Search for New Physics in B Decays

Bhubanjyoti Bhattacharya (bbhattach@ltu.edu)

Lawrence Technological University

Prepared for:

May 10 2022

NSF-2013984

Overview of topics covered:

- ullet $B o K\pi$ puzzle and a possible solution
- ullet Interesting observables in Semileptonic B Decays
- Hadronic three-body B decays in light of $SU(3)_F$ Symmetry

$B \to K\pi$: The puzzle in short

* Amplitudes:
$$A=A_1+A_2\,e^{i\phi}\,e^{i\delta}$$
 and $\bar{A}=A_1+A_2\,e^{i\phi}\,e^{i\delta}$ \Rightarrow CP Asymmetry: $A_{\rm CP}=\frac{|\bar{\mathcal{A}}|^2-|\mathcal{A}|^2}{|\bar{\mathcal{A}}|^2+|\mathcal{A}|^2}\propto\sin(\phi)\sin(\delta)$

* Consider processes:

$$\begin{array}{lll} B^{+} \to \pi^{0} K^{+} & \mathcal{A}^{0+} = -T' \, e^{i\gamma} + P'_{tc} - P'_{EW} & \left(P'_{EW} \propto T' \right) \\ B^{0}_{d} \to \pi^{-} K^{+} & \mathcal{A}^{-+} = -T' \, e^{i\gamma} + P'_{tc} \\ \Rightarrow & \left[A_{\rm CP} (B^{+} \to \pi^{0} K^{+}) \, = \, A_{\rm CP} (B^{0}_{d} \to \pi^{-} K^{+}) \right] & \text{in Theory!} \end{array}$$

* Experiment:

$$A_{\mathrm{CP}}^{0+} = 0.025 \pm 0.016$$
 2012.12789
$$A_{\mathrm{CP}}^{-+} = -0.084 \pm 0.004$$
 1805.06759 $\sim 6.5\sigma$ discrepancy!

$B \to K\pi$: The puzzle

4 $B \to K\pi$ processes with 9 observables

Decay	BR	$A_{\rm CP}$	$S_{\rm CP}$
$B^+ \to \pi^+ K^0$	√	✓	
$B^+ o \pi^0 K^+$	✓	\checkmark	
$B_d^0 \to \pi^- K^+$	✓	\checkmark	
$B_d^0 o \pi^0 K^0$	✓	\checkmark	✓

Fit with several theory parameters (usually) results in a bad fit.

$$\begin{split} A^{+0} &= -P'_{tc} + P'_{uc}e^{i\gamma} - \frac{1}{3}P'^{C}_{EW}\,, \\ \sqrt{2}A^{0+} &= -T'e^{i\gamma} - C'e^{i\gamma} + P'_{tc} - P'_{uc}e^{i\gamma} \\ &- P'_{EW} - \frac{2}{3}P'^{C}_{EW}\,, \\ A^{-+} &= -T'e^{i\gamma} + P'_{tc} - P'_{uc}e^{i\gamma} - \frac{2}{3}P'^{C}_{EW}\,, \\ \sqrt{2}A^{00} &= -C'e^{i\gamma} - P'_{tc} + P'_{uc}e^{i\gamma} \\ &- P'_{EW} - \frac{1}{3}P'^{C}_{EW}\,. \end{split}$$

The $B \to K\pi$ puzzle: A solution (2104.03947)!

* Consider an ALP (2104.03947):

$$\mathcal{L} \supset -i \sum_{f=u,d,l} \eta_f \frac{m_f}{f_a} \bar{f} \gamma_5 f a + \dots$$

