Optimal Transport for Jet Physics

Speaker: Tianji Cai Conference: Phenomenology 2022 Symposium (University of Pittsburgh)

Based on "Which metric on the space of collider events?" [2111.03670]
"Linearized Optimal Transport for Collider Events" [2008.08604]
w/ Junyi Cheng, Nathaniel Craig (P.I.) & Katy Craig,
"The Linearized Hellinger-Kantorovich Distance" [2102.08807]
w/ J. Cheng, B. Schmitzer, M. Thorpe

Department of Physics

UC SANTA BARBARA

Contents

• Introduction:

Why OT & What is OT, OT as the Metric, EMD & Its Generalization

Theory of Optimal transport: 1.0 Balanced OT, Unbalanced OT, Practical Limitation, $0.5 \cdot$ Linearized Optimal Transport (LOT) of LOT for Jet Tagging Summary 0.0 -0.5

1. Introduction: Why Optimal Transport & What is OT?

Goal: Want a way to quantify the **distance** between collider events/jets.

Optimal Transport is a well-developed mathematical theory defining a family of metrics between two distributions.

1781: Gaspard Monge,

Mémoire sur la théorie des deblais et des remblais (On cuttings and embankments)

1942: Leonid Kantorovich, On the translocation of masses

1999: Felix Otto,

The geometry of dissipative evolution equations: the porous medium equation

2000: Felix Otto, Cedric Villani,

Generalization of an inequality by Talagrand, as a consequence of the logarithmic Sobolev inequality

2010: Cedric Villani wins Fields medal

2018: Alessio Figalli wins Fields medal

Fundamental problem of optimal transport:

How to rearrange **f** to look like **g** with the **least amount of "work"?**

In other words, how can we optimally transport **f** to **g**?

1. Introduction: Why OT as the Metric?

Consider two particles with unit energy.

Image-based approach

Bin on N-bin grid, represent energy distribution by vectors in **R**^N, compute Euclidean distance between vectors

$$d_{\ell^2(\mathbb{R}^N)}(\mathcal{E},\tilde{\mathcal{E}}) = \left(\sum_{i=1}^N |v_i - \tilde{v}_i|^2\right)^{1/2} = \sqrt{2}$$

regardless of positions

OT-based approach

Invaluable if the relative distribution of pixels carries meaning

OT preserves the underlying geometry!

1. Introduction: EMD & Its Generalization

1. Introduction: EMD & Its Generalization

P. Komiske, E. Metodiev, J. Thaler [1902.02346] Different conditions for the unbalanced case

2. Theory of Optimal Transport

Balanced OT: Mass can only be transported, not created or destroyed. => Total mass has to be equal.

Unbalanced OT: Mass can be transported, created and destroyed. => Total mass can be unequal.

Credit: L. Chizat, G. Peyré, B. Schmitzer, F-X. Vialard on <u>G. Peyré's Github</u>.

Department of Physics

2. Theory of OT: Balanced & Unbalanced

p-Wasserstein Distance

p=1: EMD

p=2: Monge-Kantorovich Distance (W₂); has a (weak) Riemannian structure, thus can be linearized.

$$W_p(\mathcal{E}, \tilde{\mathcal{E}}) = \min_{g_{ij} \in \Gamma(\mathcal{E}, \tilde{\mathcal{E}})} \left(\sum_{ij} g_{ij} \|x_i - \tilde{x}_j\|^p \right)^{1/p}$$
$$\Gamma(\mathcal{E}, \tilde{\mathcal{E}}) = \left\{ g_{ij} : g_{ij} \ge 0, \sum_j g_{ij} = E_i, \sum_i g_{ij} = \tilde{E}_j \right\}$$

Department of Physics

UC SANTA BARBARA

2. Theory of OT: Balanced & Unbalanced

p-Wasserstein Distance

p=1: EMD

p=2: Monge-Kantorovich Distance (W₂); has a (weak) Riemannian structure, thus can be linearized.

