± 100	53 ± 7	1220 ± 100	Total systematic uncertainty	0.12	Total systematic uncertainty
WW Z + jets	$\begin{array}{c} 51\pm 6\\ 54\pm 10\end{array}$	$21.8 \pm 2.9 \\ 370 \pm 24$	$\begin{array}{c} 360\pm70\\ 320\pm70 \end{array}$	Theoretical uncertainty	0.10	Theoretical uncertainty
W + jets	190 ± 40	23.0 ± 2.4	115 ± 27	Top-quark bkg.	0.072	Top-quark bkg.
Non-WW dibosons Observed	$ \begin{array}{r} 14.3 \pm 1.8 \\ 7668 \end{array} $	$\frac{20.8 \pm 3.3}{501}$	$\frac{83 \pm 11}{2164}$	WW bkg.	0.062	WW bkg.
	1000		2104	ggF bkg.	0.033	ggF bkg.
				Z/γ^* bkg.	0.017	Z/γ^* bkg.
				VBF signal	0.019	VBF signal
				Experimental uncertainty	0.050	Experimental uncertainty
				Jet	0.026	Modelling of pile-up
				b-tagging	0.014	Jet
				Luminosity	0.011	Misidentified leptons
				Misidentified leptons	0.007	b-tagging
				Total	0.17	Total



CP Violation and Global Constraints

- Combine $H\tau\tau$ coupling and CP measurements, with constraints from electron dipole moment (EDM) and Baryon asymmetry in the universe
- Current limits on CP violation in $H\tau\tau$ is sufficient to explain Baryon asymmetry!