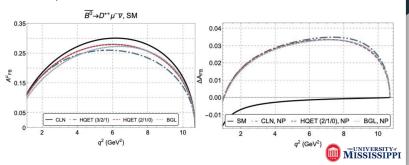
- $ightarrow ~m_a \simeq m_{\pi^0}$ and ALP promptly decays to $\gamma\gamma$
- ightarrow Mixes with the π^0 : $|a
 angle = \sin heta \left|\pi^0
 ight
 angle_{
 m phys} + \cos heta \left|a
 ight
 angle_{
 m phys}$
- $o B o K \pi^0$ processes get new contribution: $\mathcal{A} = |\mathcal{A}| e^{i\pi/2}$ $\sqrt{2} \mathcal{A}^{0+} = \ldots + \mathcal{A}$; $\sqrt{2} \mathcal{A}^{00} = \ldots + \mathcal{A}$
- ightarrow Leads to a good fit with $|\mathcal{A}| \sim P_{EW}'$
- ightarrow Constraint from B
 ightarrow Ka ($B
 ightarrow K + ext{invis}$): $\mathcal{B} \sim 10^{-5} \Rightarrow \sin \theta \sim 0.1 0.2$
- * Work in progress: How to detect an ALP with mass close to m_{π^0} in other flavor processes.

Semileptonic B decays: Anomalies

- * Ratio anomaly in $B \to D^* \tau \nu/B \to D^* \ell \nu \; (\sim 3\sigma)$
- * Effective 4-body decay with 4 kinematic variables
 - leverage angular observables for NP searches

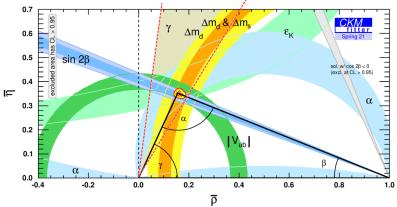
$$\frac{d^4\Gamma}{dq^2d\cos\theta^*d\cos\theta_\ell d\chi} \propto \sum_{i=1,\dots,9} I_i(q^2) \Omega_i(\theta^*,\theta_\ell,\chi)$$

- * 2104.02094 indicated new $\sim 4~\sigma$ anomaly in Belle 2018 data
 - ightarrow Forward-backward asymmetry for lepton: difference in events with $\cos heta_\ell>0$ and <0
 - $\rightarrow \Omega_6 \propto \cos \theta_\ell \Rightarrow A_{\rm FB} \propto I_6$
 - ightarrow Measure $A_{
 m FB}$ in both μ^- and e^- channels
 - $ightarrow~\Delta A_{
 m FB} = A_{
 m FB}^{\mu} A_{
 m FB}^{e}$ sensitive to NP


B Anomalies: A Monte-Carlo tool (2203.07189)

- * Snowmass Contributed Paper on Monte-Carlo event generator: 2203.07189
- * Effective Field Theory approach with dimension 6 NP operators: $(\bar{b}\Gamma c)(\bar{\mu}\Gamma_L\nu) \text{ where } \Gamma_L=(1-\gamma^5)/2$ and $\Gamma=\text{Left/Right Scalar/Vector/Tensor}$
- * MC tool based on EvtGen: generates $B \to D^* \ell \nu$ events
 - ightarrow Obtain $\Delta A_{
 m FB}$ as a function of q^2 : distinguish models
 - ightarrow $\Delta A_{
 m FB}$ free from Form Factor effects
 - ightarrow Correlated with other Δ observables such as S_5

B Anomalies: A Monte-Carlo tool (2203.07189)


* Details in talk by Q. Campagna (BSM IV Session)

Asymmetries vs. Δ -Observables

Hadronic B Decays: The CKM Angle γ

* Large experimental uncertainty in $\gamma~\sim6^\circ$

- * LHCb will significantly reduce this uncertainty over the next decade
- * May reveal tension find corroborating information from other methods

