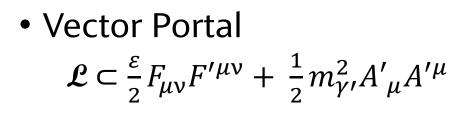
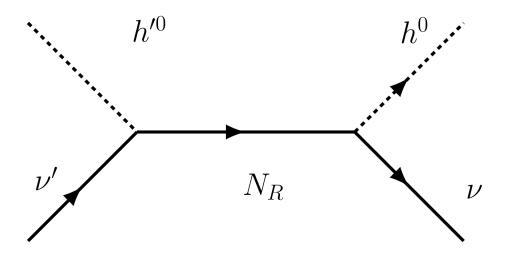
Asymmetric Dark Matter May Not Be Light

Bethany Suter

Collaborators: Eleanor Hall, Robert McGhee, Hitoshi Murayama Phenomenology Symposium 2022

Outline

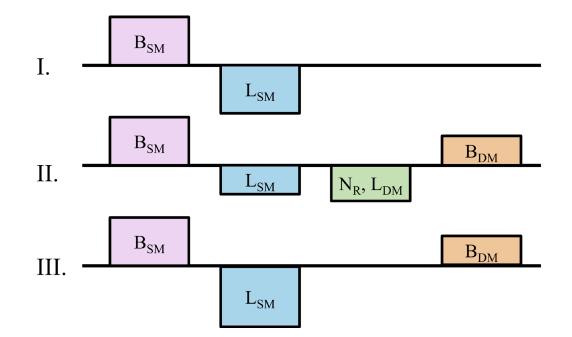

The Dark Sector


Introduce a minimal dark sector mimicking the SM:

- Gauge group: SU(3)' × SU(2)' × U(1)'
- One matter generation
- One Higgs doublet
- One right-handed Weyl neutrino

Portals

• Neutrino Portal $\mathcal{L} \subset y'_{N} \overline{L}' \hat{H}' N_{R} + y_{N} \overline{L} \hat{H} N_{R} + c.c$



$$A^{\prime\mu}$$
 A^{μ}

Asymmetry Transfer

- I. SM Electroweak Baryogenesis generates equal B_{SM} and L_{SM} asymmetries
- II. The neutrino portal transfers some SM lepton asymmetry over to the dark leptons and dark sphalerons convert it into dark baryon asymmetry
- III. Right-handed neutrino decays back into the SM

Equilibrium Thermodynamics

• Assuming all species are ultra relativistic, the Boltzmann equation simplifies to

$$n_{+} - n_{-} = \frac{g T^{3}}{3} \begin{bmatrix} \mu \\ T \end{bmatrix} (bosons)$$
$$n_{+} - n_{-} = \frac{g T^{3}}{6} \begin{bmatrix} \mu \\ T \end{bmatrix} (fermions)$$

- Up to a numerical factor, particle/antiparticle asymmetry can be represented by its chemical potential.
- We can use $B_{tot} L_{tot}$ conservation and all available interactions to find B' & L' in terms of initial B asymmetry.

Dark Matter Masses

Dark Sector EW Phase Transition	Dark Baryon Number	Dark Lepton Number	Predicted DM Mass	
1 st order	$B' = -\frac{72}{535}B$	$L' = \frac{168}{535}B$	<u></u> ρ' & π'	18.7 GeV
			<u>n</u> '	37.4 GeV
Crossover	$B' = -\frac{120}{1427}B$	$L' = \frac{360}{1427}B$	<u></u> ρ' & π'	29.9 GeV
			<u>n</u> '	59.9 GeV

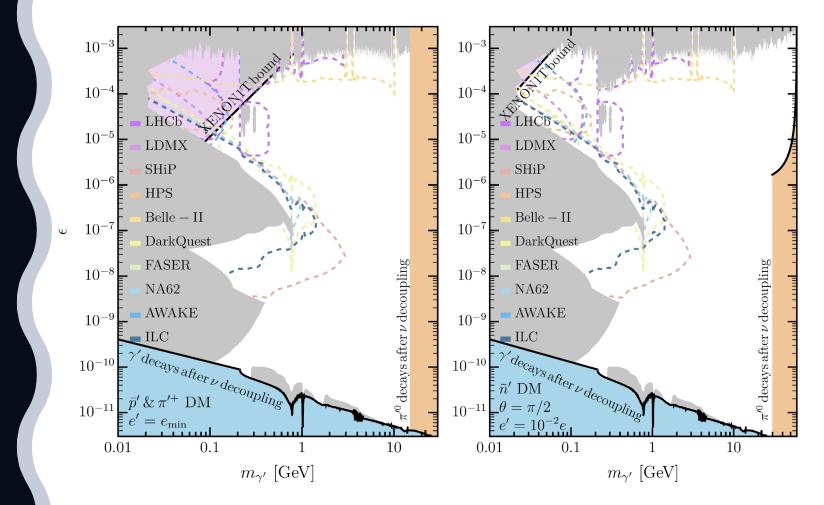
Dark Baryon Direct Detection

<u></u>ρ' & π' DM

- The scattering cross section for $\overline{p}' \& \pi' DM$ is • $\sigma_{\chi p} \approx \epsilon^2 e^2 e'^2 \frac{m_p^2 m_{\overline{p}'}^2}{\pi (m_p + m_{\overline{p}'})^4 m_{\gamma'}^4}$
- χ refers to either DM sub-component

<u>n</u> DM

• The scattering cross section for \overline{n} DM is


•
$$\sigma_{\overline{\mathsf{n}}'p} \approx \epsilon^2 \mathrm{e}^2 \mathrm{e}'^2 g^2 v^2 \frac{m_p^4 m_{\overline{\mathsf{n}}'}^2}{8\pi (m_p + m_{\overline{\mathsf{n}}'})^4 m_{\gamma'}^4}$$

• Assuming pions, baryons, and quarks have roughly equal masses, the tree-result is

•
$$g = -1.91 \frac{y m_{u'} m_{d'}}{(m_{u'} + m_{d'}) m_{\overline{n}'}} \sin(\theta)$$

 $\approx -1.91 \sin(\theta)$

Dark Photon Decay

- The viable ADM parameter space as projected onto dark photon mass versus kinetic mixing.
- Existing constraints on visibly decaying dark photons are shaded dark gray, while projected sensitivities are dashed.
- Color-shaded regions are ruled out by too-late decays and direct detection constraints
- Left: DM is 50% \overline{p} ' and 50% π '⁺ and e' = e_{min}. Right: DM is all \overline{n} and e' = 10⁻² e.

Detections at the ILC

Beam Dumps

Dark Spectroscopy -

Exotic Higgs Decays

- ILC beam dumps have the potential to reach higher $m_{\gamma'}$ than SHiP
- If ϵ is large, ILC can produce dark hadrons through off-shell dark photons
- Can identify resonance states via photon+missing signature
- Can potentially confirm the SU(3)' gauge group
- Dark Higgs and SM Higgs can mix via quartic coupling |H'|² |H|²
- SM Higgs \rightarrow dark states \rightarrow SM states

Conclusions

- With this new model, we have a simple dark sector which may be "added" onto existing models of electroweak baryogenesis to simultaneously explain DM.
- In the most minimal case, we predict a range of dark matter masses much higher than any previous models of asymmetric dark matter, up to nearly 60 GeV.
- Future experiments like the ILC will probe large swaths of the viable ADM parameter space. It can also probe other predicted interactions such as exotic Higgs decays.

Questions?

