- Authenticity Guarantee

Holographic Charizard Card

Price: US \$4,999.99

Ameen Ismail
Pheno 2022 Symposium
10 May 2022

Price: one Weyl a-anomaly

(how anomalies shape the dilaton action)

> arXiv:2205.xxxxx (keep your eyes peeled!) with C. Csáki, J. Hubisz, G. Rigo, and F. Sgarlata
> Pheno 2022 Symposium
> 10 May 2022

Conformal sectors are everywhere!

The Minimal Composite Higgs Model

in model building:

- Composite Higgs
- Warped models
- Dark matter
- Continuum states
- CC, hierarchy problems

Kaustubh Agashe ${ }^{a}$, Roberto Contino ${ }^{a}$, Alex Pomarol ${ }^{b}$
A Warped Model of Dark Matter

Tony Gherghettin and Benedict von Harlind ${ }^{\text {and }}$
Continuum Dark Matter

Csaba Csáki, ${ }^{a}$ Sungwoo Hong, ${ }^{a, b, c}$ Gowri Kurup, ${ }^{a, d}$ Seung J. Lee, ${ }^{c}$ Maxim Perelstein, ${ }^{a}$ and Wei Xue ${ }^{f}$

Crunching Dilaton, Hidden Naturalness
Csaba Csáki, ${ }^{1}$ Raffaele Tito D'Agnolo, ${ }^{2}$ Michael Geller, ${ }^{3}$ and Ameen Ismail ${ }^{1}$

On Renormalization Group Flows in Four Dimensions
in formal theory...

The big picture

Dilaton: NGB of spontaneously broken scale/conformal invariance

AdS/CFT relates dilaton to radion in holographic (warped) models

Weyl a-anomaly for the dilaton \Leftrightarrow chiral anomaly for the pion Three lessons:

- there are a-anomalous interactions at $\mathcal{O}\left(\partial^{4}\right)$,
- including four-dilaton interaction and dilaton-matter coupling,
- which have implications for collider pheno and cosmology

Dilaton effective Lagrangians I

Construct from coset methods (analogy: $\chi \mathcal{L}$ from $\left.S U(3)_{L} \times S U(3)_{R} / S U(3)_{V}\right)$

$$
S=\int d^{4} \times \frac{1}{2} f^{2} e^{-2 \tau}(\partial \tau)^{2}+\lambda e^{-4 \tau}+\mathcal{O}\left(\partial^{6}\right)
$$

τ : dilaton field; f : "decay constant"
Quartic allowed, unlike usual GBs
No terms at order ∂^{4}

Dilaton effective Lagrangians II

Anomaly manifests in curved background (analogy: background gauge field)

$$
\left\langle T_{\mu}^{\mu}\right\rangle=c W_{\mu \nu \rho \sigma}^{2}-a E_{4}, \quad E_{4}=\left(R_{\mu \nu \rho \sigma}^{2}-4 R_{\mu \nu}^{2}+R^{2}\right)
$$

Leads to anomaly action (analogy: WZW term):
$S_{a}=a \int d^{4} x \sqrt{g}\left[-\tau E_{4}-4 G^{\mu \nu} \partial_{\mu} \tau \partial_{\nu} \tau+4(\partial \tau)^{2} \square \tau-2(\partial \tau)^{4}\right]$

$$
\xrightarrow{\text { Minkowski }} 2 a \int d^{4} x(\partial \tau)^{4}+\mathcal{O}\left(\partial^{6}\right)
$$

Upshot: a-anomalous interaction survives in flat space!

Dilatons in AdS/CFT

$y_{\mathrm{UV}} \rightarrow-\infty$

Radion/dilaton mode + background bundled into A (e.g.
$\langle A\rangle=k y)$
$h_{\mu \nu}$ parametrizes KK + massless graviton fluctuations