3-body B Decays: Fully-symmetric state

* 1303.0846, 1812.06194 showed that three-body B decays can be used to extract γ

$$\begin{split} & 2\mathscr{A}_{\mathrm{fs}}(B^0 \to K^+\pi^0\pi^-) = Be^{i\gamma} - \kappa C \ , \\ & \sqrt{2}\mathscr{A}_{\mathrm{fs}}(B^0 \to K^0\pi^+\pi^-) = -De^{i\gamma} - \tilde{P}_{\mathrm{uc}}e^{i\gamma} - A + \kappa D \ , \\ & \mathscr{A}_{\mathrm{fs}}(B^0 \to K^0K^0\overline{K}^0) = \underbrace{\alpha_{\mathrm{SU(3)}}}(\tilde{I}_{\mathrm{uc}}^{\prime\prime}e^{i\gamma} + A) \ , \\ & \sqrt{2}\mathscr{A}_{\mathrm{fs}}(B^0 \to K^+K^0K^-) = \underbrace{\alpha_{\mathrm{SU(3)}}}(-Ce^{i\gamma} - \tilde{I}_{\mathrm{uc}}^{\prime\prime}e^{i\gamma} - A + \kappa B) \ , \\ & \mathsf{X} \ \sqrt{2}\mathscr{A}_{\mathrm{fs}}(B^+ \to K^+\pi^+\pi^-) = -Ce^{i\gamma} - \tilde{P}_{\mathrm{uc}}^{\prime\prime}e^{i\gamma} - A + \kappa B \ . \end{split}$$

- * Amplitudes are momentum dependent study on a Dalitz plot
- * Unknowns: 4 SU(3) amplitudes (momentum dependent) + γ
- * Observables: 9 per Dalitz plot point
- * Fit to extract γ

《ロト (個) (重) (重) (重) の(0)

3-body B Decays: Fully-antisymmetric state

* Work in progress with undergraduate student

$$\checkmark$$
 Find flavor-SU(3) representations of $\langle B|H\,|PPP\rangle_{\mathrm{FA}}$
$$B \to (P_1P_2P_3)_{\mathrm{FA}} \text{ with } |P_1P_2P_3\rangle = -\,|P_2P_1P_3\rangle.$$