$$W_p(\mathcal{E}, \tilde{\mathcal{E}}) = \min_{g_{ij} \in \Gamma(\mathcal{E}, \tilde{\mathcal{E}})} \left(\sum_{ij} g_{ij} \|x_i - \tilde{x}_j\|^p \right)^{1/p}$$
$$\Gamma(\mathcal{E}, \tilde{\mathcal{E}}) = \left\{ g_{ij} : g_{ij} \ge 0, \sum_j g_{ij} = E_i, \sum_i g_{ij} = \tilde{E}_j \right\}$$

Hellinger-Kantorovich (HK) Distance:

The unbalanced generalization for W₂ distance; also enjoys a Riemannian structure.

$$\begin{array}{l} \partial_t \rho + \operatorname{div} \omega = \zeta \\ \zeta \neq 0: \mbox{ No source } => \mbox{ W}_2 \mbox{ Distance } \\ \zeta \neq 0: \mbox{ With source } => \mbox{ HK Distance } \\ J_{\mathrm{HK},\kappa}(\rho,\omega,\zeta) := \begin{cases} \int_{[0,1]\times\Omega} \left(\left\| \frac{\mathrm{d}\omega}{\mathrm{d}\rho} \right\|^2 + \frac{\kappa^2}{4} \left(\frac{\mathrm{d}\zeta}{\mathrm{d}\rho} \right)^2 \right) \mathrm{d}\rho & \mbox{ if } \rho \ge 0, \omega, \zeta \ll \rho \\ +\infty & \mbox{ else.} \end{cases} \end{array}$$

Intrinsic length scale κ >0

controls the relative importance of the transport part of the cost and the creation/destruction part.

$$\operatorname{HK}(\mu_0, \mu_1)^2 := \inf \left\{ J_{\operatorname{HK}}(\rho, \omega, \zeta) | (\rho, \omega, \zeta) \in \mathcal{CES}(\mu_0, \mu_1) \right\}.$$

 $\mathrm{HK}_{\kappa}(\mu_{0},\mu_{1})/\kappa \rightarrow$ Hellinger distance (~Euclidean)

$$\operatorname{HK}_{\kappa}(\mu_0,\mu_1) \to \operatorname{W}_2(\mu_0,\mu_1)$$

00

HK Distance: Unnormalized vs. Normalized Measures

REMARK 3.12 (Global mass rescaling behaviour of HK). Let $\mu_0, \mu_1 \in \mathcal{M}_1(\Omega)$ and $m_0, m_1 \in \mathbb{R}_+$. It was shown in [20, Theorem 3.3] that

(3.14)
$$\operatorname{HK}(m_0 \cdot \mu_0, m_1 \cdot \mu_1)^2 = \sqrt{m_0 \cdot m_1} \cdot \operatorname{HK}(\mu_0, \mu_1)^2 + (\sqrt{m_0} - \sqrt{m_1})^2$$

and if π is optimal in (3.13) for $\operatorname{HK}(\mu_0, \mu_1)^2$ then $\sqrt{m_0 \cdot m_1} \cdot \pi$ is optimal for $\operatorname{HK}(m_0 \cdot \mu_0, m_1 \cdot \mu_1)^2$.

Unbalanced HK on *unnormalized* measures can be obtained from HK from *normalized* measures.

Local mass discrepancies more important than the differences in the total mass of the measures.

In analysis, **first normalize** all samples before computing HK, then recover the total mass difference via Eq 3.14.

Three Approaches to use OT:

- 1. Normalize, then balanced W_2
- 2. Normalize, then unbalanced HK
- 3. Unbalanced HK directly

T. Cai, J. Cheng, B. Schmitzer, M. Thorpe [2102.08807]

2. Theory of OT: Practical Limitation of Exact OT

OT for the whole dataset takes time ~ N(N-1)/2 * T_{OT}. => Too long for large datasets! Compute the OT distance between **100k** events takes ~**16 years** on a desktop.

Introduce a **linear version** that only takes time ~ N* T_{OT} + N(N-1)/2 * T_2 .

Linearized Optimal Transport!

2. Theory of OT: Linearized Optimal Transport

- Project onto 2-Wasserstein tangent plane at a chosen reference event.
- Compute the Euclidean distance between the projections.

OT manifold

Refer to papers for the linearization of HK distances.
 Euclidean distance

 $d_{OT}(\sigma, \mu_1)$

 $d_{OT}(\sigma,\mu_2)$

3. LOT for Jet Tagging: OT Plots

Optimal transports between the 15*15 uniform reference measure (blue) and a typical QCD jet (green), or a W jet (red), using W₂ and HK with $\kappa = 100, 10, 1, 0.1$.