Holographic dilaton action: setup

Compactify on interval ($y_{\mathrm{UV}}, y_{\mathrm{IR}}$)
5D Planck scale $M_{5}^{3}=1 /\left(2 \kappa^{2}\right)$, CC $\Lambda=-6 k^{2}$
$S_{5 D, \text { grav }}=-\frac{1}{2 \kappa^{2}} \int d^{5} x \sqrt{g}(R+2 \Lambda)-\frac{1}{\kappa^{2}} \sum_{i=\mathrm{UV}, \mathrm{IR}} \int d^{4} x \sqrt{g_{i}}\left(K_{i}+\lambda_{i}\right)$
Simple IR-localized matter model:

$$
S_{\text {matter }}=\int d^{4} x \sqrt{g_{\mathrm{IR}}} \mathcal{L}_{\text {matter }}\left(\psi_{\text {light }}\right)
$$

Strategy: integrate out KK gravitons in a derivative expansion (to do this, solve Einstein equations)

Holographic dilaton action: order ∂^{2}

Set $h_{\mu \nu}=0: d s^{2}=e^{-2 A} \eta_{\mu \nu} d x^{\mu} d x^{\nu}-B^{2} d y^{2}$
Kinetic + quartic,

$$
S_{\text {radion }}=\int d^{4} x \frac{f^{2}}{2} e^{-2 \tau}(\partial \tau)^{2}-\left(\lambda+6 k^{2} / \kappa^{2}\right) e^{-4 \tau}
$$

with $\tau=A\left(y_{\mathrm{IR}}\right)-\left\langle A\left(y_{\mathrm{IR}}\right)\right\rangle$
"Decay constant" $f^{2}=6 /\left(\kappa^{2} k\right) e^{-2\left\langle A\left(y_{\text {IR }}\right)\right\rangle}$ —not the same as KK scale $M_{\mathrm{KK}}=k e^{-\left\langle A\left(y_{\mathrm{IR}}\right)\right\rangle}$

Quartic leads to runaway potential unless tuned, $\lambda=-6 k^{2} / \kappa^{2}$

Holographic dilaton action: order ∂^{4}

After a lot of calculation (no longer have $h_{\mu \nu}=0!$)...

$$
S_{\text {radion }}=2 a\left[(\partial \tau)^{4}+\partial^{\mu} \tau \partial^{\nu} \tau\left(T_{\mu \nu}-\frac{1}{6} \eta_{\mu \nu} \tau\right)\right]
$$

with $a=1 /\left(8 \kappa^{2} k^{3}\right)$
Self-interaction and dilaton-matter couplings In terms of N of dual CFT $\left(N^{2} \sim 1 /\left(\kappa^{2} k^{3}\right)\right.$):

$$
a=N^{2} /\left(64 \pi^{2}\right)
$$

agrees with anomaly-matching arguments!

Phenomenology

Change variables to $\phi=f e^{-\tau}$, expand about vev $\phi=f+\varphi$:

$$
\mathcal{L}_{\text {radion }} \supset \frac{1}{2}(\partial \varphi)^{2}+\frac{\pi^{2}}{3 N^{2} M_{\mathrm{KK}}^{4}} \partial^{\mu} \varphi \partial^{\nu} \varphi\left(T_{\mu \nu}-\frac{1}{6} \eta_{\mu \nu} T\right)
$$

Novel dimension-8 operator; can probe N via e.g. radion production cross-sections

Contrast usual matter coupling to trace of $T_{\mu \nu}(\sim \phi T)$
-contact interaction with scale-invariant fields (g, γ)

Toy cosmology

Homogeneous $\phi=\phi(t), \lambda>0$
$\mathcal{L}_{\text {radion }} \supset \frac{1}{2} \dot{\phi}^{2}-\lambda \phi^{4}+2 a \frac{\dot{\phi}^{4}}{\phi^{4}}$
a-term acts as field-dependent viscosity, an "anomaly drag"

Effects qualitative change in behaviour

- smooths out singularity
- changes EOS

Toy cosmology

Homogeneous $\phi=\phi(t), \lambda>0$
$\mathcal{L}_{\text {radion }} \supset \frac{1}{2} \dot{\phi}^{2}-\lambda \phi^{4}+2 a \frac{\dot{\phi}^{4}}{\phi^{4}}$
a-term acts as field-dependent viscosity, an "anomaly drag"

Effects qualitative change in behaviour

- smooths out singularity
- changes EOS

Thank you!

- Authenticity Guarantee

Holographic Dilaton Action

Price: one Weyl a-anomaly

Images: eBay, Particle Zoo
contact: Ameen Ismail, ai279@cornell.edu