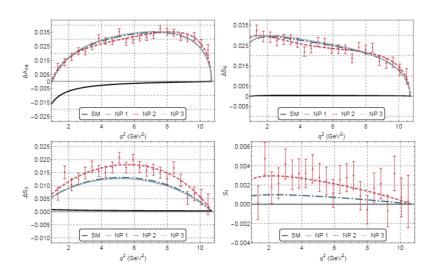
Decay	V_{cb}^*	V_{cs}				$V_{ub}^*V_{us}$			
Amplitude	$B_1^{(FA)}$	$B^{(FA)}$	$A_1^{(FA)}$	$A^{(FA)}$	$R_8^{(FA)}$	$R_{10}^{(FA)}$	$P_8^{(FA)}$	$P_{10^*}^{(FA)}$	$P_{27}^{(FA)}$
$A(B^+ \to K^+ \pi^+ \pi^-)$	0	$\frac{1}{\sqrt{5}}$	0	$\frac{1}{\sqrt{5}}$	$\frac{1}{\sqrt{15}}$	$-\frac{1}{\sqrt{3}}$	$-\frac{3}{5}$	0	$\frac{3\sqrt{6}}{5}$
$A(B^+ \to K^0 \pi^+ \pi^0)$	0	$\sqrt{\frac{2}{5}}$	0	$\sqrt{\frac{2}{5}}$	$\sqrt{\frac{2}{15}}$	$\frac{1}{\sqrt{6}}$	$-\tfrac{3\sqrt{2}}{5}$	0	$\frac{\sqrt{3}}{5}$
$A(B^0 \to K^0 \pi^+ \pi^-)$	0	$-\frac{1}{\sqrt{5}}$	0	$-\frac{1}{\sqrt{5}}$	$\frac{1}{\sqrt{15}}$	$-\frac{1}{\sqrt{3}}$	$-\frac{1}{5}$	0	$\frac{\sqrt{6}}{5}$
$A(B^0 \to K^+ \pi^0 \pi^-)$	0	$\sqrt{\frac{2}{5}}$	0	$\sqrt{\frac{2}{5}}$	$-\sqrt{\frac{2}{15}}$	$-\frac{1}{\sqrt{6}}$	$\frac{\sqrt{2}}{5}$	0	$\frac{3\sqrt{3}}{5}$
$A(B^+ \to K^+ K^0 \bar{K^0})$	0	$-\frac{1}{\sqrt{5}}$	0	$-\frac{1}{\sqrt{5}}$	$-\frac{1}{\sqrt{15}}$	0	$\frac{3}{5}$	0	$\frac{2\sqrt{6}}{5}$
$A(B^0 \to K^0 K^+ K^-)$	0	$-\frac{1}{\sqrt{5}}$	0	$-\frac{1}{\sqrt{5}}$	$\frac{1}{\sqrt{15}}$	0	$-\frac{1}{5}$	$\sqrt{2}$	$\frac{\sqrt{6}}{5}$
$\sqrt{2}A(B_s^0 \to \pi^0 K^+ K^-)$	$-\frac{1}{2\sqrt{6}}$	0	$-\frac{1}{2\sqrt{6}}$	0	$\frac{2}{\sqrt{15}}$	$\frac{1}{2\sqrt{3}}$	4 5	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{\frac{3}{2}}}{10}$
$\sqrt{2}A(B_s^0 \to \pi^0 K^0 \bar{K^0})$	$-\frac{1}{2\sqrt{6}}$	0	$-\frac{1}{2\sqrt{6}}$	0	$-\frac{2}{\sqrt{15}}$	$-\frac{1}{2\sqrt{3}}$	$-\frac{4}{5}$	$\frac{1}{\sqrt{2}}$	$-\frac{9\sqrt{\frac{3}{2}}}{10}$
$A(B_s^0 \to \pi^- K^+ \bar{K^0})$	$\frac{1}{2\sqrt{6}}$	0	$\frac{1}{2\sqrt{6}}$	0	0	$-\frac{1}{2\sqrt{3}}$	0	$-\frac{1}{\sqrt{2}}$	$\frac{\sqrt{\frac{3}{2}}}{2}$
$A(B_s^0 \to \pi^+ K^- K^0)$	$-\frac{1}{2\sqrt{6}}$	0	$-\frac{1}{2\sqrt{6}}$	0	0	$-\frac{1}{2\sqrt{3}}$	0	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{\frac{3}{2}}}{2}$
$\sqrt{2}A(B_s^0 \rightarrow \pi^0\pi^+\pi^-)$	$-\frac{1}{\sqrt{6}}$	$\frac{2}{\sqrt{5}}$	$-\frac{1}{\sqrt{6}}$	$\frac{2}{\sqrt{5}}$	0	0	65	0	$\frac{3\sqrt{\frac{3}{2}}}{5}$

- ightarrow Find reduced set of SU(3) amplitudes
- ightarrow Establish γ extraction method

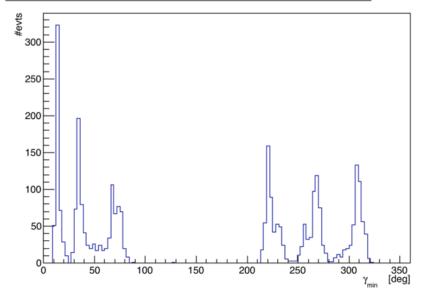
11/13

Outlook

- * Several new directions to search for NP in B decays
- * With more precision data from experiments expect to find more tensions
- * Correlated information from many discrepancies will lead to finding NP


Thank You!

Back-up Slides


$B \to K\pi$ fit with ALP- π^0 mixing

Parameter	C' / T' = 0.2
χ^2/dof	3.64/3
p-value	30%
T'	6.4 ± 1.5
$ P'_{tc} $	50.30 ± 0.47
$ \mathcal{A} $	6.4 ± 3.4
$\delta_{C'}$	186 ± 54
$\delta_{Ptc'}$	-18.1 ± 5

$B \to D^* \ell \nu$ angular observables

3-body B Decays: Fully-symmetric state

Direct measurement of 8 Vcb Vus Unknowns: phase magnifudes Show phase)

GLW Method ADS Method GGSZ Method -> Multibody States 4k observables 2k+3 unknowns

Lesson: No QCD input necessary to find V.