The total OT distances between the jets are similar for $\kappa = +\infty$, 100, 10, the transport regime.

 $\kappa = \infty$: original W₂ distance

13

3. LOT for Jet Tagging: W v.s. QCD task using Linearized W_2 and HK distances with various κ

3. Pileup Effect: Is OT relatively insensitive to Pileup?

15

LOT-W₂ and LOT-HK on 10k WQCD jets with different PUs (Poisson distributions with mean N_{PU} = **20**, **80**, **140**) compared with τ_{21} on pruned jets in the same dataset.

4. Summary

- Optimal transport provides a natural metric on the space of collider events with ideal properties.
- Useful for geometrization of LHC data, event classification, unifying description of collider observables...
- ... and now computable on your laptop using Linearized Optimal Transport.

UC SANTA BARBARA

• • • • • •

Thank you!

UC SANTA BARBARA

Backup Slides

UC SANTA BARBARA

Balanced OT

p-Wasserstein Distance

p=1: EMD p=2: Monge-Kantorovich Distance (W₂); has a (weak) Riemannian structure, thus can be linearized.

Kantorovich formulation (static):

$$W_p(\mathcal{E}, \tilde{\mathcal{E}}) = \min_{g_{ij} \in \Gamma(\mathcal{E}, \tilde{\mathcal{E}})} \left(\sum_{ij} g_{ij} \|x_i - \tilde{x}_j\|^p \right)^{1/p}$$

$$\Gamma(\mathcal{E}, \tilde{\mathcal{E}}) = \left\{ g_{ij} : g_{ij} \ge 0, \sum_{j} g_{ij} = E_i, \sum_{i} g_{ij} = \tilde{E}_j \right\}$$

Benamou-Brenier formulation (dynamic):

DEFINITION 2.1 (Continuity equation). For $\mu_0, \mu_1 \in \mathcal{M}_1(\Omega)$ we denote by $\mathcal{CE}(\mu_0, \mu_1)$ the set of solutions for the continuity equation on $[0,1] \times \Omega$, i.e. the set of pairs of measures $(\rho, \omega) \in \mathcal{M}([0,1] \times \Omega)^{1+d}$ where ρ interpolates between μ_0 and μ_1 and that solve

> ρ: charge density **ω: current density**

Charge conservation

in a distributional sense. More precisely, we require for all $\phi \in C^1([0,1] \times \Omega)$ that

(2.1)
$$\int_{[0,1]\times\Omega} \partial_t \phi \,\mathrm{d}\rho + \int_{[0,1]\times\Omega} \nabla \phi \cdot \mathrm{d}\omega = \int_\Omega \phi(1,\cdot) \,\mathrm{d}\mu_1 - \int_\Omega \phi(0,\cdot) \,\mathrm{d}\mu_0.$$

DEFINITION 2.2 (Wasserstein-2 distance, dynamic formulation [4]). Let $J_{\rm W} : \mathcal{M}([0,1] \times \Omega)^{1+d} \rightarrow$ $\mathbb{R} \cup \{\infty\}$ be given by

2.2a)
$$J_{W}(\rho,\omega) := \begin{cases} \int_{[0,1]\times\Omega} \|\frac{d\omega}{d\rho}\|^{2} d\rho & \text{if } \rho \ge 0, \omega \ll \rho \\ +\infty & \text{else.} \end{cases}$$

Then for $\mu_0, \mu_1 \in \mathcal{M}_1(\Omega)$ we set

(2.2b)
$$W_2(\mu_0,\mu_1)^2 := \inf \left\{ J_W(\rho,\omega) | (\rho,\omega) \in \mathcal{CE}(\mu_0,\mu_1) \right\}.$$

Unbalanced OT

Hellinger-Kantorovich (HK) Distance:

The unbalanced generalization for W₂ distance; also enjoys a (weak) Riemannian structure, thus can be linearized.

Benamou-Brenier-type formulation (dynamic):

DEFINITION 3.1 (Continuity equation with source). For $\mu_0, \mu_1 \in \mathcal{M}(\Omega)$ we denote by $\mathcal{CES}(\mu_0, \mu_1)$ the set of solutions for the continuity equation with source on $[0,1] \times \Omega$, i.e. the set of triplets of measures $(\rho, \omega, \zeta) \in \mathcal{M}([0,1] \times \Omega)^{1+d+1}$ where ρ interpolates between μ_0 and μ_1 and that solve

 $\partial_t \rho + \operatorname{div} \omega = \zeta$

With source

in a distributional sense. More precisely, we require for all $\phi \in C^1([0,1] \times \Omega)$ that Additional term:

(3.1)
$$\int_{[0,1]\times\Omega} \partial_t \phi \,\mathrm{d}\rho + \int_{[0,1]\times\Omega} \nabla \phi \cdot \mathrm{d}\omega + \int_{[0,1]\times\Omega} \phi \,\mathrm{d}\zeta = \int_\Omega \phi(1,\cdot) \,\mathrm{d}\mu_1 - \int_\Omega \phi(0,\cdot) \,\mathrm{d}\mu_0.$$

DEFINITION 3.2 (Hellinger-Kantorovich distance, dynamic formulation [19, 9, 22]). Let J_{HK} : $\mathcal{M}([0,1] \times \Omega)^{1+d+1} \to \mathbb{R} \cup \{\infty\}$ be given by Additional term:

(3.2a)
$$J_{\rm HK}(\rho,\omega,\zeta) := \begin{cases} \int_{[0,1]\times\Omega} \left(\left\| \frac{\mathrm{d}\omega}{\mathrm{d}\rho} \right\|^2 + \frac{1}{4} \left(\frac{\mathrm{d}\zeta}{\mathrm{d}\rho} \right)^2 \right) \mathrm{d}\rho & \text{if } \rho \ge 0, \omega, \zeta \ll \rho, \\ +\infty & \text{else.} \end{cases}$$

Then for $\mu_0, \mu_1 \in \mathcal{M}_+(\Omega)$ we set

(3.2b)
$$\operatorname{HK}(\mu_0, \mu_1)^2 := \inf \left\{ J_{\operatorname{HK}}(\rho, \omega, \zeta) | (\rho, \omega, \zeta) \in \mathcal{CES}(\mu_0, \mu_1) \right\}.$$

Linearized Optimal Transport for W₂

LOT for W₂: Computation

Ref Jet: $\sigma = \sum_{k=1}^{N_{\sigma}} q_k \delta_{z_k}$ Jet 1: $\mu = \sum_{i=1}^{N_{\mu}} m_i \delta_{x_i}$ Jet 2: $v = \sum_{j=1}^{N_v} p_j \delta_{x_j}$

Normalize jet p_{τ} to 1.

Compute OT plans f and g with respect to the refiet where the ground metric is the Euclidean distance squared in the y-phi plane.

Compute Barycenters:

$$\bar{x}_k = \frac{1}{q_k} \sum_{i=1}^{N_{\mu}} f_{k,i} x_i$$
 and $\bar{y}_k = \frac{1}{q_k} \sum_{j=1}^{N_{\nu}} g_{k,j} y_j$

LOT distance between Jet 1 and 2:

$$d_{aLOT,\sigma}(\mu,\nu)^2 = \min_{\substack{f \in \Pi_{OT}(\sigma,\mu)\\g \in \Pi_{OT}(\sigma,\nu)}} \sum_{k=1}^{N_{\sigma}} q_k |\bar{x}_k - \bar{y}_k|^2$$

Linear Coord for Jets:

$$\mathbf{x}_n = \left(\sqrt{q_1}a_n^1\cdots\sqrt{q_{N_\sigma}}a_n^{N_\sigma}\right)^T$$

Where a's are the barycenters of the jet.

Our Default Uniform Ref Jet:

225 (15*15) constituent particles

Jet pt = 525 GeV

Jet Tagging: Procedure

Goal:

- Study the performance of LOT-W₂ distance paired with various ML models on a number of different jet tagging tasks.
- Study the effect of the length scale **k** in [0.01, 100] of LOT-HK distances on the tagging task of W and QCD discrimination.

Tagging Tasks:

- ➤ W v.s. QCD jets (primary)
- ➤ t v.s. QCD, t v.s. W
- Higgs v.s. QCD, Higgs v.s. W

 $q\bar{q} \rightarrow Z (\rightarrow \nu \bar{\nu}) + H (\rightarrow b\bar{b})$

BSM v.s. QCD, BSM v.s. W

Data Generation:

- > MadGraph 2.6.7: pp collisions at $\sqrt{s} = 14 \text{ TeV}$
- Pythia 8.243: Hadronization, multiparton interactions on with default tuning and showering parameters. No detector simulation.
- FastJet 3.3.2: anti-kt (R=1.0). Up to three jets with p_T in 500-550 GeV and |y|<1.7 are kept.

Jet Preprocessing:

- > Centering the jet axis
- Rotation: vertically align the principal component of the constituent p_T in the y-phi plane.
- LOT Computation: with a uniform ref jet of 15*15 particles

ML Models:

- LDA: Supervised Classification & Visualization
- kNN: Supervised Classification
 - k in [10, 1000], increment 10
- SVM: Supervised Classification
 - C, γ in [10⁻⁵, 10⁵], increment
 10

Full datasets: 140k jets in total for each task (balanced). Sample datasets: 10k jets for each task (balanced). Used to pick hyper-parameters of ML models for LOT-W₂, but as the full datasets for LOT-HK.

"BSM": Color sextet scalar $q\bar{q} \rightarrow \phi\bar{\phi}$ $\phi \rightarrow qq$ $m_{\phi} = 100 \,\text{GeV}$ $\Gamma_{\phi} = 2 \,\text{GeV}$

Jet Tagging: ML with LOT-W₂ for W v.s. QCD

On Sample Dataset (10k jets):

Model	AUC	Best Hyper-param
kNN	0.819	k=20
SVM	0.841	C=1, gamma=100
LDA	0.690	N/A

On Full Dataset (140k jets):

Model	TPR	FPR	Approx. Run Time			
kNN	0.803	0.112	4 hours			
SVM	0.845	0.108	6 hours			
LDA	0.716	0.308	seconds			

Jet Tagging: LDA Visualization with LOT- W_2 for t v.s. W

Jet Tagging: ML with LOT-HK of various **k** for W v.s. QCD

26

len	igth scale κ	$+\infty$	100	10	5	1	0.7	0.5	0.3	0.1	0.05	0.01	
	AUC	0.694	0.733	0.746	0.747	0.752	0.751	0.748	0.760	0.765	0.763	0.642	1
LDA	TPR	0.684	0.684	0.703	0.721	0.724	0.740	0.736	0.692	0.704	0.731	0.770	
	FPR	0.296	0.218	0.211	0.226	0.220	0.239	0.239	0.171	0.174	0.205	0.486	
	run time	several seconds										1	
	AUC	0.821	0.818	0.819	0.818	0.829	0.841	0.849	0.847	0.821	0.772	0.671	1
	TPR	0.771	0.763	0.768	0.763	0.760	0.791	0.798	0.809	0.821	0.783	0.733	
kNN	FPR	0.128	0.127	0.130	0.126	0.102	0.110	0.100	0.114	0.181	0.238	0.390	
[10, 200]	hyperpar. k	30	20	30	20	10	20	10	20	10	10	30	1
	run time						1.5 hour	S					1
5	AUC	0.842	0.842	0.842	0.841	0.849	0.851	0.856	0.853	0.845	0.806	0.694	1
SVM	TPR	0.817	0.819	0.817	0.819	0.823	0.829	0.832	0.829	0.788	0.741	0.787	
	FPR	0.133	0.134	0.134	0.137	0.126	0.127	0.120	0.124	0.099	0.128	0.401	
	hyperpar. C	1	1	1	1	1	1	1	1	1	10	10]
	hyperpar. γ	100	100	100	100	100	100	100	100	1000	1000	100000	
run time 5 hours								~	~	1			
Results for three WQCD datasets using													
the uniform or the OCD-average							anc						
Results for the WQCD1 (10k jets)dataset							reference jet						
													L
	Using the Uniform reference jet												
	A		LDΔ	0.85 -) En			kNN				S	SV
					1				0.85 -	T.T		-	

